1
|
Singh S, Singh R, Priyadarsini S, Ola AL. Genomics empowering conservation action and improvement of celery in the face of climate change. PLANTA 2024; 259:42. [PMID: 38270699 DOI: 10.1007/s00425-023-04321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/23/2023] [Indexed: 01/26/2024]
Abstract
MAIN CONCLUSION Integration of genomic approaches like whole genome sequencing, functional genomics, evolutionary genomics, and CRISPR/Cas9-based genome editing has accelerated the improvement of crop plants including leafy vegetables like celery in the face of climate change. The anthropogenic climate change is a real peril to the existence of life forms on our planet, including human and plant life. Climate change is predicted to be a significant threat to biodiversity and food security in the coming decades and is rapidly transforming global farming systems. To avoid the ghastly future in the face of climate change, the elucidation of shifts in the geographical range of plant species, species adaptation, and evolution is necessary for plant scientists to develop climate-resilient strategies. In the post-genomics era, the increasing availability of genomic resources and integration of multifaceted genomics elements is empowering biodiversity conservation action, restoration efforts, and identification of genomic regions adaptive to climate change. Genomics has accelerated the true characterization of crop wild relatives, genomic variations, and the development of climate-resilient varieties to ensure food security for 10 billion people by 2050. In this review, we have summarized the applications of multifaceted genomic tools, like conservation genomics, whole genome sequencing, functional genomics, genome editing, pangenomics, in the conservation and adaptation of plant species with a focus on celery, an aromatic and medicinal Apiaceae vegetable. We focus on how conservation scientists can utilize genomics and genomic data in conservation and improvement.
Collapse
Affiliation(s)
- Saurabh Singh
- Department of Vegetable Science, Rani Lakshmi Bai Central Agricultural University, Jhansi, UP, 284003, India.
| | - Rajender Singh
- Division of Crop Improvement and Seed Technology, ICAR-Central Potato Research Institute (CPRI), Shimla, India
| | - Srija Priyadarsini
- Institute of Agricultural Sciences, SOA (Deemed to be University), Bhubaneswar, 751029, India
| | - Arjun Lal Ola
- Department of Vegetable Science, Rani Lakshmi Bai Central Agricultural University, Jhansi, UP, 284003, India
| |
Collapse
|
2
|
Yamashita M, Fujimori T, An S, Iguchi S, Takenaka Y, Kajiura H, Yoshizawa T, Matsumura H, Kobayashi M, Ono E, Ishimizu T. The apiosyltransferase celery UGT94AX1 catalyzes the biosynthesis of the flavone glycoside apiin. PLANT PHYSIOLOGY 2023; 193:1758-1771. [PMID: 37433052 PMCID: PMC10602602 DOI: 10.1093/plphys/kiad402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Apiose is a unique branched-chain pentose found in plant glycosides and a key component of the cell wall polysaccharide pectin and other specialized metabolites. More than 1,200 plant-specialized metabolites contain apiose residues, represented by apiin, a distinctive flavone glycoside found in celery (Apium graveolens) and parsley (Petroselinum crispum) in the family Apiaceae. The physiological functions of apiin remain obscure, partly due to our lack of knowledge on apiosyltransferase during apiin biosynthesis. Here, we identified UGT94AX1 as an A. graveolens apiosyltransferase (AgApiT) responsible for catalyzing the last sugar modification step in apiin biosynthesis. AgApiT showed strict substrate specificity for the sugar donor, UDP-apiose, and moderate specificity for acceptor substrates, thereby producing various apiose-containing flavone glycosides in celery. Homology modeling of AgApiT with UDP-apiose, followed by site-directed mutagenesis experiments, identified unique Ile139, Phe140, and Leu356 residues in AgApiT, which are seemingly crucial for the recognition of UDP-apiose in the sugar donor pocket. Sequence comparison and molecular phylogenetic analysis of celery glycosyltransferases suggested that AgApiT is the sole apiosyltransferase-encoding gene in the celery genome. Identification of this plant apiosyltransferase gene will enhance our understanding of the physioecological functions of apiose and apiose-containing compounds.
Collapse
Affiliation(s)
- Maho Yamashita
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tae Fujimori
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Song An
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Sho Iguchi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yuto Takenaka
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hiroyuki Kajiura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Takuya Yoshizawa
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hiroyoshi Matsumura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masaru Kobayashi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Eiichiro Ono
- Suntory Global Innovation Center Ltd., Research Institute, Soraku-gun, Kyoto 619-0284, Japan
| | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
3
|
Tola AJ, Jaballi A, Germain H, Missihoun TD. Recent Development on Plant Aldehyde Dehydrogenase Enzymes and Their Functions in Plant Development and Stress Signaling. Genes (Basel) 2020; 12:genes12010051. [PMID: 33396326 PMCID: PMC7823795 DOI: 10.3390/genes12010051] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.
Collapse
|
4
|
Bruznican S, De Clercq H, Eeckhaut T, Van Huylenbroeck J, Geelen D. Celery and Celeriac: A Critical View on Present and Future Breeding. FRONTIERS IN PLANT SCIENCE 2020; 10:1699. [PMID: 32038678 PMCID: PMC6987470 DOI: 10.3389/fpls.2019.01699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Cultivated for the crispy petioles and round, fleshy, and flavored hypocotyl celery and celeriac have over two centuries of breeding history in Europe. In this review paper we summarized the most recent advances touching when necessary the historical context of celery and celeriac breeding. In the post genomic era of research, the genome sequence of celery is only partially available. We comprised however in this paper the most important aspects of celery genetics that are available today and have applicability in celery modern cultivars development. We discussed the problems and traits that drive the main celery and celeriac breeding goals, like hybrid seed production, disease resistance, and interesting enlarged hypocotyl and petiole characteristics. Besides the classical breeding traits we covered the potential of integration of existing cultivars as sources for consumer oriented traits like nutraceuticals and health promoting substances. Sustainability is a subject that is continuously growing in popularity and we looked at the genetic base of celery and celeriac that makes them sources for abiotic stress resistance and candidates for phytoremediation. We explored the fundamental concepts gained in various fields of celery and related species research, as resources for future improvement of celery and celeriac germplasm. We forecast what the next years will bring to Apium breeding.
