1
|
Zhuang X, Li R, Jiang L. A century journey of organelles research in the plant endomembrane system. THE PLANT CELL 2024; 36:1312-1333. [PMID: 38226685 PMCID: PMC11062446 DOI: 10.1093/plcell/koae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
We are entering an exciting century in the study of the plant organelles in the endomembrane system. Over the past century, especially within the past 50 years, tremendous advancements have been made in the complex plant cell to generate a much clearer and informative picture of plant organelles, including the molecular/morphological features, dynamic/spatial behavior, and physiological functions. Importantly, all these discoveries and achievements in the identification and characterization of organelles in the endomembrane system would not have been possible without: (1) the innovations and timely applications of various state-of-art cell biology tools and technologies for organelle biology research; (2) the continuous efforts in developing and characterizing new organelle markers by the plant biology community; and (3) the landmark studies on the identification and characterization of the elusive organelles. While molecular aspects and results for individual organelles have been extensively reviewed, the development of the techniques for organelle research in plant cell biology is less appreciated. As one of the ASPB Centennial Reviews on "organelle biology," here we aim to take a journey across a century of organelle biology research in plants by highlighting the important tools (or landmark technologies) and key scientists that contributed to visualize organelles. We then highlight the landmark studies leading to the identification and characterization of individual organelles in the plant endomembrane systems.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Aronsson H, Solymosi K. Diversification of Plastid Structure and Function in Land Plants. Methods Mol Biol 2024; 2776:63-88. [PMID: 38502498 DOI: 10.1007/978-1-0716-3726-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids represent a largely diverse group of organelles in plant and algal cells that have several common features but also a broad spectrum of morphological, ultrastructural, biochemical, and physiological differences. Plastids and their structural and metabolic diversity significantly contribute to the functionality and developmental flexibility of the plant body throughout its lifetime. In addition to the multiple roles of given plastid types, this diversity is accomplished in some cases by interconversions between different plastids as a consequence of developmental and environmental signals that regulate plastid differentiation and specialization. In addition to basic plastid structural features, the most important plastid types, the newly characterized peculiar plastids, and future perspectives in plastid biology are also provided in this chapter.
Collapse
Affiliation(s)
- Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
3
|
Zeng Y, Liang Z, Liu Z, Li B, Cui Y, Gao C, Shen J, Wang X, Zhao Q, Zhuang X, Erdmann PS, Wong KB, Jiang L. Recent advances in plant endomembrane research and new microscopical techniques. THE NEW PHYTOLOGIST 2023; 240:41-60. [PMID: 37507353 DOI: 10.1111/nph.19134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zizhen Liang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhiqi Liu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Philipp S Erdmann
- Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, I-20157, Italy
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The CUHK Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
4
|
In vitro reconstitution of COPII vesicles from Arabidopsis thaliana suspension-cultured cells. Nat Protoc 2023; 18:810-830. [PMID: 36599961 DOI: 10.1038/s41596-022-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/23/2022] [Indexed: 01/06/2023]
Abstract
Transport vesicles mediate protein traffic between endomembrane organelles in a highly selective and efficient manner. In vitro reconstitution systems have been widely used for studying mechanisms of vesicle formation, polar trafficking, and cargo specificity in mammals and yeast. However, this technique has not yet been applied to plants because of the large lytic vacuoles and rigid cell walls. Here, we describe an Arabidopsis-derived in vitro vesicle formation system to reconstitute, purify and characterize plant-derived coat protein complex II (COPII) vesicles. In this protocol, we provide a detailed method for the isolation of microsomes and cytosol from Arabidopsis thaliana suspension-cultured cells (7-8 h), in vitro COPII vesicle reconstitution and purification (4-5 h) and biochemical and microscopic analysis using specific antibodies against COPII cargo molecules for reconstitution efficiency evaluation (2 h). We also include detailed sample-preparation steps for analyzing vesicle morphology by cryogenic electron microscopy (1 h) and vesicle cargoes by quantitative proteomics (4 h). Routinely, the whole procedure takes ~18-20 h of operation time and enables plant researchers without specific expertise to achieve organelle purification or vesicle reconstitution for further characterization.
Collapse
|
5
|
Ito Y, Uemura T. Super resolution live imaging: The key for unveiling the true dynamics of membrane traffic around the Golgi apparatus in plant cells. FRONTIERS IN PLANT SCIENCE 2022; 13:1100757. [PMID: 36618665 PMCID: PMC9818705 DOI: 10.3389/fpls.2022.1100757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In contrast to the relatively static image of the plants, the world inside each cell is surprisingly dynamic. Membrane-bounded organelles move actively on the cytoskeletons and exchange materials by vesicles, tubules, or direct contact between each other. In order to understand what is happening during those events, it is essential to visualize the working components in vivo. After the breakthrough made by the application of fluorescent proteins, the development of light microscopy enabled many discoveries in cell biology, including those about the membrane traffic in plant cells. Especially, super-resolution microscopy, which is becoming more and more accessible, is now one of the most powerful techniques. However, although the spatial resolution has improved a lot, there are still some difficulties in terms of the temporal resolution, which is also a crucial parameter for the visualization of the living nature of the intracellular structures. In this review, we will introduce the super resolution microscopy developed especially for live-cell imaging with high temporal resolution, and show some examples that were made by this tool in plant membrane research.
Collapse
Affiliation(s)
- Yoko Ito
- Institute for Human Life Science, Ochanomizu University, Tokyo, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
6
|
McGinness AJ, Schoberer J, Pain C, Brandizzi F, Kriechbaumer V. On the nature of the plant ER exit sites. FRONTIERS IN PLANT SCIENCE 2022; 13:1010569. [PMID: 36275575 PMCID: PMC9585722 DOI: 10.3389/fpls.2022.1010569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
In plants, the endoplasmic reticulum (ER) and Golgi bodies are not only in close proximity, but are also physically linked. This unique organization raises questions about the nature of the transport vectors carrying cargo between the two organelles. Same as in metazoan and yeast cells, it was suggested that cargo is transported from the ER to Golgi cisternae via COPII-coated vesicles produced at ribosome-free ER exit sites (ERES). Recent developments in mammalian cell research suggest, though, that COPII helps to select secretory cargo, but does not coat the carriers leaving the ER. Furthermore, it was shown that mammalian ERES expand into a tubular network containing secretory cargo, but no COPII components. Because of the close association of the ER and Golgi bodies in plant cells, it was previously proposed that ERES and the Golgi comprise a secretory unit that travels over or with a motile ER membrane. In this study, we aimed to explore the nature of ERES in plant cells and took advantage of high-resolution confocal microscopy and imaged ERES labelled with canonical markers (Sar1a, Sec16, Sec24). We found that ERES are dynamically connected to Golgi bodies and most likely represent pre-cis-Golgi cisternae. Furthermore, we showed fine tubular connections from the ER to Golgi compartments (ERGo tubules) as well as fine protrusions from ERES/Golgi cisternae connecting with the ER. We suggest that these tubules observed between the ER and Golgi as well as between the ER and ERES are involved in stabilizing the physical connection between ER and ERES/Golgi cisternae, but may also be involved in cargo transport from the ER to Golgi bodies.
Collapse
Affiliation(s)
- Alastair J. McGinness
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Charlotte Pain
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
7
|
Rui Q, Tan X, Liu F, Bao Y. An Update on the Key Factors Required for Plant Golgi Structure Maintenance. FRONTIERS IN PLANT SCIENCE 2022; 13:933283. [PMID: 35837464 PMCID: PMC9274083 DOI: 10.3389/fpls.2022.933283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plant Golgi apparatus serves as the central station of the secretory pathway and is the site where protein modification and cell wall matrix polysaccharides synthesis occur. The polarized and stacked cisternal structure is a prerequisite for Golgi function. Our understanding of Golgi structure maintenance and trafficking are largely obtained from mammals and yeast, yet, plant Golgi has many different aspects. In this review, we summarize the key players in Golgi maintenance demonstrated by genetic studies in plants, which function in ER-Golgi, intra-Golgi and post-Golgi transport pathways. Among these, we emphasize on players in intra-Golgi trafficking.
