1
|
Dense Phases of γ-Gliadins in Confined Geometries. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The binary phase diagram of γ-gliadin, a wheat storage protein, in water was explored thanks to the microevaporator, an original PDMS microfluidic device. This protein, usually qualified as insoluble in aqueous environments, displayed a partial solubility in water. Two liquid phases, a very dilute and a dense phase, were identified after a few hours of accumulation time in the microevaporator. This liquid–liquid phase separation (LLPS) was further characterized through in situ micro-Raman spectroscopy of the dilute and dense protein phases. Micro-Raman spectroscopy showed a specific orientation of phenylalanine residues perpendicular to the PDMS surfaces only for the diluted phase. This orientation was ascribed to the protein adsorption at interfaces, which would act as nuclei for the growth of dense phase in bulk. This study, thanks to the use of both aqueous solvent and a microevaporator, would provide some evidence for a possible physicochemical origin of the gliadin assembly in the endoplasmic reticulum of albumen cells, leading to the formation of dense phases called protein bodies. The microfluidic tool could be used also in food science to probe protein–protein interactions in order to build up phase diagrams.
Collapse
|
2
|
Tan X, Li K, Wang Z, Zhu K, Tan X, Cao J. A Review of Plant Vacuoles: Formation, Located Proteins, and Functions. PLANTS 2019; 8:plants8090327. [PMID: 31491897 PMCID: PMC6783984 DOI: 10.3390/plants8090327] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022]
Abstract
Vacuoles, cellular membrane-bound organelles, are the largest compartments of cells, occupying up to 90% of the volume of plant cells. Vacuoles are formed by the biosynthetic and endocytotic pathways. In plants, the vacuole is crucial for growth and development and has a variety of functions, including storage and transport, intracellular environmental stability, and response to injury. Depending on the cell type and growth conditions, the size of vacuoles is highly dynamic. Different types of cell vacuoles store different substances, such as alkaloids, protein enzymes, inorganic salts, sugars, etc., and play important roles in multiple signaling pathways. Here, we summarize vacuole formation, types, vacuole-located proteins, and functions.
Collapse
Affiliation(s)
- Xiaona Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Kaixia Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Keming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaoli Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Costa A, Navazio L, Szabo I. The contribution of organelles to plant intracellular Calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4996169. [PMID: 29767757 DOI: 10.1093/jxb/ery185] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 05/18/2023]
Abstract
Calcium (Ca2+) is among the most important intracellular messengers in living organisms. Understanding of the players and dynamics of Ca2+ signalling pathways in plants may help to unravel the molecular basis of their exceptional flexibility to respond and to adapt to different stimuli. In the present review we focus on new tools that have recently revolutionized our view of organellar Ca2+ signalling as well as on the current knowledge regarding the pathways mediating Ca2+ fluxes across intracellular membranes. The contribution of organelles and cellular subcompartments to the orchestrated response via Ca2+ signalling within a cell is also discussed, underlining the fact that one of the greatest challenges in the field is the elucidation of how influx and efflux Ca2+ transporters/channels are regulated in a concerted manner to translate specific information into a Ca2+ signature.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria, Milan, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
- Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Via U. Bassi, Padova, Italy
| |
Collapse
|
4
|
Stefano G, Brandizzi F. Advances in Plant ER Architecture and Dynamics. PLANT PHYSIOLOGY 2018; 176:178-186. [PMID: 28986423 PMCID: PMC5761816 DOI: 10.1104/pp.17.01261] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/01/2017] [Indexed: 05/18/2023]
Abstract
Recent advances highlight mechanisms that enable the morphological integrity of the plant ER in relation to the other organelles and the cytoskeleton.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, Michigan 48824
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
5
|
Delivering of proteins to the plant vacuole--an update. Int J Mol Sci 2014; 15:7611-23. [PMID: 24802873 PMCID: PMC4057694 DOI: 10.3390/ijms15057611] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 01/17/2023] Open
Abstract
Trafficking of soluble cargo to the vacuole is far from being a closed issue as it can occur by different routes and involve different intermediates. The textbook view of proteins being sorted at the post-Golgi level to the lytic vacuole via the pre-vacuole or to the protein storage vacuole mediated by dense vesicles is now challenged as novel routes are being disclosed and vacuoles with intermediate characteristics described. The identification of Vacuolar Sorting Determinants is a key signature to understand protein trafficking to the vacuole. Despite the long established vacuolar signals, some others have been described in the last few years, with different properties that can be specific for some cells or some types of vacuoles. There are also reports of proteins having two different vacuolar signals and their significance is questionable: a way to increase the efficiency of the sorting or different sorting depending on the protein roles in a specific context? Along came the idea of differential vacuolar sorting, suggesting a possible specialization of the trafficking pathways according to the type of cell and specific needs. In this review, we show the recent advances in the field and focus on different aspects of protein trafficking to the vacuoles.