Collapse
Affiliation(s)
- Silvia Bruznican
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Production, Ghent University, Ghent, Belgium
| | - Hervé De Clercq
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Tom Eeckhaut
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Johan Van Huylenbroeck
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Danny Geelen
- Department of Plant Production, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Identification of Proteins Involved in Carbohydrate Metabolism and Energy Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat. Int J Mol Sci 2018; 19:ijms19020324. [PMID: 29360773 PMCID: PMC5855548 DOI: 10.3390/ijms19020324] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/13/2018] [Accepted: 01/21/2018] [Indexed: 01/09/2023] Open
Abstract
Cytoplasmic male sterility (CMS) where no functional pollen is produced has important roles in wheat breeding. The anther is a unique organ for male gametogenesis and its abnormal development can cause male sterility. However, the mechanisms and regulatory networks related to plant male sterility are poorly understood. In this study, we conducted comparative analyses using isobaric tags for relative and absolute quantification (iTRAQ) of the pollen proteins in a CMS line and its wheat maintainer. Differentially abundant proteins (DAPs) were analyzed based on Gene Ontology classifications, metabolic pathways and transcriptional regulation networks using Blast2GO. We identified 5570 proteins based on 23,277 peptides, which matched with 73,688 spectra, including proteins in key pathways such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and 6-phosphofructokinase 1 in the glycolysis pathway, isocitrate dehydrogenase and citrate synthase in the tricarboxylic acid cycle and nicotinamide adenine dinucleotide (NADH)-dehydrogenase and adenosine-triphosphate (ATP) synthases in the oxidative phosphorylation pathway. These proteins may comprise a network that regulates male sterility in wheat. Quantitative real time polymerase chain reaction (qRT-PCR) analysis, ATP assays and total sugar assays validated the iTRAQ results. These DAPs could be associated with abnormal pollen grain formation and male sterility. Our findings provide insights into the molecular mechanism related to male sterility in wheat.
Collapse
|
6
|
Dumschott K, Richter A, Loescher W, Merchant A. Post photosynthetic carbon partitioning to sugar alcohols and consequences for plant growth. PHYTOCHEMISTRY 2017; 144:243-252. [PMID: 28985572 DOI: 10.1016/j.phytochem.2017.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 05/06/2023]
Abstract
The occurrence of sugar alcohols is ubiquitous among plants. Physiochemical properties of sugar alcohols suggest numerous primary and secondary functions in plant tissues and are often well documented. In addition to functions arising from physiochemical properties, the synthesis of sugar alcohols may have significant influence over photosynthetic, respiratory, and developmental processes owing to their function as a large sink for photosynthates. Sink strength is demonstrated by the high concentrations of sugar alcohols found in plant tissues and their ability to be readily transported. The plant scale distribution and physiochemical function of these compounds renders them strong candidates for functioning as stress metabolites. Despite this, several aspects of sugar alcohol biosynthesis and function are poorly characterised namely: 1) the quantitative characterisation of carbon flux into the sugar alcohol pool; 2) the molecular control governing sugar alcohol biosynthesis on a quantitative basis; 3) the role of sugar alcohols in plant growth and ecology; and 4) consequences of sugar alcohol synthesis for yield production and yield quality. We highlight the need to adopt new approaches to investigating sugar alcohol biosynthesis using modern technologies in gene expression, metabolic flux analysis and agronomy. Combined, these approaches will elucidate the impact of sugar alcohol biosynthesis on growth, stress tolerance, yield and yield quality.
Collapse
Affiliation(s)
- Kathryn Dumschott
- Faculty of Agriculture and Environment, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Andreas Richter
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Wayne Loescher
- Department of Horticulture, Michigan State University, MI, USA
| | - Andrew Merchant
- Faculty of Agriculture and Environment, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
7
|
Kopečná M, Vigouroux A, Vilím J, Končitíková R, Briozzo P, Hájková E, Jašková L, von Schwartzenberg K, Šebela M, Moréra S, Kopečný D. The ALDH21 gene found in lower plants and some vascular plants codes for a NADP + -dependent succinic semialdehyde dehydrogenase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:229-243. [PMID: 28749584 DOI: 10.1111/tpj.13648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP+ -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD+ is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP+ binding induces a conformational change of the loop carrying Arg-228, which seals the NADP+ in the coenzyme cavity via its 2'-phosphate and α-phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg-121 and Arg-457, and a hydrogen bond with Tyr-296. While both arginine residues are pre-formed for substrate/product binding, Tyr-296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5.