Collapse
|
8
|
Ren Y, Wang Y, Zhang Y, Pan T, Duan E, Bao X, Zhu J, Teng X, Zhang P, Gu C, Dong H, Wang F, Wang Y, Bao Y, Wang Y, Wan J. Endomembrane-mediated storage protein trafficking in plants: Golgi-dependent or Golgi-independent? FEBS Lett 2022; 596:2215-2230. [PMID: 35615915 DOI: 10.1002/1873-3468.14374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Seed storage proteins (SSPs) accumulated within plant seeds constitute the major protein nutrition sources for human and livestock. SSPs are synthesized on the endoplasmic reticulum (ER) and then deposited in plant-specific protein bodies (PBs), including ER-derived PBs and protein storage vacuoles (PSVs). Plant seeds have evolved a distinct endomembrane system to accomplish SSP transport. There are two distinct types of trafficking pathways contributing to SSP delivery to PSVs, one Golgi-dependent and the other Golgi-independent. In recent years, molecular, genetic and biochemical studies have shed light on the complex network controlling SSP trafficking, to which both evolutionarily conserved molecular machineries and plant-unique regulators contribute. In this review, we discuss current knowledge of PB biogenesis and endomembrane-mediated SSP transport, focusing on ER export and post-Golgi traffic. These knowledges support a dominant role for the Golgi-dependent pathways in SSP transport in Arabidopsis and rice. In addition, we describe cutting-edge strategies to dissect the endomembrane trafficking system in plant seeds to advance the field.
Collapse
Affiliation(s)
- Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongfei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Erchao Duan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuhao Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuanwei Gu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
9
|
Li B, Zeng Y, Jiang L. COPII vesicles in plant autophagy and endomembrane trafficking. FEBS Lett 2022; 596:2314-2323. [PMID: 35486434 DOI: 10.1002/1873-3468.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
In eukaryotes, the endomembrane system allows for spatiotemporal compartmentation of complicated cellular processes. The plant endomembrane system consists of the endoplasmic reticulum (ER), the Golgi apparatus (GA), the trans-Golgi network (TGN), the multivesicular body (MVB), and the vacuole. Anterograde traffic from the ER to GA is mediated by coat protein complex II (COPII) vesicles. Autophagy, an evolutionarily conserved catabolic process that turns over cellular materials upon nutrient deprivation or in adverse environments, exploits double-membrane autophagosomes to recycle unwanted constituents in the lysosome/vacuole. Accumulating evidence reveals novel functions of plant COPII vesicles in autophagy and their regulation by abiotic stresses. Here, we summarize current knowledge about plant COPII vesicles in the endomembrane trafficking and then highlight recent findings showing their distinct roles in modulating the autophagic flux and stress responses.
Collapse
Affiliation(s)
- Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China.,CUHK Shenzhen Research Institute, Shenzhen, China.,Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
10
|
Nakano A. The Golgi Apparatus and its Next-Door Neighbors. Front Cell Dev Biol 2022; 10:884360. [PMID: 35573670 PMCID: PMC9096111 DOI: 10.3389/fcell.2022.884360] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
The Golgi apparatus represents a central compartment of membrane traffic. Its apparent architecture, however, differs considerably among species, from unstacked and scattered cisternae in the budding yeast Saccharomyces cerevisiae to beautiful ministacks in plants and further to gigantic ribbon structures typically seen in mammals. Considering the well-conserved functions of the Golgi, its fundamental structure must have been optimized despite seemingly different architectures. In addition to the core layers of cisternae, the Golgi is usually accompanied by next-door compartments on its cis and trans sides. The trans-Golgi network (TGN) can be now considered as a compartment independent from the Golgi stack. On the cis side, the intermediate compartment between the ER and the Golgi (ERGIC) has been known in mammalian cells, and its functional equivalent is now suggested for yeast and plant cells. High-resolution live imaging is extremely powerful for elucidating the dynamics of these compartments and has revealed amazing similarities in their behaviors, indicating common mechanisms conserved along the long course of evolution. From these new findings, I would like to propose reconsideration of compartments and suggest a new concept to describe their roles comprehensively around the Golgi and in the post-Golgi trafficking.
Collapse
|
11
|
Zhang N, Zabotina OA. Critical Determinants in ER-Golgi Trafficking of Enzymes Involved in Glycosylation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030428. [PMID: 35161411 PMCID: PMC8840164 DOI: 10.3390/plants11030428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 05/03/2023]
Abstract
All living cells generate structurally complex and compositionally diverse spectra of glycans and glycoconjugates, critical for organismal evolution, development, functioning, defense, and survival. Glycosyltransferases (GTs) catalyze the glycosylation reaction between activated sugar and acceptor substrate to synthesize a wide variety of glycans. GTs are distributed among more than 130 gene families and are involved in metabolic processes, signal pathways, cell wall polysaccharide biosynthesis, cell development, and growth. Glycosylation mainly takes place in the endoplasmic reticulum (ER) and Golgi, where GTs and glycosidases involved in this process are distributed to different locations of these compartments and sequentially add or cleave various sugars to synthesize the final products of glycosylation. Therefore, delivery of these enzymes to the proper locations, the glycosylation sites, in the cell is essential and involves numerous secretory pathway components. This review presents the current state of knowledge about the mechanisms of protein trafficking between ER and Golgi. It describes what is known about the primary components of protein sorting machinery and trafficking, which are recognition sites on the proteins that are important for their interaction with the critical components of this machinery.
Collapse
|
12
|
Cheung AY, Cosgrove DJ, Hara-Nishimura I, Jürgens G, Lloyd C, Robinson DG, Staehelin LA, Weijers D. A rich and bountiful harvest: Key discoveries in plant cell biology. THE PLANT CELL 2022; 34:53-71. [PMID: 34524464 PMCID: PMC8773953 DOI: 10.1093/plcell/koab234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 05/13/2023]
Abstract
The field of plant cell biology has a rich history of discovery, going back to Robert Hooke's discovery of cells themselves. The development of microscopes and preparation techniques has allowed for the visualization of subcellular structures, and the use of protein biochemistry, genetics, and molecular biology has enabled the identification of proteins and mechanisms that regulate key cellular processes. In this review, seven senior plant cell biologists reflect on the development of this research field in the past decades, including the foundational contributions that their teams have made to our rich, current insights into cell biology. Topics covered include signaling and cell morphogenesis, membrane trafficking, cytokinesis, cytoskeletal regulation, and cell wall biology. In addition, these scientists illustrate the pathways to discovery in this exciting research field.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA
| | | | - Gerd Jürgens
- ZMBP-Developmental Genetics, University of Tuebingen, Tuebingen 72076, Germany
| | - Clive Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, Heidelberg D-69120, Germany
| | - L Andrew Staehelin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, the Netherlands
| |
Collapse
|
13
|
Chang M, Wu SZ, Ryken SE, O’Sullivan JE, Bezanilla M. COPII Sec23 proteins form isoform-specific endoplasmic reticulum exit sites with differential effects on polarized growth. THE PLANT CELL 2022; 34:333-350. [PMID: 34534343 PMCID: PMC8846183 DOI: 10.1093/plcell/koab229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 05/04/2023]
Abstract
Coat Protein complex II (COPII), a coat protein complex that forms vesicles on the endoplasmic reticulum (ER), mediates trafficking to the Golgi. While metazoans have few genes encoding each COPII component, plants have expanded these gene families, leading to the hypothesis that plant COPII has functionally diversified. In the moss Physcomitrium (Physcomitrella) patens, the Sec23/24 gene families are each composed of seven genes. Silencing Sec23/24 revealed isoform-specific contributions to polarized growth, with the closely related Sec23D/E and Sec24C/D essential for protonemal development. Focusing on Sec23, we discovered that Sec23D/E mediate ER-to Golgi transport and are essential for tip growth, with Sec23D localizing to presumptive ER exit sites. In contrast, Sec23A, B, C, F, and G are dispensable and do not quantitatively affect ER-to-Golgi trafficking. However, Δsec23abcfg plants exhibited reduced secretion of plasma membrane cargo. Of the four highly expressed protonemal Sec23 genes, Sec23F/G are members of a divergent Sec23 clade specifically retained in land plants. Notably, Sec23G accumulates on ER-associated foci that are significantly larger, do not overlap with, and are independent of Sec23D. While Sec23D/E form ER exit sites and function as bona fide COPII components essential for tip-growing protonemata, Sec23G and the closely related Sec23F have likely functionally diversified, forming separate and independent ER exit sites and participating in Golgi-independent trafficking pathways.