Collapse
|
6
|
Tzfadia O, Galili G. The Arabidopsis exocyst subcomplex subunits involved in a golgi-independent transport into the vacuole possess consensus autophagy-associated atg8 interacting motifs. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.26732. [PMID: 24494242 PMCID: PMC4091113 DOI: 10.4161/psb.26732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/06/2013] [Accepted: 10/07/2013] [Indexed: 05/18/2023]
Abstract
The exocyst complex is a multi-subunits evolutionary conserved complex, which was originally shown to be primarily associated with vesicular transport to the plasma membrane. A recent report (Kulich et al., 2013 Traffic; In Press) revealed that AtEXO70B1, one of the multiple subunits of the exocyst complex of Arabidopsis thaliana plants, is co-transported with the autophagy-associated Atg8f protein to the vacuole. This pathway does not involve the Golgi apparatus. The co-localization of AtEXO70B1 and Atg8f suggests either that both of these proteins are co-transported together to the vacuole or, alternatively, that Atg8 binds to a putative Atg8 interacting motif (AIM) located within the AtEXO70B1 polypeptide, apparently forming a tethering complex for an autophagic complex that is transported to the vacuole. In the present addendum, by tooling a bioinformatics approach, we show that AtEXO70B1 as well as the additional 20 paralogs of Arabidopsis EXO70 exocyst subunits each possess one or more AIMs whose consensus sequence implies their high fidelity binding to Atg8. This indicates that the autophagy machinery is strongly involved in the assembly, transport, and apparently also the function of AtEXO70B1 as well as the exocyst sub complex.
Collapse
|
7
|
Xiang L, Etxeberria E, den Ende W. Vacuolar protein sorting mechanisms in plants. FEBS J 2013; 280:979-93. [DOI: 10.1111/febs.12092] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 01/12/2023]
Affiliation(s)
- Li Xiang
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| | - Ed Etxeberria
- Horticulture Department Citrus Research and Education Center University of Florida Lake Alfred FL USA
| | - Wim den Ende
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| |
Collapse
|
8
|
Francin-Allami M, Bouder A, Popineau Y. Comparative study of wheat low-molecular-weight glutenin and α-gliadin trafficking in tobacco cells. PLANT CELL REPORTS 2013; 32:89-101. [PMID: 23001535 DOI: 10.1007/s00299-012-1343-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE : Wheat low-molecular-weight-glutenin and α-gliadin were accumulated in the endoplasmic reticulum and formed protein body-like structures in tobacco cells, with the participation of BiP chaperone. Possible interactions between these prolamins were investigated. Wheat prolamins are the major proteins that accumulate in endosperm cells and are largely responsible for the unique biochemical properties of wheat products. They are accumulated in the endoplasmic reticulum (ER) where they form protein bodies (PBs) and are then transported to the storage vacuole where they form a protein matrix in the ripe seeds. Whereas previous studies have been carried out to determine the atypical trafficking pathway of prolamins, the mechanisms leading to ER retention and PB formation are still not clear. In this study, we examined the trafficking of a low-molecular-weight glutenin subunit (LMW-glutenin) and α-gliadin fused to fluorescent proteins expressed in tobacco cells. Through transient transformation in epidermal tobacco leaves, we demonstrated that both LMW-glutenin and α-gliadin were retained in the ER and formed mobile protein body-like structures (PBLS) that generally do not co-localise with Golgi bodies. An increased expression level of BiP in tobacco cells transformed with α-gliadin or LMW-glutenin was observed, suggesting the participation of this chaperone protein in the accumulation of wheat prolamins in tobacco cells. When stably expressed in BY-2 cells, LMW-glutenin fusion was retained longer in the ER before being exported to and degraded in the vacuole, compared with α-gliadin fusion, suggesting the involvement of intermolecular disulphide bonds in ER retention, but not in PBLS formation. Co-localisation experiments showed that gliadins and LMW-glutenin were found in the same PBLS with no particular distribution, which could be due to their ability to interact with each other as indicated by yeast two-hybrid assays.
Collapse
|
9
|
|
10
|
Feraru E, Feraru MI, Asaoka R, Paciorek T, De Rycke R, Tanaka H, Nakano A, Friml J. BEX5/RabA1b regulates trans-Golgi network-to-plasma membrane protein trafficking in Arabidopsis. THE PLANT CELL 2012; 24:3074-86. [PMID: 22773752 PMCID: PMC3426133 DOI: 10.1105/tpc.112.098152] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/14/2012] [Accepted: 06/23/2012] [Indexed: 05/18/2023]
Abstract
Constitutive endocytic recycling is a crucial mechanism allowing regulation of the activity of proteins at the plasma membrane and for rapid changes in their localization, as demonstrated in plants for PIN-FORMED (PIN) proteins, the auxin transporters. To identify novel molecular components of endocytic recycling, mainly exocytosis, we designed a PIN1-green fluorescent protein fluorescence imaging-based forward genetic screen for Arabidopsis thaliana mutants that showed increased intracellular accumulation of cargos in response to the trafficking inhibitor brefeldin A (BFA). We identified bex5 (for BFA-visualized exocytic trafficking defective), a novel dominant mutant carrying a missense mutation that disrupts a conserved sequence motif of the small GTPase, RAS GENES FROM RAT BRAINA1b. bex5 displays defects such as enhanced protein accumulation in abnormal BFA compartments, aberrant endosomes, and defective exocytosis and transcytosis. BEX5/RabA1b localizes to trans-Golgi network/early endosomes (TGN/EE) and acts on distinct trafficking processes like those regulated by GTP exchange factors on ADP-ribosylation factors GNOM-LIKE1 and HOPM INTERACTOR7/BFA-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1, which regulate trafficking at the Golgi apparatus and TGN/EE, respectively. All together, this study identifies Arabidopsis BEX5/RabA1b as a novel regulator of protein trafficking from a TGN/EE compartment to the plasma membrane.