Collapse
Affiliation(s)
- Martina Kopečná
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Armelle Vigouroux
- Institute for Integrative Biology of the Cell (I2BC), CNRS-CEA-Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, F-91198, Gif-sur-Yvette, France
| | - Jan Vilím
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Radka Končitíková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Pierre Briozzo
- Institut Jean-Pierre Bourgin, INRA-AgroParisTech, Université Paris-Saclay, Route de Saint-Cyr, F-78026, Versailles, France
| | - Eva Hájková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lenka Jašková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | | | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Solange Moréra
- Institute for Integrative Biology of the Cell (I2BC), CNRS-CEA-Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, F-91198, Gif-sur-Yvette, France
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| |
Collapse
|
8
|
Li MY, Hou XL, Wang F, Tan GF, Xu ZS, Xiong AS. Advances in the research of celery, an important Apiaceae vegetable crop. Crit Rev Biotechnol 2017; 38:172-183. [PMID: 28423952 DOI: 10.1080/07388551.2017.1312275] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Celery (Apium graveolens L.), one of the most important vegetables in Apiaceae family, is cultivated worldwide and utilized in food and cosmetic industries because it is an excellent source of vitamins, phenolic compounds, volatile oils and other nutrients. Celery extracts possess various medicinal properties, such as antibacterial, anti-inflammatory and lowering blood glucose and serum lipid levels. With the rapid advancements in molecular biology and sequencing technology, studies on celery have been performed. Numerous molecular markers and regulatory genes have been discovered and applied to improve celery. Research advances, including genetic breeding, genomics research, function genes and chemical composition, regarding celery are reviewed in this paper. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on celery, an important Apiaceae vegetable crop.
Collapse
Affiliation(s)
- Meng-Yao Li
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Xi-Lin Hou
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Feng Wang
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Guo-Fei Tan
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Zhi-Sheng Xu
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Ai-Sheng Xiong
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
9
|
Hartman MD, Figueroa CM, Arias DG, Iglesias AA. Inhibition of Recombinant Aldose-6-Phosphate Reductase from Peach Leaves by Hexose-Phosphates, Inorganic Phosphate and Oxidants. PLANT & CELL PHYSIOLOGY 2017; 58:145-155. [PMID: 28011870 DOI: 10.1093/pcp/pcw180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/17/2016] [Indexed: 05/14/2023]
Abstract
Glucitol, also known as sorbitol, is a major photosynthetic product in plants from the Rosaceae family. This sugar alcohol is synthesized from glucose-6-phosphate by the combined activities of aldose-6-phosphate reductase (Ald6PRase) and glucitol-6-phosphatase. In this work we show the purification and characterization of recombinant Ald6PRase from peach leaves. The recombinant enzyme was inhibited by glucose-1-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate and orthophosphate. Oxidizing agents irreversibly inhibited the enzyme and produced protein precipitation. Enzyme thiolation with oxidized glutathione protected the enzyme from insolubilization caused by diamide, while incubation with NADP+ (one of the substrates) completely prevented enzyme precipitation. Our results suggest that Ald6PRase is finely regulated to control carbon partitioning in peach leaves.
Collapse
Affiliation(s)
- Matías D Hartman
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional, Santa Fe, Argentina
| | - Diego G Arias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional, Santa Fe, Argentina
| |
Collapse
|
10
|
Genome-Wide Identification and Functional Classification of Tomato (Solanum lycopersicum) Aldehyde Dehydrogenase (ALDH) Gene Superfamily. PLoS One 2016; 11:e0164798. [PMID: 27755582 PMCID: PMC5068750 DOI: 10.1371/journal.pone.0164798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/30/2016] [Indexed: 11/25/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) is a protein superfamily that catalyzes the oxidation of aldehyde molecules into their corresponding non-toxic carboxylic acids, and responding to different environmental stresses, offering promising genetic approaches for improving plant adaptation. The aim of the current study is the functional analysis for systematic identification of S. lycopersicum ALDH gene superfamily. We performed genome-based ALDH genes identification and functional classification, phylogenetic relationship, structure and catalytic domains analysis, and microarray based gene expression. Twenty nine unique tomato ALDH sequences encoding 11 ALDH families were identified, including a unique member of the family 19 ALDH. Phylogenetic analysis revealed 13 groups, with a conserved relationship among ALDH families. Functional structure analysis of ALDH2 showed a catalytic mechanism involving Cys-Glu couple. However, the analysis of ALDH3 showed no functional gene duplication or potential neo-functionalities. Gene expression analysis reveals that particular ALDH genes might respond to wounding stress increasing the expression as ALDH2B7. Overall, this study reveals the complexity of S. lycopersicum ALDH gene superfamily and offers new insights into the structure-functional features and evolution of ALDH gene families in vascular plants. The functional characterization of ALDHs is valuable and promoting molecular breeding in tomato for the improvement of stress tolerance and signaling.
Collapse
|
11
|
Hou Q, Bartels D. Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. ANNALS OF BOTANY 2015; 115:465-79. [PMID: 25085467 PMCID: PMC4332599 DOI: 10.1093/aob/mcu152] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/28/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Stresses such as drought or salinity induce the generation of reactive oxygen species, which subsequently cause excessive accumulation of aldehydes in plant cells. Aldehyde dehydrogenases (ALDHs) are considered as 'aldehyde scavengers' to eliminate toxic aldehydes caused by oxidative stress. The completion of the genome sequencing projects of the halophytes Eutrema parvulum and E. salsugineum has paved the way to explore the relationships and the roles of ALDH genes in the glycophyte Arabidopsis thaliana and halophyte model plants. METHODS Protein sequences of all plant ALDH families were used as queries to search E. parvulum and E. salsugineum genome databases. Evolutionary analyses compared the phylogenetic relationships of ALDHs from A. thaliana and Eutrema. Expression patterns of several stress-associated ALDH genes were investigated under different salt conditions using reverse transcription-PCR. Putative cis-elements in the promoters of ALDH10A8 from A. thaliana and E. salsugineum were compared in silico. KEY RESULTS Sixteen and 17 members of ten ALDH families were identified from E. parvulum and E. salsugineum genomes, respectively. Phylogenetic analysis of ALDH protein sequences indicated that Eutrema ALDHs are closely related to those of Arabidopsis, and members within these species possess nearly identical exon-intron structures. Gene expression analysis under different salt conditions showed that most of the ALDH genes have similar expression profiles in Arabidopsis and E. salsugineum, except for ALDH7B4 and ALDH10A8. In silico analysis of promoter regions of ALDH10A8 revealed different distributions of cis-elements in E. salsugineum and Arabidopsis. CONCLUSIONS Genomic organization, copy number, sub-cellular localization and expression profiles of ALDH genes are conserved in Arabidopsis, E. parvulum and E. salsugineum. The different expression patterns of ALDH7B4 and ALDH10A8 in Arabidopsis and E. salsugineum suggest that E. salsugineum uses modified regulatory pathways, which may contribute to salinity tolerance.