Collapse
Affiliation(s)
- Mingqin Chang
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
- Plant Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01002, USA
| | - Shu-Zon Wu
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Samantha E Ryken
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Jacquelyn E O’Sullivan
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01002, USA
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
- Author for correspondence:
| |
Collapse
|
14
|
Aniento F, Sánchez de Medina Hernández V, Dagdas Y, Rojas-Pierce M, Russinova E. Molecular mechanisms of endomembrane trafficking in plants. THE PLANT CELL 2022; 34:146-173. [PMID: 34550393 PMCID: PMC8773984 DOI: 10.1093/plcell/koab235] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 05/10/2023]
Abstract
Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, we summarize the current state of knowledge on plant endomembrane trafficking, with a focus on four distinct trafficking pathways: ER-to-Golgi transport, endocytosis, trans-Golgi network-to-vacuole transport, and autophagy. We acknowledge the conservation and commonalities in the trafficking machinery across species, with emphasis on diversity and plant-specific features. Understanding the function of organelles and the trafficking machinery currently nonexistent in well-known model organisms will provide great opportunities to acquire new insights into the fundamental cellular process of membrane trafficking.
Collapse
Affiliation(s)
| | - Víctor Sánchez de Medina Hernández
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | | | | | | |
Collapse
|
15
|
Pereira C, Di Sansebastiano GP. Mechanisms of membrane traffic in plant cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:102-111. [PMID: 34775176 DOI: 10.1016/j.plaphy.2021.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The organelles of the secretory pathway are characterized by specific organization and function but they communicate in different ways with intense functional crosstalk. The best known membrane-bound transport carriers are known as protein-coated vesicles. Other traffic mechanisms, despite the intense investigations, still show incongruences. The review intends to provide a general view of the mechanisms involved in membrane traffic. We evidence that organelles' biogenesis involves mechanisms that actively operate during the entire cell cycle and the persistent interconnections between the Endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN) and endosomes, the vacuolar complex and the plasma membrane (PM) may be seen as a very dynamic membrane network in which vesicular traffic is part of a general maturation process.
Collapse
Affiliation(s)
- Cláudia Pereira
- GreenUPorto-Sustainable Agrifood Production Research Centre & Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, S/nº, 4169-007, Porto, Portugal.
| | - Gian Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, Campus ECOTEKNE, 73100, Lecce, Italy.
| |
Collapse
|
16
|
Li B, Zeng Y, Cao W, Zhang W, Cheng L, Yin H, Wu Q, Wang X, Huang Y, Lau WCY, Yao ZP, Guo Y, Jiang L. A distinct giant coat protein complex II vesicle population in Arabidopsis thaliana. NATURE PLANTS 2021; 7:1335-1346. [PMID: 34621047 DOI: 10.1038/s41477-021-00997-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/29/2021] [Indexed: 05/20/2023]
Abstract
Plants live as sessile organisms with large-scale gene duplication events and subsequent paralogue divergence during evolution. Notably, plant paralogues are expressed tissue-specifically and fine-tuned by phytohormones during various developmental processes. The coat protein complex II (COPII) is a highly conserved vesiculation machinery mediating protein transport from the endoplasmic reticulum to the Golgi apparatus in eukaryotes1. Intriguingly, Arabidopsis COPII paralogues greatly outnumber those in yeast and mammals2-6. However, the functional diversity and underlying mechanism of distinct COPII paralogues in regulating protein endoplasmic reticulum export and coping with various adverse environmental stresses are poorly understood. Here we characterize a novel population of COPII vesicles produced in response to abscisic acid, a key phytohormone regulating abiotic stress responses in plants. These hormone-induced giant COPII vesicles are regulated by an Arabidopsis-specific COPII paralogue and carry stress-related channels/transporters for alleviating stresses. This study thus provides a new mechanism underlying abscisic acid-induced stress responses via the giant COPII vesicles and answers a long-standing question on the evolutionary significance of gene duplications in Arabidopsis.
Collapse
Affiliation(s)
- Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenxin Zhang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Lixin Cheng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medicine College of Ji'nan University, Shenzhen, China
| | - Haidi Yin
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Qian Wu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiangfeng Wang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Huang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wilson Chun Yu Lau
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
17
|
ER exit sites in Drosophila display abundant ER-Golgi vesicles and pearled tubes but no megacarriers. Cell Rep 2021; 36:109707. [PMID: 34525362 DOI: 10.1016/j.celrep.2021.109707] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
Secretory cargos are collected at endoplasmic reticulum (ER) exit sites (ERES) before transport to the Golgi apparatus. Decades of research have provided many details of the molecular events underlying ER-Golgi exchanges. Essential questions, however, remain about the organization of the ER-Golgi interface in cells and the type of membrane structures mediating traffic from ERES. To investigate these, we use transgenic tagging in Drosophila flies, 3D-structured illumination microscopy (SIM), and focused ion beam scanning electron microscopy (FIB-SEM) to characterize ERES-Golgi units in collagen-producing fat body, imaginal discs, and imaginal discs overexpressing ERES determinant Tango1. Facing ERES, we find a pre-cis-Golgi region, equivalent to the vertebrate ER-Golgi intermediate compartment (ERGIC), involved in both anterograde and retrograde transport. This pre-cis-Golgi is continuous with the rest of the Golgi, not a separate compartment or collection of large carriers, for which we find no evidence. We observe, however, many vesicles, as well as pearled tubules connecting ERES and Golgi.
Collapse
|
18
|
Gong J, Tian Z, Qu X, Meng Q, Guan Y, Liu P, Chen C, Deng X, Guo W, Cheng Y, Wang P. Illuminating the cells: transient transformation of citrus to study gene functions and organelle activities related to fruit quality. HORTICULTURE RESEARCH 2021; 8:175. [PMID: 34333523 PMCID: PMC8325690 DOI: 10.1038/s41438-021-00611-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 05/16/2023]
Abstract
Although multiple microscopic techniques have been applied to horticultural research, few studies of individual organelles in living fruit cells have been reported to date. In this paper, we established an efficient system for the transient transformation of citrus fruits using an Agrobacterium-mediated method. Kumquat (Fortunella crassifolia Swingle) was used; it exhibits higher transformation efficiency than all citrus fruits that have been tested and a prolonged-expression window. Fruits were transformed with fluorescent reporters, and confocal microscopy and live-cell imaging were used to study their localization and dynamics. Moreover, various pH sensors targeting different subcellular compartments were expressed, and the local pH environments in cells from different plant tissues were compared. The results indicated that vacuoles are most likely the main organelles that contribute to the low pH of citrus fruits. In summary, our method is effective for studying various membrane trafficking events, protein localization, and cell physiology in fruit and can provide new insight into fruit biology research.
Collapse
Affiliation(s)
- Jinli Gong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhen Tian
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xiaolu Qu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
| | - Qiunan Meng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yajie Guan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ping Liu
- Guangxi Academy of Specialty Crops/Guangxi Engineering Research Center of Citrus Breeding and Culture, 541004, Guilin, China
| | - Chuanwu Chen
- Guangxi Academy of Specialty Crops/Guangxi Engineering Research Center of Citrus Breeding and Culture, 541004, Guilin, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
| | - Wenwu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China.