Collapse
Affiliation(s)
- Elena Feraru
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Mugurel I. Feraru
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Rin Asaoka
- Department of Biological Sciences, Graduate School of Science, Tokyo University, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomasz Paciorek
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Riet De Rycke
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Hirokazu Tanaka
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, Tokyo University, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
11
|
Capuano F, Bond NJ, Gatto L, Beaudoin F, Napier JA, Benvenuto E, Lilley KS, Baschieri S. LC-MS/MS Methods for Absolute Quantification and Identification of Proteins Associated with Chimeric Plant Oil Bodies. Anal Chem 2011; 83:9267-72. [DOI: 10.1021/ac201733m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Floriana Capuano
- Laboratorio Biotecnologie Unità Tecnica BIORAD, ENEA C.R. Casaccia, 00123 Roma, Italy
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, United Kingdom
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, AL5 2JQ, United Kingdom
| | - Nicholas J. Bond
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, United Kingdom
| | - Laurent Gatto
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, United Kingdom
| | - Frédéric Beaudoin
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, AL5 2JQ, United Kingdom
| | - Johnathan A. Napier
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, AL5 2JQ, United Kingdom
| | - Eugenio Benvenuto
- Laboratorio Biotecnologie Unità Tecnica BIORAD, ENEA C.R. Casaccia, 00123 Roma, Italy
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, United Kingdom
| | - Selene Baschieri
- Laboratorio Biotecnologie Unità Tecnica BIORAD, ENEA C.R. Casaccia, 00123 Roma, Italy
| |
Collapse
|
12
|
Francin-Allami M, Saumonneau A, Lavenant L, Bouder A, Sparkes I, Hawes C, Popineau Y. Dynamic trafficking of wheat γ-gliadin and of its structural domains in tobacco cells, studied with fluorescent protein fusions. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4507-20. [PMID: 21617248 PMCID: PMC3170547 DOI: 10.1093/jxb/err159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/18/2011] [Accepted: 04/25/2011] [Indexed: 05/10/2023]
Abstract
Prolamins, the main storage proteins of wheat seeds, are synthesized and retained in the endoplasmic reticulum (ER) of the endosperm cells, where they accumulate in protein bodies (PBs) and are then exported to the storage vacuole. The mechanisms leading to these events are unresolved. To investigate this unconventional trafficking pathway, wheat γ-gliadin and its isolated repeated N-terminal and cysteine-rich C-terminal domains were fused to fluorescent proteins and expressed in tobacco leaf epidermal cells. The results indicated that γ-gliadin and both isolated domains were able to be retained and accumulated as protein body-like structures (PBLS) in the ER, suggesting that tandem repeats are not the only sequence involved in γ-gliadin ER retention and PBLS formation. The high actin-dependent mobility of γ-gliadin PBLS is also reported, and it is demonstrated that most of them do not co-localize with Golgi body or pre-vacuolar compartment markers. Both γ-gliadin domains are found in the same PBLS when co-expressed, which is most probably due to their ability to interact with each other, as indicated by the yeast two-hybrid and FRET-FLIM experiments. Moreover, when stably expressed in BY-2 cells, green fluorescent protein (GFP) fusions to γ-gliadin and its isolated domains were retained in the ER for several days before being exported to the vacuole in a Golgi-dependent manner, and degraded, leading to the release of the GFP 'core'. Taken together, the results show that tobacco cells are a convenient model to study the atypical wheat prolamin trafficking with fluorescent protein fusions.
Collapse
|
13
|
Saumonneau A, Rottier K, Conrad U, Popineau Y, Guéguen J, Francin-Allami M. Expression of a new chimeric protein with a highly repeated sequence in tobacco cells. PLANT CELL REPORTS 2011; 30:1289-302. [PMID: 21373795 DOI: 10.1007/s00299-011-1040-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/04/2011] [Accepted: 02/09/2011] [Indexed: 05/30/2023]
Abstract
In wheat, the high-molecular weight (HMW) glutenin subunits are known to contribute to gluten viscoelasticity, and show some similarities to elastomeric animal proteins as elastin. When combining the sequence of a glutenin with that of elastin is a way to create new chimeric functional proteins, which could be expressed in plants. The sequence of a glutenin subunit was modified by the insertion of several hydrophobic and elastic motifs derived from elastin (elastin-like peptide, ELP) into the hydrophilic repetitive domain of the glutenin subunit to create a triblock protein, the objective being to improve the mechanical (elastomeric) properties of this wheat storage protein. In this study, we investigated an expression model system to analyze the expression and trafficking of the wild-type HMW glutenin subunit (GS(W)) and an HMW glutenin subunit mutated by the insertion of elastin motifs (GS(M)-ELP). For this purpose, a series of constructs was made to express wild-type subunits and subunits mutated by insertion of elastin motifs in fusion with green fluorescent protein (GFP) in tobacco BY-2 cells. Our results showed for the first time the expression of HMW glutenin fused with GFP in tobacco protoplasts. We also expressed and localized the chimeric protein composed of plant glutenin and animal elastin-like peptides (ELP) in BY-2 protoplasts, and demonstrated its presence in protein body-like structures in the endoplasmic reticulum. This work, therefore, provides a basis for heterologous production of the glutenin-ELP triblock protein to characterize its mechanical properties.