Collapse
Affiliation(s)
- Quancan Hou
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53315 Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53315 Bonn, Germany
| |
Collapse
|
12
|
Singh S, Brocker C, Koppaka V, Ying C, Jackson B, Matsumoto A, Thompson DC, Vasiliou V. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med 2013; 56:89-101. [PMID: 23195683 PMCID: PMC3631350 DOI: 10.1016/j.freeradbiomed.2012.11.010] [Citation(s) in RCA: 410] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 01/02/2023]
Abstract
Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes.
Collapse
Affiliation(s)
- Surendra Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chad Brocker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vindhya Koppaka
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chen Ying
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brian Jackson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Akiko Matsumoto
- Department of Social Medicine, Saga University School of Medicine, Saga 849-8501, Japan
| | - David C. Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Brocker C, Vasiliou M, Carpenter S, Carpenter C, Zhang Y, Wang X, Kotchoni SO, Wood AJ, Kirch HH, Kopečný D, Nebert DW, Vasiliou V. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics. PLANTA 2013; 237:189-210. [PMID: 23007552 PMCID: PMC3536936 DOI: 10.1007/s00425-012-1749-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/21/2012] [Indexed: 05/19/2023]
Abstract
In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.
Collapse
Affiliation(s)
- Chad Brocker
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melpomene Vasiliou
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Carpenter
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher Carpenter
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yucheng Zhang
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, College of Horticulture, Ministry of Agriculture, Northwest A&F University, Yangling, Shanxi 712100, People's Republic of China
| | - Xiping Wang
- Key Laboratory of Horticultural Plant Biology and Germplasm, Innovation in Northwest China, College of Horticulture, Ministry of Agriculture, Northwest A&F University, Yangling, Shanxi 712100, People's Republic of China
| | - Simeon O. Kotchoni
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Andrew J. Wood
- Department of Plant Biology, Southern Illinois University, Carbondale, Carbondale, IL 62901, USA
| | - Hans-Hubert Kirch
- Institute of Molecular Physiology and Biotechnology of Plants, (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - David Kopečný
- Faculty of Science, Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palackyý University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Daniel W. Nebert
- Department of Environmental Health, University of Cincinnati, Medical Center, Cincinnati, OH 45267, USA
| | - Vasilis Vasiliou
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Kotchoni SO, Jimenez-Lopez JC, Kayodé APP, Gachomo EW, Baba-Moussa L. The soybean aldehyde dehydrogenase (ALDH) protein superfamily. Gene 2012; 495:128-33. [PMID: 22226812 DOI: 10.1016/j.gene.2011.12.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/17/2011] [Accepted: 12/20/2011] [Indexed: 11/23/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) are members of NAD(P)(+)-dependent protein superfamily that catalyze the oxidation of a wide range of endogenous and exogenous highly reactive aliphatic and aromatic aldehyde molecules to their corresponding non toxic carboxylic acids. Research evidence has shown that ALDHs represent a promising class of genes to improve growth development, seed storage and environmental stress adaptation in higher plants. The recently completed genome sequences of several plant species have resulted in the identification of a large number of ALDH genes, most of which still need to be functionally characterized. In this paper, we identify members of the ALDH gene superfamily in soybean genome, and provide a unified nomenclature for the entire soybean ALDH gene families. The soybean genome contains 18 unique ALDH sequences encoding members of five ALDH families involved in a wide range of metabolic and molecular detoxification pathways. In addition, we describe the biochemical requirements and cellular metabolic pathways of selected members of ALDHs in soybean responses to environmental stress conditions.
Collapse
|
15
|
Lyon BR, Lee PA, Bennett JM, DiTullio GR, Janech MG. Proteomic analysis of a sea-ice diatom: salinity acclimation provides new insight into the dimethylsulfoniopropionate production pathway. PLANT PHYSIOLOGY 2011; 157:1926-41. [PMID: 22034629 PMCID: PMC3327215 DOI: 10.1104/pp.111.185025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Dimethylsulfoniopropionate (DMSP) plays important roles in oceanic carbon and sulfur cycling and may significantly impact climate. It is a biomolecule synthesized from the methionine (Met) pathway and proposed to serve various physiological functions to aid in environmental stress adaptation through its compatible solute, cryoprotectant, and antioxidant properties. Yet, the enzymes and mechanisms regulating DMSP production are poorly understood. This study utilized a proteomics approach to investigate protein changes associated with salinity-induced DMSP increases in the model sea-ice diatom Fragilariopsis cylindrus (CCMP 1102). We hypothesized proteins associated with the Met-DMSP biosynthesis pathway would increase in relative abundance when challenged with elevated salinity. To test this hypothesis axenic log-phase cultures initially grown at a salinity of 35 were gradually shifted to a final salinity of 70 over a 24-h period. Intracellular DMSP was measured and two-dimensional gel electrophoresis was used to identify protein changes at 48 h after the shift. Intracellular DMSP increased by approximately 85% in the hypersaline cultures. One-third of the proteins increased under high salinity were associated with amino acid pathways. Three protein isoforms of S-adenosylhomo-cysteine hydrolase, which synthesizes a Met precursor, increased 1.8- to 2.1-fold, two isoforms of S-adenosyl Met synthetase increased 1.9- to 2.5-fold, and S-adenosyl Met methyltransferase increased by 2.8-fold, suggesting active methyl cycle proteins are recruited in the synthesis of DMSP. Proteins from the four enzyme classes of the proposed algal Met transaminase DMSP pathway were among the elevated proteins, supporting our hypothesis and providing candidate genes for future characterization studies.