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China.
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
19
|
Abstract
Transient expression using protoplasts isolated from Arabidopsis suspension culture cells is a fast and useful tool for analyzing protein subcellular localization and dynamics in plant cells. Recently, super-resolution imaging techniques such as N-SIM (Nikon, Structured Illumination Microscopy) are widely used in cell biology study, allowing cell biologists to obtain unattainable details and relationships of cell structures and functions by conventional confocal imaging. To facilitate the usage of protoplasts transient expression and super-resolution imaging for protein localization and dynamic analysis in plant cell biology research, here we describe updated protocols of protoplasts isolation from Arabidopsis suspension culture cells and transient expression assay for protein trafficking and localization study. Further, using GFP-tagged ERES (Endoplasmic Reticulum Exit Site) marker proteins and RFP-tagged Golgi marker as examples, we illustrate the major tools and methods for protein localization analysis using super-resolution imaging.
Collapse
|
20
|
Abstract
The functions of coat protein complex II (COPII) coats in cargo packaging and the creation of vesicles at the endoplasmic reticulum are conserved in eukaryotic protein secretion. Standard COPII vesicles, however, cannot handle the secretion of metazoan-specific cargoes such as procollagens, apolipoproteins, and mucins. Metazoans have thus evolved modules centered on proteins like TANGO1 (transport and Golgi organization 1) to engage COPII coats and early secretory pathway membranes to engineer a novel mode of cargo export at the endoplasmic reticulum.
Collapse
Affiliation(s)
- I Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; ,
| | - V Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; , .,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
21
|
Kriechbaumer V, Brandizzi F. The plant endoplasmic reticulum: an organized chaos of tubules and sheets with multiple functions. J Microsc 2020; 280:122-133. [PMID: 32426862 PMCID: PMC10895883 DOI: 10.1111/jmi.12909] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum is a fascinating organelle at the core of the secretory pathway. It is responsible for the synthesis of one third of the cellular proteome and, in plant cells, it produces receptors and transporters of hormones as well as the proteins responsible for the biosynthesis of critical components of a cellulosic cell wall. The endoplasmic reticulum structure resembles a spider-web network of interconnected tubules and cisternae that pervades the cell. The study of the dynamics and interaction of this organelles with other cellular structures such as the plasma membrane, the Golgi apparatus and the cytoskeleton, have been permitted by the implementation of fluorescent protein and advanced confocal imaging. In this review, we report on the findings that contributed towards the understanding of the endoplasmic reticulum morphology and function with the aid of fluorescent proteins, focusing on the contributions provided by pioneering work from the lab of the late Professor Chris Hawes.
Collapse
Affiliation(s)
- V Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - F Brandizzi
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, Michigan, U.S.A
| |
Collapse
|
22
|
Takagi J, Kimori Y, Shimada T, Hara-Nishimura I. Dynamic Capture and Release of Endoplasmic Reticulum Exit Sites by Golgi Stacks in Arabidopsis. iScience 2020; 23:101265. [PMID: 32585594 PMCID: PMC7322076 DOI: 10.1016/j.isci.2020.101265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Protein transport from the endoplasmic reticulum (ER) to Golgi stacks is mediated by the coat protein complex COPII, which is assembled at an ER subdomain called ER exit site (ERES). However, the dynamic relationship between ERESs and Golgi stacks is unknown. Here, we propose a dynamic capture-and-release model of ERESs by Golgi stacks in Arabidopsis thaliana. Using variable-angle epifluorescence microscopy with high-temporal-resolution imaging, COPII-component-bound ERESs were detected as punctate structures with sizes of 300–500 nm. Some punctate ERESs are distributed on ER tubules and sheet rims, whereas others gather around a Golgi stack in an ER-network cavity to form a beaded-ring structure. Free ERESs that wander into an ER cavity are captured by a Golgi stack in a cytoskeleton-independent manner. Then, they are released by the Golgi stack for recycling. The dynamic ERES cycling might contribute to efficient transfer of de novo synthesized cargo proteins from the ER to Golgi stacks. VAEM images show dynamic behavior of minimal punctate ERESs Most of punctate ERESs are distributed on the ER network tubes Several punctate ERESs contact with a Golgi stack in an ER network cavity ERESs are dynamically captured and released by Golgi stacks
Collapse
Affiliation(s)
- Junpei Takagi
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Yoshitaka Kimori
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
23
|
Neumann U, Hay A. Seed coat development in explosively dispersed seeds of Cardamine hirsuta. ANNALS OF BOTANY 2020; 126:39-59. [PMID: 31796954 PMCID: PMC7304473 DOI: 10.1093/aob/mcz190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/22/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Seeds are dispersed by explosive coiling of the fruit valves in Cardamine hirsuta. This rapid coiling launches the small seeds on ballistic trajectories to spread over a 2 m radius around the parent plant. The seed surface interacts with both the coiling fruit valve during launch and subsequently with the air during flight. We aim to identify features of the seed surface that may contribute to these interactions by characterizing seed coat differentiation. METHODS Differentiation of the outermost seed coat layers from the outer integuments of the ovule involves dramatic cellular changes that we characterize in detail at the light and electron microscopical level including immunofluorescence and immunogold labelling. KEY RESULTS We found that the two outer integument (oi) layers of the seed coat contributed differently to the topography of the seed surface in the explosively dispersed seeds of C. hirsuta vs. the related species Arabidopsis thaliana where seed dispersal is non-explosive. The surface of A. thaliana seeds is shaped by the columella and the anticlinal cell walls of the epidermal oi2 layer. In contrast, the surface of C. hirsuta seeds is shaped by a network of prominent ridges formed by the anticlinal walls of asymmetrically thickened cells of the sub-epidermal oi1 layer, especially at the seed margin. Both the oi2 and oi1 cell layers in C. hirsuta seeds are characterized by specialized, pectin-rich cell walls that are deposited asymmetrically in the cell. CONCLUSIONS The two outermost seed coat layers in C. hirsuta have distinct properties: the sub-epidermal oi1 layer determines the topography of the seed surface, while the epidermal oi2 layer accumulates mucilage. These properties are influenced by polar deposition of distinct pectin polysaccharides in the cell wall. Although the ridged seed surface formed by oi1 cell walls is associated with ballistic dispersal in C. hirsuta, it is not restricted to explosively dispersed seeds in the Brassicaceae.