Collapse
Affiliation(s)
- Amélie Saumonneau
- Institut National de la Recherche Agronomique, UR1268, Biopolymères Interactions Assemblages, Nantes, France
| | | | | | | | | | | |
Collapse
|
14
|
Gene networks in the synthesis and deposition of protein polymers during grain development of wheat. Funct Integr Genomics 2010; 11:23-35. [PMID: 20960020 DOI: 10.1007/s10142-010-0196-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 02/04/2023]
Abstract
As the amino acid storing organelle, the protein bodies provide nutrients for embryo development, seed germination and early seedling growth through storage proteolysis in cereal plants, such as wheat and rice. In protein bodies, the monomeric and polymeric prolamins, i.e. gliadins and glutenins, form gluten and play a key role in determining dough functionality and end-product quality of wheat. The formation of intra- and intermolecular bonds, including disulphide and tyrosine bonds, in and between prolamins confers cohesivity, viscosity, elasticity and extensibility to wheat dough during mixing and processing. In this review, we summarize recent progress in wheat gluten research with a focus on the fundamental molecular biological aspects, including transcriptional regulation on genes coding for prolamin components, biosynthesis, deposition and secretion of protein polymers, formation of protein bodies, genetic control of seed storage proteins, the transportation of the protein bodies and key enzymes for determining the formation of disulphide bonds of prolamin polymers.
Collapse
|
15
|
Abstract
Plants have long been considered advantageous platforms for large-scale production of antibodies due to their low cost, scalability, and the low chances of pathogen contamination. Much effort has therefore been devoted to efficiently producing mAbs (from nanobodies to secretory antibodies) in plant cells. Several technical difficulties have been encountered and are being overcome. Improvements in production levels have been achieved by manipulation of gene expression and, more efficiently, of cell targeting and protein folding and assembly. Differences in mAb glycosylation patterns between animal and plant cells are being successfully addressed by the elimination and introduction of the appropriate enzyme activities in plant cells. Another relevant battlefield is the dichotomy between production capacity and speed. Classically, stably transformed plant lines have been proposed for large scale mAb production, whereas the use of transient expression systems has always provided production speed at the cost of scalability. However, recent advances in transient expression techniques have brought impressive yield improvements, turning speed and scalability into highly compatible assets. In the era of personalized medicines, the combination of yield and speed, and the advances in glyco-engineering have made the plant cell a serious contender in the field of recombinant antibody production.
Collapse
Affiliation(s)
- Diego Orzáez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain.
| | | | | |
Collapse
|
16
|
Paul MJ, Frigerio L. Coated vesicles in plant cells. Semin Cell Dev Biol 2007; 18:471-8. [PMID: 17693105 DOI: 10.1016/j.semcdb.2007.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 07/04/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
Coated vesicles represent vital transport intermediates in all eukaryotic cells. While the basic mechanisms of membrane exchange are conserved through the kingdoms, the unique topology of the plant endomembrane system is mirrored by several differences in the genesis, function and regulation of coated vesicles. Efforts to unravel the complex network of proteins underlying the behaviour of these vesicles have recently benefited from the application in planta of several molecular tools used in mammalian systems, as well as from advances in imaging technology and the ongoing analysis of the Arabidopsis genome. In this review, we provide an overview of the roles of coated vesicles in plant cells and highlight salient new developments in the field.
Collapse
Affiliation(s)
- Matthew J Paul
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
17
|
Spitzer C, Schellmann S, Sabovljevic A, Shahriari M, Keshavaiah C, Bechtold N, Herzog M, Müller S, Hanisch FG, Hülskamp M. The Arabidopsis elch mutant reveals functions of an ESCRT component in cytokinesis. Development 2007; 133:4679-89. [PMID: 17090720 DOI: 10.1242/dev.02654] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, an alternative route to the proteasomal protein-degradation pathway was discovered that specifically targets transmembrane proteins marked with a single ubiquitin to the endosomal multivesicular body (MVB) and, subsequently, to the vacuole (yeast) or lysosome (animals), where they are degraded by proteases. Vps23p/TSG101 is a key component of the ESCRT I-III machinery in yeast and animals that recognizes mono-ubiquitylated proteins and sorts them into the MVB. Here, we report that the Arabidopsis ELCH (ELC) gene encodes a Vps23p/TSG101 homolog, and that homologs of all known ESCRT I-III components are present in the Arabidopsis genome. As with its animal and yeast counterparts, ELC binds ubiquitin and localizes to endosomes. Gel-filtration experiments indicate that ELC is a component of a high-molecular-weight complex. Yeast two-hybrid and immunoprecipitation assays showed that ELC interacts with Arabidopsis homologs of the ESCRT I complex. The elc mutant shows multiple nuclei in various cell types, indicating a role in cytokinesis. Double-mutant analysis with kaktus shows that increased ploidy levels do not influence the cytokinesis effect of elc mutants, suggesting that ELC is only important during the first endoreduplication cycle. Double mutants with tubulin folding cofactor a mutants show a synergistic phenotype, suggesting that ELC regulates cytokinesis through the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Christoph Spitzer