Collapse
|
16
|
Piattoni CV, Bustos DM, Guerrero SA, Iglesias AÁ. Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase is phosphorylated in wheat endosperm at serine-404 by an SNF1-related protein kinase allosterically inhibited by ribose-5-phosphate. PLANT PHYSIOLOGY 2011; 156:1337-50. [PMID: 21546456 PMCID: PMC3135918 DOI: 10.1104/pp.111.177261] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/02/2011] [Indexed: 05/17/2023]
Abstract
Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) is a cytosolic unconventional glycolytic enzyme of plant cells regulated by phosphorylation in heterotrophic tissues. After interaction with 14-3-3 proteins, the phosphorylated enzyme becomes less active and more sensitive to regulation by adenylates and inorganic pyrophosphate. Here, we acknowledge that in wheat (Triticum aestivum), np-Ga3PDHase is specifically phosphorylated by the SnRK (SNF1-related) protein kinase family. Interestingly, only the kinase present in heterotrophic tissues (endosperm and shoots, but not in leaves) was found active. The specific SnRK partially purified from endosperm exhibited a requirement for Mg(2+) or Mn(2+) (being Ca(2+) independent), having a molecular mass of approximately 200 kD. The kinase also phosphorylated standard peptides SAMS, AMARA, and SP46, as well as endogenous sucrose synthase, results suggesting that it could be a member of the SnRK1 subfamily. Concurrently, the partially purified wheat SnRK was recognized by antibodies raised against a peptide conserved between SnRK1s from sorghum (Sorghum bicolor) and maize (Zea mays) developing seeds. The wheat kinase was allosterically inhibited by ribose-5-phosphate and, to a lesser extent, by fructose-1,6-bisphosphate and 3-phosphoglycerate, while glucose-6-phosphate (the main effector of spinach [Spinacia oleracea] leaves, SnRK1) and trehalose-6-phosphate produced little or no effect. Results support a distinctive allosteric regulation of SnRK1 present in photosynthetic or heterotrophic plant tissues. After in silico analysis, we constructed two np-Ga3PDHase mutants, S404A and S447A, identifying serine-404 as the target of phosphorylation. Results suggest that both np-Ga3PDHase and the specific kinase could be under control, critically affecting the metabolic scenario involving carbohydrates and reducing power partition and storage in heterotrophic plant cells.
Collapse
Affiliation(s)
| | | | | | - Alberto Álvaro Iglesias
- Instituto de Agrobiotecnología del Litoral (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Litoral), Facultad de Bioquímica y Ciencias Biológicas, Paraje “El Pozo,” S3000ZAA Santa Fe, Argentina (C.V.P., S.A.G., A.A.I.); Instituto Tecnológico de Chascomús (Consejo Nacional de Investigaciones Científicas y Técnicas), 7130 Chascomus, Argentina (D.M.B.)
| |
Collapse
|
17
|
Piattoni CV, Rius SP, Gomez-Casati DF, Guerrero SA, Iglesias AA. Heterologous expression of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Triticum aestivum and Arabidopsis thaliana. Biochimie 2010; 92:909-13. [DOI: 10.1016/j.biochi.2010.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 03/23/2010] [Indexed: 11/16/2022]
|
18
|
Isocitrate dehydrogenase is important for nitrosative stress resistance in Cryptococcus neoformans, but oxidative stress resistance is not dependent on glucose-6-phosphate dehydrogenase. EUKARYOTIC CELL 2010; 9:971-80. [PMID: 20400467 DOI: 10.1128/ec.00271-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The opportunistic intracellular fungal pathogen Cryptococcus neoformans depends on many antioxidant and denitrosylating proteins and pathways for virulence in the immunocompromised host. These include the glutathione and thioredoxin pathways, thiol peroxidase, cytochrome c peroxidase, and flavohemoglobin denitrosylase. All of these ultimately depend on NADPH for either catalytic activity or maintenance of a reduced, functional form. The need for NADPH during oxidative stress is well established in many systems, but a role in resistance to nitrosative stress has not been as well characterized. In this study we investigated the roles of two sources of NADPH, glucose-6-phosphate dehydrogenase (Zwf1) and NADP(+)-dependent isocitrate dehydrogenase (Idp1), in production of NADPH and resistance to oxidative and nitrosative stress. Deletion of ZWF1 in C. neoformans did not result in an oxidative stress sensitivity phenotype or changes in the amount of NADPH produced during oxidative stress compared to those for the wild type. Deletion of IDP1 resulted in greater sensitivity to nitrosative stress than to oxidative stress. The amount of NADPH increased 2-fold over that in the wild type during nitrosative stress, and yet the idp1Delta strain accumulated more mitochondrial damage than the wild type during nitrosative stress. This is the first report of the importance of Idp1 and NADPH for nitrosative stress resistance.