Collapse
Affiliation(s)
- Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
24
|
Domozych DS, Sun L, Palacio-Lopez K, Reed R, Jeon S, Li M, Jiao C, Sørensen I, Fei Z, Rose JKC. Endomembrane architecture and dynamics during secretion of the extracellular matrix of the unicellular charophyte, Penium margaritaceum. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3323-3339. [PMID: 31974570 PMCID: PMC7289721 DOI: 10.1093/jxb/eraa039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
The extracellular matrix (ECM) of many charophytes, the assemblage of green algae that are the sister group to land plants, is complex, produced in large amounts, and has multiple essential functions. An extensive secretory apparatus and endomembrane system are presumably needed to synthesize and secrete the ECM, but structural details of such a system have not been fully characterized. Penium margaritaceum is a valuable unicellular model charophyte for studying secretion dynamics. We report that Penium has a highly organized endomembrane system, consisting of 150-200 non-mobile Golgi bodies that process and package ECM components into different sets of vesicles that traffic to the cortical cytoplasm, where they are transported around the cell by cytoplasmic streaming. At either fixed or transient areas, specific cytoplasmic vesicles fuse with the plasma membrane and secrete their constituents. Extracellular polysaccharide (EPS) production was observed to occur in one location of the Golgi body and sometimes in unique Golgi hybrids. Treatment of cells with brefeldin A caused disruption of the Golgi body, and inhibition of EPS secretion and cell wall expansion. The structure of the endomembrane system in Penium provides mechanistic insights into how extant charophytes generate large quantities of ECM, which in their ancestors facilitated the colonization of land.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
- Correspondence:
| | - Li Sun
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | | | - Reagan Reed
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Susan Jeon
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Mingjia Li
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Chen Jiao
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
25
|
ROBINSON DAVIDG. Plant Golgi ultrastructure. J Microsc 2020; 280:111-121. [DOI: 10.1111/jmi.12899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Affiliation(s)
- DAVID G. ROBINSON
- Centre for Organismal Studies University of Heidelberg Heidelberg Germany
| |
Collapse
|
26
|
Robinson DG, Aniento F. A Model for ERD2 Function in Higher Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:343. [PMID: 32269585 PMCID: PMC7109254 DOI: 10.3389/fpls.2020.00343] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/09/2020] [Indexed: 05/25/2023]
Abstract
ER lumenal proteins have a K(H)DEL motif at their C-terminus. This is recognized by the ERD2 receptor (KDEL receptor in animals), which localizes to the Golgi apparatus and serves to capture escaped ER lumenal proteins. ERD2-ligand complexes are then transported back to the ER via COPI coated vesicles. The neutral pH of the ER causes the ligands to dissociate with the receptor being returned to the Golgi. According to this generally accepted scenario, ERD2 cycles between the ER and the Golgi, although it has been found to have a predominant Golgi localization. In this short article, we present a model for the functioning of ERD2 receptors in higher plants that explains why it is difficult to detect fluorescently tagged ERD2 proteins in the ER. The model assumes that the residence time for ERD2 in the ER is very brief and restricted to a specific domain of the ER. This is the small disc of ER immediately subjacent to the first cis-cisterna of the Golgi stack, representing specialized ER export and import sites and therefore constituting part of what is known as the "secretory unit", a mobile aggregate of ER domain plus Golgi stack. ERD2 molecules in the ER domain of the secretory unit may be small in number, transient and optically difficult to differentiate from the larger population of ERD2 molecules in the overlying Golgi stack in the confocal microscope.
Collapse
Affiliation(s)
- David G. Robinson
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Fernando Aniento
- Departamento de Bioquimica y Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Valencia, Spain
| |
Collapse
|
27
|
Role of Proton Motive Force in Photoinduction of Cytoplasmic Streaming in Vallisneria Mesophyll Cells. PLANTS 2020; 9:plants9030376. [PMID: 32197471 PMCID: PMC7154820 DOI: 10.3390/plants9030376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 11/16/2022]
Abstract
In mesophyll cells of the aquatic monocot Vallisneria, red light induces rotational cytoplasmic streaming, which is regulated by the cytoplasmic concentration of Ca2+. Our previous investigations revealed that red light induces Ca2+ efflux across the plasma membrane (PM), and that both the red light-induced cytoplasmic streaming and the Ca2+ efflux are sensitive to vanadate, an inhibitor of P-type ATPases. In this study, pharmacological experiments suggested the involvement of PM H+-ATPase, one of the P-type ATPases, in the photoinduction of cytoplasmic streaming. We hypothesized that red light would activate PM H+-ATPase to generate a large H+ motive force (PMF) in a photosynthesis-dependent manner. We demonstrated that indeed, photosynthesis increased the PMF and induced phosphorylation of the penultimate residue, threonine, of PM H+-ATPase, which is a major activation mechanism of H+-ATPase. The results suggested that a large PMF generated by PM H+-ATPase energizes the Ca2+ efflux across the PM. As expected, we detected a putative Ca2+/H+ exchange activity in PM vesicles isolated from Vallisneria leaves.
Collapse
|
28
|
Zeng Y, Li B, Lin Y, Jiang L. The interplay between endomembranes and autophagy in plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:14-22. [PMID: 31344498 DOI: 10.1016/j.pbi.2019.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Autophagosomes are unique double-membrane organelles that enclose a portion of intracellular components for lysosome/vacuole delivery to maintain cellular homeostasis in eukaryotic cells. Genetic screening has revealed the requirement of autophagy-related proteins for autophagosome formation, although the origin of the autophagosome membrane remains elusive. The endomembrane system is a series of membranous organelles maintained by dynamic membrane flow between various compartments. In plants, there is accumulating evidence pointing to a link between autophagy and the endomembrane system, in particular between the endoplasmic reticulum and autophagosome. Here, we highlight and discuss about recent findings on plant autophagosome formation. We also look into the functional roles of endomembrane machineries in regard to the autophagy pathway in plants.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Baiying Li
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Youshun Lin
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
29
|
Affiliation(s)
- ULLA NEUMANN
- Max Planck Institute for Plant Breeding ResearchCentral Microscopy Cologne Germany
| |
Collapse
|
30
|
Saraste J, Prydz K. A New Look at the Functional Organization of the Golgi Ribbon. Front Cell Dev Biol 2019; 7:171. [PMID: 31497600 PMCID: PMC6713163 DOI: 10.3389/fcell.2019.00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
A characteristic feature of vertebrate cells is a Golgi ribbon consisting of multiple cisternal stacks connected into a single-copy organelle next to the centrosome. Despite numerous studies, the mechanisms that link the stacks together and the functional significance of ribbon formation remain poorly understood. Nevertheless, these questions are of considerable interest, since there is increasing evidence that Golgi fragmentation – the unlinking of the stacks in the ribbon – is intimately connected not only to normal physiological processes, such as cell division and migration, but also to pathological states, including neurodegeneration and cancer. Challenging a commonly held view that ribbon architecture involves the formation of homotypic tubular bridges between the Golgi stacks, we present an alternative model, based on direct interaction between the biosynthetic (pre-Golgi) and endocytic (post-Golgi) membrane networks and their connection with the centrosome. We propose that the central domains of these permanent pre- and post-Golgi networks function together in the biogenesis and maintenance of the more transient Golgi stacks, and thereby establish “linker compartments” that dynamically join the stacks together. This model provides insight into the reversible fragmentation of the Golgi ribbon that takes place in dividing and migrating cells and its regulation along a cell surface – Golgi – centrosome axis. Moreover, it helps to understand transport pathways that either traverse or bypass the Golgi stacks and the positioning of the Golgi apparatus in differentiated neuronal, epithelial, and muscle cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
A signal motif retains Arabidopsis ER-α-mannosidase I in the cis-Golgi and prevents enhanced glycoprotein ERAD. Nat Commun 2019; 10:3701. [PMID: 31420549 PMCID: PMC6697737 DOI: 10.1038/s41467-019-11686-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/01/2019] [Indexed: 11/09/2022] Open
Abstract
The Arabidopsis ER-α-mannosidase I (MNS3) generates an oligomannosidic N-glycan structure that is characteristically found on ER-resident glycoproteins. The enzyme itself has so far not been detected in the ER. Here, we provide evidence that in plants MNS3 exclusively resides in the Golgi apparatus at steady-state. Notably, MNS3 remains on dispersed punctate structures when subjected to different approaches that commonly result in the relocation of Golgi enzymes to the ER. Responsible for this rare behavior is an amino acid signal motif (LPYS) within the cytoplasmic tail of MNS3 that acts as a specific Golgi retention signal. This retention is a means to spatially separate MNS3 from ER-localized mannose trimming steps that generate the glycan signal required for flagging terminally misfolded glycoproteins for ERAD. The physiological importance of the very specific MNS3 localization is demonstrated here by means of a structurally impaired variant of the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1. The Arabidopsis ER-α-mannosidase I MNS3 generates N-glycan structures typical of ER-resident glycoproteins. Here Schoberer et al. identify a novel motif that anchors MNS3 to the cis-Golgi, spatially separating MNS3 from ER-localized mannose trimming associated with the ER-associated degradation pathway.