- University of Köln, Botanical Institute III, Gyrhofstr. 15, 50931 Köln, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tamura K, Takahashi H, Kunieda T, Fuji K, Shimada T, Hara-Nishimura I. Arabidopsis KAM2/GRV2 is required for proper endosome formation and functions in vacuolar sorting and determination of the embryo growth axis. THE PLANT CELL 2007; 19:320-32. [PMID: 17259264 PMCID: PMC1820952 DOI: 10.1105/tpc.106.046631] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We isolated an Arabidopsis thaliana mutant, katamari2 (kam2), that has a defect in the organization of endomembranes. This mutant had deformed endosomes and formed abnormally large aggregates with various organelles. Map-based cloning revealed that kam2 is allelic to gravitropism defective 2 (grv2). The KAM2/GRV2 gene encodes a homolog of a DnaJ domain-containing RECEPTOR-MEDIATED ENDOCYTOSIS-8, which is considered to play a vital role in the endocytotic pathway from the plasma membrane to lysosomes in animal cells. Immunofluorescent staining showed that KAM2/GRV2 protein localizes on punctate structures, which did not merge with any markers for Golgi, trans-Golgi network, endosomes, or prevacuolar compartments. KAM2/GRV2, which does not have a predicted transmembrane domain, was peripherally associated with the membrane surface of uncharacterized compartments. KAM2/GRV2 was expressed at the early to middle stages of seed maturation. We found kam2 mis-sorted seed storage proteins by secreting them from cells, indicating that KAM2/GRV2 is involved in the transport of the proteins into protein storage vacuoles. kam2 had another defect in embryogenesis. Half of the developing kam2-1 cotyledons grew into the opposite space of the seeds before the walking stick-shaped embryo stage. Our findings suggest that KAM2/GRV2 is required for proper formation of the endosomes involving protein trafficking to the vacuoles and determination of growth axis of the embryo.
Collapse
Affiliation(s)
- Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Becker B. Function and evolution of the vacuolar compartment in green algae and land plants (Viridiplantae). INTERNATIONAL REVIEW OF CYTOLOGY 2007; 264:1-24. [PMID: 17964920 DOI: 10.1016/s0074-7696(07)64001-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plant vacuoles perform several different functions and are essential for the plant cell. The large central vacuoles of mature plant cells provide structural support, and they serve other functions, such as protein degradation and turnover, waste disposal, storage of metabolites, and cell growth. A unique feature of the plant vacuolar system is the presence of different types of vacuoles within the same cell. The current knowledge about the vacuolar compartments in plants and green algae is summarized and a hypothesis is presented to explain the origin of multiple types of vacuoles in plants.
Collapse
Affiliation(s)
- Burkhard Becker
- Botanical Institute, University of Cologne, 50931 Köln, Germany
| |
Collapse
|
20
|
Hanton SL, Matheson LA, Brandizzi F. Seeking a way out: export of proteins from the plant endoplasmic reticulum. TRENDS IN PLANT SCIENCE 2006; 11:335-43. [PMID: 16781884 DOI: 10.1016/j.tplants.2006.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/21/2006] [Accepted: 05/24/2006] [Indexed: 05/10/2023]
Abstract
The functionality of the secretory pathway relies on the efficient transfer of cargo molecules from their site of synthesis in the endoplasmic reticulum (ER) to successive compartments within the pathway. Although transport mechanisms of secretory proteins have been studied in detail in various non-plant systems, it is only recently that our knowledge of secretory routes in plants has expanded dramatically. This review focuses on exciting new findings concerning the exit mechanisms of cargo proteins from the plant ER and the role of ER export sites in this process.
Collapse
Affiliation(s)
- Sally L Hanton
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | | | | |
Collapse
|
21
|
Ma S, Quist TM, Ulanov A, Joly R, Bohnert HJ. Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:845-859. [PMID: 15584951 DOI: 10.1111/j.1365-313x.2004.02265.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Arabidopsis TIP1;1 (gammaTIP) is a member of the tonoplast family of aquaporins (AQP). Using RNA interference (RNAi) we reduced TIP1;1 to different extent in various lines. When most severely affected, miniature plants died, a phenotype partially complemented by the TIP1;1 homolog McMIP-F. Less severely affected lines produced small plants, early senescence, and showed lesion formation. The relative water content in TIP1;1 RNAi plants was not significantly affected. Global expression profiling suggested a disturbance in carbon metabolism in RNAi lines with upregulated transcripts for functions in carbon acquisition and respiration, vesicle transport, signaling and transcription, and radical oxygen stress. Metabolite profiles showed low glucose, fructose, inositol, and threonic, succinic, fumaric, and malic acids, but sucrose levels were similar to WT. Increased amounts were found for raffinose and several unknown compounds. TIP1;1 RNAi plants also contained high starch and apoplastic carbohydrate increased. A GFP-TIP1;1 fusion protein indicated tonoplast location in spongy mesophyll cells, and high signal intensity in palisade mesophyll associated with vesicles near plastids. Signals in vascular tissues were strongest not only in vesicle-like structures but also outlined large vacuoles. Compromised routing of carbohydrate and lack of sucrose provision for cell-autonomous functions seems to characterize this RNAi phenotype. We suggest a function for TIP1;1 in vesicle-based metabolite routing through or between pre-vacuolar compartments and the central vacuole. Phenotype and expression characteristics support a view of TIP1;1 functioning as a marker for vesicles that are targeted to the central vacuole.