Collapse
|
19
|
Alvarez-Vasquez F, Hannun YA, Voit EO. Dynamics of Positional Enrichment: Theoretical Development and Application to Carbon Labeling in Zymomonas mobilis. Biochem Eng J 2008; 40:157-174. [PMID: 19412323 DOI: 10.1016/j.bej.2007.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Positional enrichment analysis has become an important technique for assessing detailed flux distributions and the fates of specific atoms in metabolic pathway systems. The typical approach to positional enrichment analysis is performed by supplying specifically labeled substrate to a cell system, letting the system reach steady state, and measuring where label had arrived and accumulated. The data are then evaluated mathematically with the help of a linear stoichiometric flux distribution model. While this procedure has proven to yield new and valuable insights, it does not address the transient dynamics between providing label and its ultimate steady-state distribution, which is often of great interest to the experimentalist (pulse labeling experiments). We show here that an extension of a recent mathematical method for dynamic labeling analysis is able to shed light on these transitions, thereby revealing insights not obtained with traditional positional enrichment analyses. The method traces the dynamics of one or more carbons through fully regulated metabolic pathways, which, in principle, may be arbitrarily complex. After a brief review of the earlier method and description of the theoretical extension, we illustrate the method with an analysis of the pentose phosphate pathway in Zymomonas mobilis, which has been used for traditional positional enrichment analyses in the past. We show how different labeling schemes result in distinctly different transients, which nevertheless eventually lead to a steady-state labeling profile that coincides exactly with the corresponding profile from traditional analysis. Thus, over the domain of commonality, the proposed method leads to results equivalent to those from state-of-the-art existing methods. However, these steady-state results constitute only a small portion of the insights obtainable with the proposed method. Our method can also be used as an "inverse" technique for elucidating the topology and regulation of pathway systems, if appropriate time series data are available. While such dynamic data are still rather rare, they are now being generated with increasing frequency and we believe it is desirable, and indeed necessary, to accompany this trend with an adequate, rigorous method of analysis.
Collapse
Affiliation(s)
- Fernando Alvarez-Vasquez
- Dept. of Biostatistics, Bioinformatics and Epidemiology. Medical University of South Carolina, Charleston, SC. USA
| | | | | |
Collapse
|
20
|
Park MO, Mizutani T, Jones PR. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase from Methanococcus maripaludis. J Bacteriol 2007; 189:7281-9. [PMID: 17704226 PMCID: PMC2168465 DOI: 10.1128/jb.00828-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of the non-sugar-assimilating mesophile Methanococcus maripaludis contains three genes encoding enzymes: a nonphosphorylating NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR); all these enzymes are potentially capable of catalyzing glyceraldehyde-3-phosphate (G3P) metabolism. GAPOR, whose homologs have been found mainly in archaea, catalyzes the reduction of ferredoxin coupled with oxidation of G3P. GAPOR has previously been isolated and characterized only from a sugar-assimilating hyperthermophile, Pyrococcus furiosus (GAPOR(Pf)), and contains the rare metal tungsten as an irreplaceable cofactor. Active recombinant M. maripaludis GAPOR (GAPOR(Mm)) was purified from Escherichia coli grown in minimal medium containing 100 muM sodium molybdate. In contrast, GAPOR(Mm) obtained from cells grown in medium containing tungsten (W) and W and molybdenum (Mo) or in medium without added W and Mo did not display any activity. Activity and transcript analysis of putative G3P-metabolizing enzymes and corresponding genes were performed with M. maripaludis cultured under autotrophic conditions in chemically defined medium. The activity of GAPOR(Mm) was constitutive throughout the culture period and exceeded that of GAPDH at all time points. As GAPDH activity was detected in only the gluconeogenic direction and GAPN activity was completely absent, only GAPOR(Mm) catalyzes oxidation of G3P in M. maripaludis. Recombinant GAPOR(Mm) is posttranscriptionally regulated as it exhibits pronounced and irreversible substrate inhibition and is completely inhibited by 1 muM ATP. With support from flux balance analysis, it is concluded that the major physiological role of GAPOR(Mm) in M. maripaludis most likely involves only nonoptimal growth conditions.
Collapse
Affiliation(s)
- Myong-Ok Park
- Research and Development Division, Fujirebio Inc, Hachioji-shi, Tokyo, Japan
| | | | | |
Collapse
|
21
|
Chong BF, Bonnett GD, Glassop D, O'Shea MG, Brumbley SM. Growth and metabolism in sugarcane are altered by the creation of a new hexose-phosphate sink. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:240-53. [PMID: 17309679 DOI: 10.1111/j.1467-7652.2006.00235.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
An efficient in planta sugarcane-based production system may be realized by coupling the synthesis of alternative products to the metabolic intermediates of sucrose metabolism, thus taking advantage of the sucrose-producing capability of the plant. This was evaluated by synthesizing sorbitol in sugarcane (Saccharum hybrids) using the Malus domestica sorbitol-6-phosphate dehydrogenase gene (mds6pdh). Mature transgenic sugarcane plants were compared with untransformed sugarcane variety Q117 by evaluation of the growth, metabolite levels and extractable activity of relevant enzymes. The average amounts of sorbitol detected in the most productive line were 120 mg/g dry weight (equivalent to 61% of the soluble sugars) in the leaf lamina and 10 mg/g dry weight in the stalk pith. The levels of enzymes involved in sucrose synthesis and cleavage were elevated in the leaves of plants accumulating sorbitol, but this did not affect sucrose accumulation in the culm. The activity of oxidative reactions in the pentose phosphate pathway and the non-reversible glyceraldehyde-3-phosphate dehydrogenase reaction were elevated to replenish the reducing power consumed by sorbitol synthesis. Sorbitol-producing sugarcane generated 30%-40% less aerial biomass and was 10%-30% shorter than control lines. Leaves developed necrosis in a pattern characteristic of early senescence, and the severity was related to the relative quantity of sorbitol accumulated. When the Zymomonas mobilis glucokinase (zmglk) gene was co-expressed with mds6pdh to increase the production of glucose-6-phosphate, the plants were again smaller, indicating that glucose-6-phosphate deficiency was not responsible for the reduced growth. In summary, sorbitol hyperaccumulation affected sugarcane growth and metabolism, but the outcome was not lethal for the plant. This work also demonstrated that impressive yields of alternative products can be generated from the intermediates of sucrose metabolism in Saccharum spp.