Collapse
|
32
|
Abstract
Palade's corpus placed small vesicles as the sole means to transport proteins across stable distinct compartments of the secretory pathway. We suggest that cargo, spatial organization of secretory compartments, and the timing of fission of cargo-filled containers dictate the design of transport intermediates that can be vesicles and transient direct tunnels.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
33
|
Liu L, Li J. Communications Between the Endoplasmic Reticulum and Other Organelles During Abiotic Stress Response in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:749. [PMID: 31249578 PMCID: PMC6582665 DOI: 10.3389/fpls.2019.00749] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/21/2019] [Indexed: 05/08/2023]
Abstract
To adapt to constantly changing environmental conditions, plants have evolved sophisticated tolerance mechanisms to integrate various stress signals and to coordinate plant growth and development. It is well known that inter-organellar communications play important roles in maintaining cellular homeostasis in response to environmental stresses. The endoplasmic reticulum (ER), extending throughout the cytoplasm of eukaryotic cells, is a central organelle involved in lipid metabolism, Ca2+ homeostasis, and synthesis and folding of secretory and transmembrane proteins crucial to perceive and transduce environmental signals. The ER communicates with the nucleus via the highly conserved unfolded protein response pathway to mitigate ER stress. Importantly, recent studies have revealed that the dynamic ER network physically interacts with other intracellular organelles and endomembrane compartments, such as the Golgi complex, mitochondria, chloroplast, peroxisome, vacuole, and the plasma membrane, through multiple membrane contact sites between closely apposed organelles. In this review, we will discuss the signaling and metabolite exchanges between the ER and other organelles during abiotic stress responses in plants as well as the ER-organelle membrane contact sites and their associated tethering complexes.
Collapse
Affiliation(s)
- Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Jianming Li, ;
| |
Collapse
|
34
|
Lindquist E, Aronsson H. Chloroplast vesicle transport. PHOTOSYNTHESIS RESEARCH 2018; 138:361-371. [PMID: 30117121 PMCID: PMC6244799 DOI: 10.1007/s11120-018-0566-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/26/2018] [Indexed: 05/19/2023]
Abstract
Photosynthesis is a well-known process that has been intensively investigated, but less is known about the biogenesis of the thylakoid membrane that harbors the photosynthetic machinery. Thylakoid membranes are constituted by several components, the major ones being proteins and lipids. However, neither of these two are produced in the thylakoid membranes themselves but are targeted there by different mechanisms. The interior of the chloroplast, the stroma, is an aqueous compartment that prevents spontaneous transport of single lipids and/or membrane proteins due to their hydrophobicities. Thylakoid targeted proteins are encoded either in the nucleus or plastid, and thus some cross the envelope membrane before entering one of the identified thylakoid targeting pathways. However, the pathway for all thylakoid proteins is not known. Lipids are produced at the envelope membrane and have been proposed to reach the thylakoid membrane by different means: invaginations of the envelope membrane, direct contact sites between these membranes, or through vesicles. Vesicles have been observed in chloroplasts but not much is yet known about the mechanism or regulation of their formation. The question of whether proteins can also make use of vesicles as one mechanism of transport remains to be answered. Here we discuss the presence of vesicles in chloroplasts and their potential role in transporting lipids and proteins. We additionally discuss what is known about the proteins involved in the vesicle transport and the gaps in knowledge that remain to be filled.
Collapse
Affiliation(s)
- Emelie Lindquist
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden.
| |
Collapse
|
35
|
Gergely ZR, Martinez DE, Donohoe BS, Mogelsvang S, Herder R, Staehelin LA. 3D electron tomographic and biochemical analysis of ER, Golgi and trans Golgi network membrane systems in stimulated Venus flytrap ( Dionaea muscipula) glandular cells. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2018; 25:15. [PMID: 30116723 PMCID: PMC6083566 DOI: 10.1186/s40709-018-0086-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/28/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND The insect-trapping leaves of Dionaea muscipula provide a model for studying the secretory pathway of an inducible plant secretory system. The leaf glands were induced with bovine serum albumin to secrete proteases that were characterized via zymogram activity gels over a 6-day period. The accompanying morphological changes of the endoplasmic reticulum (ER) and Golgi were analyzed using 3D electron tomography of glands preserved by high-pressure freezing/freeze substitution methods. RESULTS Secretion of multiple cysteine and aspartic proteases occurred biphasically. The majority of the Golgi was organized in clusters consisting of 3-6 stacks surrounded by a cage-like system of ER cisternae. In these clusters, all Golgi stacks were oriented with their cis-most C1 cisterna facing an ER export site. The C1 Golgi cisternae varied in size and shape consistent with the hypothesis that they form de novo. Following induction, the number of ER-bound polysomes doubled, but no increase in COPII vesicles was observed. Golgi changes included a reduction in the number of cisternae per stack and a doubling of cisternal volume without increased surface area. Polysaccharide molecules that form the sticky slime cause swelling of the trans and trans Golgi network (TGN) cisternae. Peeling of the trans-most cisternae gives rise to free TGN cisternae. One day after gland stimulation, the free TGNs were frequently associated with loose groups of oriented actin-like filaments which were not seen in any other samples. CONCLUSIONS These findings suggest that the secretory apparatus of resting gland cells is "overbuilt" to enable the cells to rapidly up-regulate lytic enzyme production and secretion in response to prey trapping.
Collapse
Affiliation(s)
- Zachary R. Gergely
- MCD Biology, University of Colorado at Boulder, Campus Box 347, Boulder, CO 80309 USA
| | - Dana E. Martinez
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata–CONICET CC 327, La Plata, Argentina
| | - Bryon S. Donohoe
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Soren Mogelsvang
- Exxel Pharma, Inc, 12635 E Montview Blvd, Suite 100, Aurora, CO 80045 USA
| | - Rachel Herder
- Wilson Sonsini Goodrich & Rosati, One Market Plaza, Spear Tower, Ste 3300, San Francisco, CA 94105 USA
| | - L. Andrew Staehelin
- MCD Biology, University of Colorado at Boulder, Campus Box 347, Boulder, CO 80309 USA
| |
Collapse
|
36
|
DeBlasio SL, Xu Y, Johnson RS, Rebelo AR, MacCoss MJ, Gray SM, Heck M. The Interaction Dynamics of Two Potato Leafroll Virus Movement Proteins Affects Their Localization to the Outer Membranes of Mitochondria and Plastids. Viruses 2018; 10:E585. [PMID: 30373157 PMCID: PMC6265731 DOI: 10.3390/v10110585] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
The Luteoviridae is an agriculturally important family of viruses whose replication and transport are restricted to plant phloem. Their genomes encode for four proteins that regulate viral movement. These include two structural proteins that make up the capsid and two non-structural proteins known as P3a and P17. Little is known about how these proteins interact with each other and the host to coordinate virus movement within and between cells. We used quantitative, affinity purification-mass spectrometry to show that the P3a protein of Potato leafroll virus complexes with virus and that this interaction is partially dependent on P17. Bimolecular complementation assays (BiFC) were used to validate that P3a and P17 self-interact as well as directly interact with each other. Co-localization with fluorescent-based organelle markers demonstrates that P3a directs P17 to the mitochondrial outer membrane while P17 regulates the localization of the P3a-P17 heterodimer to plastids. Residues in the C-terminus of P3a were shown to regulate P3a association with host mitochondria by using mutational analysis and also varying BiFC tag orientation. Collectively, our work reveals that the PLRV movement proteins play a game of intracellular hopscotch along host organelles to transport the virus to the cell periphery.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- United States Department of Agriculture, Biological Integrated Pest Management Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA.
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
| | - Yi Xu
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle WA 98109, USA.
| | - Ana Rita Rebelo
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle WA 98109, USA.
| | - Stewart M Gray
- United States Department of Agriculture, Biological Integrated Pest Management Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA.
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Michelle Heck
- United States Department of Agriculture, Biological Integrated Pest Management Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA.