Collapse
Affiliation(s)
- Shisong Ma
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
22
|
Arcalis E, Marcel S, Altmann F, Kolarich D, Drakakaki G, Fischer R, Christou P, Stoger E. Unexpected deposition patterns of recombinant proteins in post-endoplasmic reticulum compartments of wheat endosperm. PLANT PHYSIOLOGY 2004; 136:3457-66. [PMID: 15489278 PMCID: PMC527145 DOI: 10.1104/pp.104.050153] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Revised: 08/29/2004] [Accepted: 08/30/2004] [Indexed: 05/19/2023]
Abstract
Protein transport within cereal endosperm cells is complicated by the abundance of endoplasmic reticulum (ER)-derived and vacuolar protein bodies. For wheat storage proteins, two major transport routes run from the ER to the vacuole, one bypassing and one passing through the Golgi. Proteins traveling along each route converge at the vacuole and form aggregates. To determine the impact of this trafficking system on the fate of recombinant proteins expressed in wheat endosperm, we used confocal and electron microscopy to investigate the fate of three recombinant proteins containing different targeting information. KDEL-tagged recombinant human serum albumin, which is retrieved to the ER lumen in leaf cells, was deposited in prolamin aggregates within the vacuole of endosperm cells, most likely following the bulk of endogenous glutenins. Recombinant fungal phytase, a glycoprotein designed for secretion, was delivered to the same compartment, with no trace of the molecule in the apoplast. Glycan analysis revealed that this protein had passed through the Golgi. The localization of human serum albumin and phytase was compared to that of recombinant legumin, which contains structural targeting information directing it to the vacuole. Uniquely, legumin accumulated in the globulin inclusion bodies at the periphery of the prolamin bodies, suggesting a different mode of transport and/or aggregation. Our results demonstrate that recombinant proteins are deposited in an unexpected pattern within wheat endosperm cells, probably because of the unique storage properties of this tissue. Our data also confirm that recombinant proteins are invaluable tools for the analysis of protein trafficking in cereals.
Collapse
Affiliation(s)
- Elsa Arcalis
- Institute for Molecular Biotechnology , Rheinische-Westfälische Technische Hochschule Aachen, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Outchkourov NS, Rogelj B, Strukelj B, Jongsma MA. Expression of sea anemone equistatin in potato. Effects of plant proteases on heterologous protein production. PLANT PHYSIOLOGY 2003; 133:379-90. [PMID: 12970503 PMCID: PMC196614 DOI: 10.1104/pp.102.017293] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2002] [Revised: 01/12/2003] [Accepted: 05/14/2003] [Indexed: 05/20/2023]
Abstract
Plants are increasingly used as production platforms of various heterologous proteins, but rapid protein turnover can seriously limit the steady-state expression level. Little is known about specific plant proteases involved in this process. In an attempt to obtain potato (Solanum tuberosum cv Desirée) plants resistant to Colorado potato beetle (Leptinotarsa decemlineata Say) larvae, the protease inhibitor equistatin was expressed under the control of strong, light-inducible and constitutive promoters and was targeted to the secretory pathway with and without endoplasmic reticulum retention signal. All constructs yielded similar stepwise protein degradation patterns, which considerably reduced the amount of active inhibitor in planta and resulted in insufficient levels for resistance against Colorado potato beetle larvae. Affinity purification of the degradation products and N-terminal sequencing allowed the identification of the amino acid P(1)-positions (asparagine [Asn]-13, lysine-56, Asn-82, and arginine-151) that were cleaved in planta. The proteases involved in the equistatin degradation were characterized with synthetic substrates and inhibitors. Kininogen domain 3 completely inhibited equistatin degradation in vitro. The results indicate that arginine/lysine-specific and legumain-type Asn-specific cysteine proteases seriously impede the functional accumulation of recombinant equistatin in planta. General strategies to improve the resistance to proteases of heterologous proteins in plants are proposed.
Collapse
|
24
|
Abstract
Dry beans are an important source of proteins, carbohydrates, dietary fiber, and certain minerals and vitamins in the human food supply. Among dry beans, Phaseolus beans are cultivated and consumed in the greatest quantity on a worldwide basis. Typically, most dry beans contain 15 to 25% protein on a dry weight basis (dwb). Water-soluble albumins and salt-soluble globulins, respectively, account for up to 10 to 30% and 45 to 70% of the total proteins (dwb). Dry bean albumins are typically composed of several different proteins, including lectins and enzyme inhibitors. A single 7S globulin dominates dry bean salt soluble fraction (globulins) and may account for up to 50 to 55% of the total proteins in the dry beans (dwb). Most dry bean proteins are deficient in sulfur amino acids, methionine, and cysteine, and therefore are of lower nutritional quality when compared with the animal proteins. Despite this limitation, dry beans make a significant contribution to the human dietary protein intake. In bean-based foods, dry bean proteins also serve additional functions that may include surface activity, hydration, and hydration-related properties, structure, and certain organoleptic properties. This article is intended to provide an overview of dry bean protein functionality with emphases on nutritional quality and hydration-related properties.