Collapse
Affiliation(s)
- Barrie Fong Chong
- David North Plant Research Centre, BSES Limited, PO Box 86, Indooroopilly, Qld 4068, Australia.
| | | | | | | | | |
Collapse
|
22
|
Noctor G. Metabolic signalling in defence and stress: the central roles of soluble redox couples. PLANT, CELL & ENVIRONMENT 2006; 29:409-25. [PMID: 17080595 DOI: 10.1111/j.1365-3040.2005.01476.x] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plant growth and development are driven by electron transfer reactions. Modifications of redox components are both monitored and induced by cells, and are integral to responses to environmental change. Key redox compounds in the soluble phase of the cell are NAD, NADP, glutathione and ascorbate--all of which interact strongly with reactive oxygen. This review takes an integrated view of the NAD(P)-glutathione-ascorbate network. These compounds are considered not as one-dimensional 'reductants' or 'antioxidants' but as redox couples that can act together to condition cellular redox tone or that can act independently to transmit specific information that tunes signalling pathways. Emphasis is placed on recent developments highlighting the complexity of redox-dependent defence reactions, and the importance of interactions between the reduction state of soluble redox couples and their concentration in mediating dynamic signalling in response to stress. Signalling roles are assessed within the context of interactions with reactive oxygen, phytohormones and calcium, and the biochemical reactions through which redox couples could be sensed are discussed.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biotechnologie des Plantes, UMR CNRS 8618, Université de Paris XI, 91405 Orsay cedex, France.
| |
Collapse
|
23
|
Iwamoto K, Shiraiwa Y. Salt-regulated mannitol metabolism in algae. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:407-15. [PMID: 16088352 DOI: 10.1007/s10126-005-0029-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2005] [Accepted: 04/28/2005] [Indexed: 05/03/2023]
Abstract
Mannitol, one of the most widely occurring sugar alcohol compounds, is found in bacteria, fungi, algae, and plants. In these organisms the compound acts as a compatible solute and has multiple functions, including osmoregulation, storage, and regeneration of reducing power, and scavenging of active oxygen species. Because of the diverse functions of mannitol, introducing the ability to accumulate it has been a hallmark of attempts to generate highly salt-tolerant transgenic plants. However, transgenic plants have not yet improved significantly in their salt tolerance. Recently, we purified and characterized 2 enzymes that biosynthesize mannitol, mannitol-1-phosphate dehydrogenase (M1PDH) and mannitol-1-phosphate-specific phosphatase, from the marine red alga Caloglossa continua, which grows in estuarine areas where tide levels fluctuate frequently. The activation of Caloglossa M1PDH is unique in that it is regulated by salt concentration at enzyme level. In this review we focus on the metabolism of mannitol, mainly in marine photosynthetic organisms, and suggest how this might be applied to producing salt-tolerant transgenic plants.
Collapse
Affiliation(s)
- Koji Iwamoto
- Functional Biosciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | |
Collapse
|
24
|
Kirch HH, Bartels D, Wei Y, Schnable PS, Wood AJ. The ALDH gene superfamily of Arabidopsis. TRENDS IN PLANT SCIENCE 2004; 9:371-7. [PMID: 15358267 DOI: 10.1016/j.tplants.2004.06.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) represent a protein superfamily of NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. The Arabidopsis genome contains 14 unique ALDH sequences encoding members of nine ALDH families, including eight known families and one novel family (ALDH22) that is currently known only in plants. Here, we identify members of the ALDH gene superfamily in Arabidopsis; provide a revised, unified nomenclature for these ALDH genes; analyze the molecular relationship among Arabidopsis ALDH genes and compare them to ALDH genes from other species, including prokaryotes and mammals; and describe the role of ALDHs in cytoplasmic male sterility, plant defense and abiotic stress tolerance.
Collapse
Affiliation(s)
- Hans-Hubert Kirch
- University of Bonn, Institute of Molecular Physiology and Biotechnology of Plants, Kirschallee1, D-53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
25
|
Zhou R, Cheng L. Biochemical characterization of cytosolic fructose-1,6-bisphosphatase from apple (Malus domestica) leaves. PLANT & CELL PHYSIOLOGY 2004; 45:879-86. [PMID: 15295071 DOI: 10.1093/pcp/pch096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cytosolic fructose-1,6-bisphosphatase was purified to apparent homogeneity from the leaves of apple, a sorbitol synthesizing species. The enzyme was a homotetramer with a subunit mass of 37 kDa, and was highly specific for fructose 1,6-bisphosphate (F1,6BP) with a Km of 3.1 micro M and a Vmax of 48 units (mg protein)(-1). Either Mg2+ or Mn2+ was required for its activity with a Km of 0.59 mM and 62 micro M, respectively. Li+, Ca2+, Zn2+, Cu2+ and Hg2+ inhibited whereas Mn2+ enhanced the Mg2+ activated enzyme activity. Fructose 6-phosphate (F6P) was found to be a mixed type inhibitor with a Ki of 0.47 mM. Fructose 2,6-bisphosphate (F2,6BP) competitively inhibited the enzyme activity and changed the substrate saturation curve from hyperbolic to sigmoidal. AMP was a non-competitive inhibitor for the enzyme. F6P interacted with F2,6BP and AMP in a synergistic way to inhibit the enzyme activity. Dihydroxyacetone phosphate slightly inhibited the enzyme activity in the presence or absence of F2,6BP. Sorbitol increased the susceptibility of the enzyme to the inhibition by high concentrations of F1,6BP. High concentrations of sorbitol in the reaction mixture led to a reduction in the enzyme activity.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
26
|