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
37
|
Pocsfalvi G, Turiák L, Ambrosone A, Del Gaudio P, Puska G, Fiume I, Silvestre T, Vékey K. Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicle populations. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:111-121. [PMID: 30056374 DOI: 10.1016/j.jplph.2018.07.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Cell-derived vesicles are membrane-enclosed organelles that transport material inside and outside the cell. Plant-derived vesicles are receiving more and more attention due to their potential as nanovectors for the delivery of biologically active substances. Here, we studied the heterogeneity and protein biocargo in citrus fruit juice sac cell-derived vesicles populations. Micro- and nano-sized vesicle fractions were isolated from four citrus species, C. sinensis, C. limon, C. paradisi and C. aurantium, characterized using physicochemical methods and protein cargos were compared using label-free quantitative shotgun proteomics. In each sample approximately 600-800 proteins were identified. Orthologues of most of the top-ranking proteins have previously been reported in extracellular vesicles of mammalian origin. High expression levels of patellin-3-like, clathrin heavy chain, heat shock proteins, 14-3-3 protein, glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase 6 were measured in all samples while aquaporin was highly expressed only in the nanovesicle fractions. Bioinformatics revealed more than hundred protein orthologues potentially implicated in vesicular trafficking. In particular, the presence of CCV, COPI and COPII coat proteins indicates the presence of heterogeneous populations of intracellular transport vesicles. Moreover, a high number of different enzymes including hydrolases and oxidoreductases are ubiquities in citrus fruit sac cell-derived vesicles.
Collapse
Affiliation(s)
- Gabriella Pocsfalvi
- Institute of Biosciences and BioResources, National Research Council of Italy, Italy.
| | - Lilla Turiák
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | | | | | - Gina Puska
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Immacolata Fiume
- Institute of Biosciences and BioResources, National Research Council of Italy, Italy
| | - Teresa Silvestre
- Institute of Biosciences and BioResources, National Research Council of Italy, Italy
| | - Károly Vékey
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| |
Collapse
|
38
|
Alimohamadi H, Vasan R, Hassinger J, Stachowiak J, Rangamani P. The role of traction in membrane curvature generation. Mol Biol Cell 2018; 29:2024-2035. [PMID: 30044708 PMCID: PMC6232966 DOI: 10.1091/mbc.e18-02-0087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 01/28/2023] Open
Abstract
Curvature of biological membranes can be generated by a variety of molecular mechanisms including protein scaffolding, compositional heterogeneity, and cytoskeletal forces. These mechanisms have the net effect of generating tractions (force per unit length) on the bilayer that are translated into distinct shapes of the membrane. Here, we demonstrate how the local shape of the membrane can be used to infer the traction acting locally on the membrane. We show that buds and tubes, two common membrane deformations studied in trafficking processes, have different traction distributions along the membrane and that these tractions are specific to the molecular mechanism used to generate these shapes. Furthermore, we show that the magnitude of an axial force applied to the membrane as well as that of an effective line tension can be calculated from these tractions. Finally, we consider the sensitivity of these quantities with respect to uncertainties in material properties and follow with a discussion on sources of uncertainty in membrane shape.
Collapse
Affiliation(s)
- H. Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093
| | - R. Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093
| | - J.E. Hassinger
- Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720
| | - J.C. Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712
| | - P. Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
39
|
Biere N, Ghaffar M, Doebbe A, Jäger D, Rothe N, Friedrich BM, Hofestädt R, Schreiber F, Kruse O, Sommer B. Heuristic Modeling and 3D Stereoscopic Visualization of a Chlamydomonas reinhardtii Cell. J Integr Bioinform 2018; 15:/j/jib.2018.15.issue-2/jib-2018-0003/jib-2018-0003.xml. [PMID: 30001212 PMCID: PMC6167046 DOI: 10.1515/jib-2018-0003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/29/2018] [Indexed: 11/15/2022] Open
Abstract
The structural modeling and representation of cells is a complex task as different microscopic, spectroscopic and other information resources have to be combined to achieve a three-dimensional representation with high accuracy. Moreover, to provide an appropriate spatial representation of the cell, a stereoscopic 3D (S3D) visualization is favorable. In this work, a structural cell model is created by combining information from various light microscopic and electron microscopic images as well as from publication-related data. At the mesoscopic level each cell component is presented with special structural and visual properties; at the molecular level a cell membrane composition and the underlying modeling method are discussed; and structural information is correlated with those at the functional level (represented by simplified energy-producing metabolic pathways). The organism used as an example is the unicellular Chlamydomonas reinhardtii, which might be important in future alternative energy production processes. Based on the 3D model, an educative S3D animation was created which was shown at conferences. The complete workflow was accomplished by using the open source 3D modeling software Blender. The discussed project including the animation is available from: http://Cm5.CELLmicrocosmos.org.
Collapse
Affiliation(s)
- Niklas Biere
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Mehmood Ghaffar
- Bio-/Medical Informatics Department, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Anja Doebbe
- Algae Biotechnology and Bioenergy, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Daniel Jäger
- Algae Biotechnology and Bioenergy, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Nils Rothe
- Bio-/Medical Informatics Department, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Benjamin M. Friedrich
- Biological Algorithms Group, Center for Advancing Electronics Dresden, Technical University Dresden, Dresden, Germany
| | - Ralf Hofestädt
- Bio-/Medical Informatics Department, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Falk Schreiber
- Computational Life Sciences, Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
- Faculty of Information Technology, Monash University, Melbourne, Australia
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Björn Sommer
- Computational Life Sciences, Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
- Faculty of Information Technology, Monash University, Melbourne, Australia
| |
Collapse
|
40
|
Costa A, Navazio L, Szabo I. The contribution of organelles to plant intracellular Calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4996169. [PMID: 29767757 DOI: 10.1093/jxb/ery185] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 05/18/2023]
Abstract
Calcium (Ca2+) is among the most important intracellular messengers in living organisms. Understanding of the players and dynamics of Ca2+ signalling pathways in plants may help to unravel the molecular basis of their exceptional flexibility to respond and to adapt to different stimuli. In the present review we focus on new tools that have recently revolutionized our view of organellar Ca2+ signalling as well as on the current knowledge regarding the pathways mediating Ca2+ fluxes across intracellular membranes. The contribution of organelles and cellular subcompartments to the orchestrated response via Ca2+ signalling within a cell is also discussed, underlining the fact that one of the greatest challenges in the field is the elucidation of how influx and efflux Ca2+ transporters/channels are regulated in a concerted manner to translate specific information into a Ca2+ signature.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria, Milan, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
- Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Via U. Bassi, Padova, Italy
| |
Collapse
|
41
|
Ito Y, Uemura T, Nakano A. The Golgi entry core compartment functions as a COPII-independent scaffold for ER-to-Golgi transport in plant cells. J Cell Sci 2018; 131:jcs.203893. [PMID: 28839076 DOI: 10.1242/jcs.203893] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022] Open
Abstract
Many questions remain about how the stacked structure of the Golgi is formed and maintained. In our previous study, we challenged this question using tobacco BY-2 cells and revealed that, upon Brefeldin A (BFA) treatment, previously undescribed small punctate structures containing a particular subset of cis-Golgi proteins are formed adjacent to the ER-exit sites and act as scaffolds for Golgi regeneration after BFA removal. In this study, we analyzed these structures further. The proteins that localize to these punctate structures originate from the cis-most cisternae. 3D time-lapse observations show that the trans-Golgi marker is transported through these structures during Golgi regeneration. These data indicate that the cis-most cisternae have a specialized region that receives cargo from the ER, which becomes obvious upon BFA treatment. Expression of a dominant mutant form of SAR1 does not affect the formation of the punctate structures. We propose to call these punctate structures the 'Golgi entry core compartment' (GECCO). They act as receivers for the rest of the Golgi materials and are formed independently of the COPII machinery.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yoko Ito
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Tomohiro Uemura
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan.,Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
42
|
Chung KP, Zeng Y, Li Y, Ji C, Xia Y, Jiang L. Signal motif-dependent ER export of the Qc-SNARE BET12 interacts with MEMB12 and affects PR1 trafficking in Arabidopsis. J Cell Sci 2018; 131:jcs.202838. [PMID: 28546447 DOI: 10.1242/jcs.202838] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) are well-known for their role in controlling membrane fusion, the final, but crucial step, in vesicular transport in eukaryotes. SNARE proteins contribute to various biological processes including pathogen defense and channel activity regulation, as well as plant growth and development. Precise targeting of SNARE proteins to destined compartments is a prerequisite for their proper functioning. However, the underlying mechanism(s) for SNARE targeting in plants remains obscure. Here, we investigate the targeting mechanism of the Arabidopsis thaliana Qc-SNARE BET12, which is involved in protein trafficking in the early secretory pathway. Two distinct signal motifs that are required for efficient BET12 ER export were identified. Pulldown assays and in vivo imaging implicated that both the COPI and COPII pathways were required for BET12 targeting. Further studies using an ER-export-defective form of BET12 revealed that the Golgi-localized Qb-SNARE MEMB12, a negative regulator of pathogenesis-related protein 1 (PR1; At2g14610) secretion, was its interacting partner. Ectopic expression of BET12 caused no inhibition in the general ER-Golgi anterograde transport but caused intracellular accumulation of PR1, suggesting that BET12 has a regulatory role in PR1 trafficking in A. thaliana.