Collapse
Affiliation(s)
- S K Sathe
- Department of Nutrition, Food and Excercise Science, Florida State University, Tallahassee 32306-1493, USA
| |
Collapse
|
25
|
Nuttall J, Vine N, Hadlington JL, Drake P, Frigerio L, Ma JKC. ER-resident chaperone interactions with recombinant antibodies in transgenic plants. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:6042-51. [PMID: 12473100 DOI: 10.1046/j.1432-1033.2002.03302.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we demonstrate that the folding and assembly of IgG in transgenic tobacco plants is orchestrated by BiP (binding protein), an endoplasmic reticulum resident chaperone. Expression of BiP and calreticulin was examined in transgenic tobacco plants that express immunoglobulin chains, either singly or in combination to form IgG antibody. BiP mRNA expression was lowest in wild-type nontransformed plants and those that expressed immunoglobulin light chain alone. Higher mRNA levels were detected in plants expressing fully assembled immunoglobulin (light and heavy chains), and the most abundant levels of RNA transcript were found in those plants that expressed immunoglobulin heavy chain alone. Estimation of total BiP demonstrated a similar pattern, with the highest levels detected in plants expressing immunoglobulin heavy chain alone. Immunoprecipitation studies demonstrated that BiP was associated with immunoglobulin chains extracted from protoplast lysates, but not from secreted fluids. Again, most BiP was coprecipitated from plants expressing heavy chain only and those that produced full length IgG. The binding of BiP to Ig heavy chains was ATP-sensitive. Co-expression of heavy and light chain resulted in IgG assembly and displacement of BiP from the heavy chain as the amount of light chain increased. Although calreticulin mRNA and total protein levels varied in a similar manner to those of BiP in the transgenic plants, there was no evidence for association between calreticulin and Ig chains, by coimmunoprecipitation. The results indicate that BiP, but not calreticulin, takes part in immunoglobulin folding and assembly in transgenic plants.
Collapse
Affiliation(s)
- James Nuttall
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | | | | | | | |
Collapse
|
26
|
Li YB, Rogers SW, Tse YC, Lo SW, Sun SSM, Jauh GY, Jiang L. BP-80 and homologs are concentrated on post-Golgi, probable lytic prevacuolar compartments. PLANT & CELL PHYSIOLOGY 2002; 43:726-42. [PMID: 12154135 DOI: 10.1093/pcp/pcf085] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Prevacuolar compartments (PVCs) are membrane-bound organelles that mediate protein traffic between Golgi and vacuoles in the plant secretory pathway. Here we identify and define organelles as the lytic prevacuolar compartments in pea and tobacco cells using confocal immunofluorescence. We use five different antibodies specific for a vacuolar sorting receptor (VSR) BP-80 and its homologs to detect the location of VSR proteins. In addition, we use well-established Golgi-markers to identify Golgi organelles. We further compare VSR-labeled organelles to Golgi organelles so that the relative proportion of VSR proteins in Golgi vs. PVCs can be quantitated. More than 90% of the BP-80-marked organelles are separate from Golgi organelles; thus, BP-80 and its homologs are predominantly concentrated on the lytic PVCs. Additionally, organelles marked by anti-AtPep12p (AtSYP21p) and anti-AtELP antibodies are also largely separate from Golgi apparatus, whereas VSR and AtPep12p (AtSYP21p) were largely colocalized. We have thus demonstrated in plant cells that VSR proteins are predominantly present in the lytic PVCs and have provided additional markers for defining plant PVCs using confocal immunofluorescence. Additionally, our approach will provide a rapid comparison between markers to quantitate protein distribution among various organelles.
Collapse
Affiliation(s)
- Yu-Bing Li
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Hakman I, Oliviusson P. High expression of putative aquaporin genes in cells with transporting and nutritive functions during seed development in Norway spruce (Picea abies). JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:639-649. [PMID: 11886883 DOI: 10.1093/jexbot/53.369.639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Aquaporins mediate the bidirectional passage of water over membranes and are present in tonoplasts (TIPs) and in plasma membranes (PIPs) of plant cells. Knowing their expression in different tissues is valuable when assessing their contribution to plant water relations. A TIP-gene has been cloned from developing female gametophytes of Picea abies, a conifer displaying an embryology different from the angiosperms. Probes were made from conserved regions of the TIP gene and used for in situ hybridization to examine the gene expression pattern in developing female reproductive structures. Early during development high transcript expression was found in the spongy tissue encasing the developing female gametophyte, in cells of the future seed coat of young ovules and in vascular tissue of the ovuliferous scale. At later stages a strong signal was seen in archegonia jacket cells surrounding egg cells and, still later, at the time of storage protein accumulation, in storage parenchyma cells of the gametophyte as well. These aquaporin-homologues probably participate in regulating water balance in the cells although they could also be permeable to other molecules than water.