Gao Z, Maurousset L, Lemoine R, Yoo SD, van Nocker S, Loescher W. Cloning, expression, and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. PLANT PHYSIOLOGY 2003; 131:1566-75. [PMID: 12692316 PMCID: PMC166915 DOI: 10.1104/pp.102.016725] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2002] [Revised: 11/24/2002] [Accepted: 01/29/2003] [Indexed: 05/19/2023]
Abstract
The acyclic polyol sorbitol is a primary photosynthetic product and the principal photosynthetic transport substance in many economically important members of the family Rosaceace (e.g. almond [Prunus dulcis (P. Mill.) D.A. Webber], apple [Malus pumila P. Mill.], cherry [Prunus spp.], peach [Prunus persica L. Batsch], and pear [Pyrus communis]). To understand key steps in long-distance transport and particularly partitioning and accumulation of sorbitol in sink tissues, we have cloned two sorbitol transporter genes (PcSOT1 and PcSOT2) from sour cherry (Prunus cerasus) fruit tissues that accumulate large quantities of sorbitol. Sorbitol uptake activities and other characteristics were measured by heterologous expression of PcSOT1 and PcSOT2 in yeast (Saccharomyces cerevisiae). Both genes encode proton-dependent, sorbitol-specific transporters with similar affinities (K(m) sorbitol of 0.81 mM for PcSOT1 and 0.64 mM for PcSOT2). Analyses of gene expression of these transporters, however, suggest different roles during leaf and fruit development. PcSOT1 is expressed throughout fruit development, but especially when growth and sorbitol accumulation rates are highest. In leaves, PcSOT1 expression is highest in young, expanding tissues, but substantially less in mature leaves. In contrast, PcSOT2 is mainly expressed only early in fruit development and not in leaves. Compositional analyses suggest that transport mediated by PcSOT1 and PcSOT2 plays a major role in sorbitol and dry matter accumulation in sour cherry fruits. Presence of these transporters and the high fruit sorbitol concentrations suggest that there is an apoplastic step during phloem unloading and accumulation in these sink tissues. Expression of PcSOT1 in young leaves before completion of the transition from sink to source is further evidence for a role in determining sink activity.
Collapse
Affiliation(s)
- Zhifang Gao
- Department of Horticulture, Michigan State University, East Lansing 48824, USA
| | | | | | | | | | | |
Collapse
|
27
|
Bustos DM, Iglesias AA. Non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase is post-translationally phosphorylated in heterotrophic cells of wheat (Triticum aestivum). FEBS Lett 2002; 530:169-73. [PMID: 12387887 DOI: 10.1016/s0014-5793(02)03455-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In wheat, non-phosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) was found to be encoded by one gene giving rise to a single protein. However, Western blots revealed two different subunits of about 58 and 60 kDa in endosperm and shoots. The latter was attributed to in vivo phosphorylation of shoot GAPN. No modification occurred in leaves, where the enzyme is composed by a single 58 kDa polypeptide. GAPN partially purified from shoots and endosperm was dephosphorylated in vitro with alkaline phosphatase. Phosphorylated GAPN exhibited similar affinity for substrates but a lower V(max) compared to the non-phosphorylated enzyme. Results suggest that reversible phosphorylation of GAPN could regulate NADPH production in the cytosol of heterotrophic plant cells.
Collapse
Affiliation(s)
- Diego M Bustos
- Instituto Tecnológico de Chascomús (IIB-INTECH), Camino Circunv. Laguna km 6, Casilla de Correo 164, Chascomús 7130, Buenos Aires, Argentina
| | | |
Collapse
|
28
|
Peñaloza E, Gutierrez A, Martínez J, Muñoz G, Bravo LA, Corcuera LJ. Differential gene expression in proteoid root clusters of white lupin (Lupinus albus). PHYSIOLOGIA PLANTARUM 2002; 116:28-36. [PMID: 12207659 DOI: 10.1034/j.1399-3054.2002.1160104.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Proteoid root clusters are induced by P deficiency in white lupin. In their mature stage, these roots excrete organic acids (mainly citrate), thus allowing this species to acquire P from sparingly soluble sources. To screen for P-regulated genes expressed during the period of citrate efflux, an experimental model based on proteoid root clusters contrasting in citrate efflux was developed. The feasibility of this model in identifying differential gene expression was assessed over a population of mRNAs from P-starved and P-starved rescued proteoid root clusters, sampled 24 and 72 h after P addition to 24 days P-starved white lupin. Approximately 1500 bands of cDNA were displayed by differential display of 21-primer pair's combination; 52 differentially expressed bands, either up- or down-regulated after P addition, were observed. Sequence analysis of 17 of them revealed that they represent distinct cDNAs. A subsample of seven cDNAs was analysed by northern-blot, showing that six were truly differential products. Transcripts coding for enzymes involved in carbon flux (glyceraldehyde 3-phosphate dehydrogenase), glycolytic bypass (phosphoenolpyruvate carboxylase), Pi recycling (sulpholipid synthase), and two unknown cDNAs were shown to be down-regulated by P supply. Besides, an up-regulated transcript coding for a putative auxin-induced protein was identified, whereas P addition did not significantly affect expression of a transcript for cyclophilins. These results show the feasibility of using P-starved and P-starved rescued proteoid root clusters as an experimental model to detect and examine the molecular changes occurring in root clusters during the period of citrate efflux in white lupin.
Collapse
Affiliation(s)
- Enrique Peñaloza
- Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Carillanca, Casilla 58-D, Temuco, Chile Instituto de Agroindustria, Facultad de Ciencias Agropecuarias y Forestales, Universidad de la Frontera, Casilla 54-D, Temuco, Chile Departamento de Biología Molecular, Departamento de Botánica, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | | | | | | | | | | |
Collapse
|