Collapse
Affiliation(s)
- Inger Hakman
- Department of Biology and Environmental Science, Kalmar University, S-391 82 Kalmar, Sweden.
| | | |
Collapse
|
28
|
Abstract
Amino acid pathways are important targets for plant metabolic engineering. Since plants represent the major global food supply, large efforts are devoted to increasing the content of "essential" amino acids, which are absolutely required in human foods and animal feeds. Engineering of amino acids is also undertaken to improve plant growth and stress tolerance. Many of the pathways of amino acid metabolism in plants have been elucidated, and genes encoding most of the enzymes are now available. The expression of recombinant genes in transgenic plants, coupled with genetic and biochemical approaches, has contributed significantly to the understanding of regulatory networks of the metabolism of amino acids and their incorporation into proteins. This knowledge is now being extensively applied to metabolic engineering of crops, and this is reflected by a large patent literature. The problems of engineering plant amino acid metabolism, and ways to solve them, are discussed using the essential amino acids lysine and methionine as examples.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
29
|
Shy G, Ehler L, Herman E, Galili G. Expression patterns of genes encoding endomembrane proteins support a reduced function of the Golgi in wheat endosperm during the onset of storage protein deposition. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:2387-2388. [PMID: 11709589 DOI: 10.1093/jexbot/52.365.2387] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wheat storage proteins are deposited in the vacuole of maturing endosperm cells by a novel pathway that is the result of protein body formation by the endoplasmic reticulum followed by autophagy into the central vacuole, bypassing the Golgi apparatus. This model predicts a reduced role of the Golgi in storage protein accumulation, which has been supported by electron microscopy observations. To study this issue further, wheat cDNAs encoding three distinct proteins of the endomembrane system were cloned and characterized. The proteins encoded were homologues (i) of the ER translocon component Sec61 alpha, (ii) the vacuolar sorting receptor BP-80 which is located in the Golgi and clathrin-coated prevacuole vesicles (CCV), and (iii) the Golgi COPI coatomer component COP alpha. During endosperm development, the levels of all three mRNAs were highest in young stages, before the onset of storage protein synthesis, and declined with seed maturation. However, the relative mRNA levels of BP-80/Sec61 alpha and the COP alpha/Sec61 alpha were lower during the onset of storage protein synthesis than at earlier stages of endosperm development. These results support previous studies, suggesting a reduced function of the Golgi apparatus in wheat storage protein transport and deposition.
Collapse
Affiliation(s)
- G Shy
- Department of Plant Sciences, the Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
30
|
Koizumi N, Martinez IM, Kimata Y, Kohno K, Sano H, Chrispeels MJ. Molecular characterization of two Arabidopsis Ire1 homologs, endoplasmic reticulum-located transmembrane protein kinases. PLANT PHYSIOLOGY 2001; 127:949-962. [PMID: 11706177 DOI: 10.1104/pp.010636] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A major response of eukaryotic cells to the presence of unfolded proteins in the lumen of the endoplasmic reticulum (ER) is to activate genes that encode ER-located molecular chaperones, such as the binding protein. This response, called the unfolded protein response, requires the transduction of a signal from the ER to the nucleus. In yeast (Saccharomyces cerevisiae) and mammalian cells, an ER-located transmembrane receptor protein kinase/ribonuclease called Ire1, with a sensor domain in the lumen of the ER, is the first component of this pathway. Here, we report the cloning and derived amino acid sequences of AtIre1-1 and AtIre1-2, two Arabidopsis homologs of Ire1. The two proteins are located in the perinuclear ER (based on heterologous expression of fusions with green fluorescent protein). The expression patterns of the two genes (using beta-glucuronidase fusions) are nearly nonoverlapping. We also demonstrate functional complementation of the sensor domains of the two proteins in yeast and show that the Ire1-2 protein is capable of autotransphosphorylation. These and other findings are discussed in relation to the involvement of these genes in unfolded protein response signaling in plants.
Collapse
Affiliation(s)
- N Koizumi
- Division of Biology, University of California San Diego, La Jolla, CA 92039-0116, USA
| | | | | | | | | | | |
Collapse
|
31
|
Törmäkangas K, Hadlington JL, Pimpl P, Hillmer S, Brandizzi F, Teeri TH, Denecke J. A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum. THE PLANT CELL 2001; 13:2021-32. [PMID: 11549761 PMCID: PMC139449 DOI: 10.1105/tpc.000533] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/15/2000] [Accepted: 06/24/2001] [Indexed: 05/20/2023]
Abstract
Protein sorting to plant vacuoles is known to be dependent on a considerable variety of protein motifs recognized by a family of sorting receptors. This can involve either traffic from the endoplasmic reticulum (ER) through the Golgi apparatus or direct ER-to-vacuole transport. Barley aspartic protease (Phytepsin) was shown previously to reach the vacuole via trafficking through the Golgi apparatus. Here we show that Phytepsin normally exits the ER in a COPII-mediated manner, because the Phytepsin precursor accumulates in the ER upon specific inhibition of the formation of COPII vesicles in vivo. Phytepsin differs from its yeast and mammalian counterparts by the presence of a saposin-like plant-specific insert (PSI). Deletion of this domain comprising 104 amino acids causes efficient secretion of the truncated molecule (Phytepsin Delta PSI) without affecting the enzymatic activity of the enzyme. Interestingly, deletion of the PSI also changes the way in which Phytepsin exits the ER. Inhibition of COPII vesicle formation causes accumulation of the Phytepsin precursor in the ER but has no effect on the secretion of Phytepsin Delta PSI. This suggests either that vacuolar sorting commences at the ER export step and involves recruitment into COPII vesicles or that the PSI domain carries two signals, one for COPII-dependent export from the ER and one for vacuolar delivery from the Golgi. The relevance of these observations with respect to the bulk flow model of secretory protein synthesis is discussed.
Collapse
Affiliation(s)
- K Törmäkangas
- Centre for Plant Sciences, Leeds Institute for Plant Biotechnology and Agriculture, Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|