Collapse
Affiliation(s)
- Kin Pan Chung
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yimin Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Changyang Ji
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China .,The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
43
|
Nagpal A, Hassan A, Ndamukong I, Avramova Z, Baluška F. Myotubularins, PtdIns5P, and ROS in ABA-mediated stomatal movements in dehydrated Arabidopsis seedlings. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:259-266. [PMID: 32291040 DOI: 10.1071/fp17116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/23/2017] [Indexed: 06/11/2023]
Abstract
Myotubularins (MTMs) are lipid phosphoinositide 3-phosphate phosphatases and the product of their enzyme activity - phosphoinositide 5-phosphate (PtdIns5P) - functions as a signalling molecule in pathways involved in membrane dynamics and cell signalling. Two Arabidopsis genes, AtMTM1 and AtMTM2, encode enzymatically active phosphatases but although AtMTM1 deficiency results in increased tolerance to dehydration stress and a decrease in cellular PtdIns5P, the role of AtMTM2 is less clear, as it does not contribute to the PtdIns5P pool upon dehydration stress. Here we analysed the involvement of AtMTM1, AtMTM2 and PtdIns5P in the response of Arabidopsis seedlings to dehydration stress/ABA, and found that both AtMTM1 and AtMTM2 were involved but affected oppositely stomata movement and the accumulation of reactive oxygen species (ROS, e.g. H2O2). Acting as a secondary messenger in the ABA-induced ROS production in guard cells, PtdIns5P emerges as an evolutionarily conserved signalling molecule that calibrates cellular ROS under stress. We propose the biological relevance of the counteracting AtMTM1 and AtMTM2 activities is to balance the ABA-induced ROS accumulation and cellular homeostasis under dehydration stress.
Collapse
Affiliation(s)
- Akanksha Nagpal
- IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Ammar Hassan
- IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Ivan Ndamukong
- School of Biological Sciences, UNL, Lincoln, NE 68588-6008, USA
| | - Zoya Avramova
- School of Biological Sciences, UNL, Lincoln, NE 68588-6008, USA
| | | |
Collapse
|
44
|
Abstract
Plastids represent a largely diverse group of organelles in plant and algal cells that have several common features but also a broad spectrum of differences in respect of how they look (color, size, and ultrastructure), and what their specific function and molecular composition is. Plastids and their structural and metabolic diversity significantly contribute to the functionality and developmental flexibility of the plant body throughout its lifetime. In addition, to the multiple roles of given plastid types, this diversity is accomplished in some cases by interconversions between different plastids as a consequence of developmental and environmental signals that regulate plastid differentiation and specialization.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Johanna Lethin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
45
|
Bellucci M, De Marchis F, Pompa A. The endoplasmic reticulum is a hub to sort proteins toward unconventional traffic pathways and endosymbiotic organelles. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:7-20. [PMID: 28992342 DOI: 10.1093/jxb/erx286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 05/25/2023]
Abstract
The discovery that much of the extracellular proteome in eukaryotic cells consists of proteins lacking a signal peptide, which cannot therefore enter the secretory pathway, has led to the identification of alternative protein secretion routes bypassing the Golgi apparatus. However, proteins harboring a signal peptide for translocation into the endoplasmic reticulum can also be transported along these alternative routes, which are still far from being well elucidated in terms of the molecular machineries and subcellular/intermediate compartments involved. In this review, we first try to provide a definition of all the unconventional protein secretion pathways in eukaryotic cells, as those pathways followed by proteins directed to an 'external space' bypassing the Golgi, where 'external space' refers to the extracellular space plus the lumen of the secretory route compartments and the inner space of mitochondria and plastids. Then, we discuss the role of the endoplasmic reticulum in sorting proteins toward unconventional traffic pathways in plants. In this regard, various unconventional pathways exporting proteins from the endoplasmic reticulum to the vacuole, plasma membrane, apoplast, mitochondria, and plastids are described, including the short routes followed by the proteins resident in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Michele Bellucci
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), Italy
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), Italy
| | - Andrea Pompa
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), Italy
| |
Collapse
|
46
|
Wang X, Chung KP, Lin W, Jiang L. Protein secretion in plants: conventional and unconventional pathways and new techniques. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:21-37. [PMID: 28992209 DOI: 10.1093/jxb/erx262] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein secretion is an essential process in all eukaryotic cells and its mechanisms have been extensively studied. Proteins with an N-terminal leading sequence or transmembrane domain are delivered through the conventional protein secretion (CPS) pathway from the endoplasmic reticulum (ER) to the Golgi apparatus. This feature is conserved in yeast, animals, and plants. In contrast, the transport of leaderless secretory proteins (LSPs) from the cytosol to the cell exterior is accomplished via the unconventional protein secretion (UPS) pathway. So far, the CPS pathway has been well characterized in plants, with several recent studies providing new information about the regulatory mechanisms involved. On the other hand, studies on UPS pathways in plants remain descriptive, although a connection between UPS and the plant defense response is becoming more and more apparent. In this review, we present an update on CPS and UPS. With the emergence of new techniques, a more comprehensive understanding of protein secretion in plants can be expected in the future.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Kin Pan Chung
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Weili Lin
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, China
| |
Collapse
|
47
|
Brandizzi F. Transport from the endoplasmic reticulum to the Golgi in plants: Where are we now? Semin Cell Dev Biol 2017; 80:94-105. [PMID: 28688928 DOI: 10.1016/j.semcdb.2017.06.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/11/2017] [Accepted: 06/27/2017] [Indexed: 11/26/2022]
Abstract
The biogenesis of about one third of the cellular proteome is initiated in the endoplasmic reticulum (ER), which exports proteins to the Golgi apparatus for sorting to their final destination. Notwithstanding the close proximity of the ER with other secretory membranes (e.g., endosomes, plasma membrane), the ER is also important for the homeostasis of non-secretory organelles such as mitochondria, peroxisomes, and chloroplasts. While how the plant ER interacts with most of the non-secretory membranes is largely unknown, the knowledge on the mechanisms for ER-to-Golgi transport is relatively more advanced. Indeed, over the last fifteen years or so, a large number of exciting results have contributed to draw parallels with non-plant species but also to highlight the complexity of the plant ER-Golgi interface, which bears unique features. This review reports and discusses results on plant ER-to-Golgi traffic, focusing mainly on research on COPII-mediated transport in the model species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
48
|
Vitale A, Pedrazzini E. Endoplasmic reticulum and Golgi apparatus: old friends, novel intimate relationships. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3283-3285. [PMID: 28859381 PMCID: PMC5853868 DOI: 10.1093/jxb/erx216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This article comments on: Osterrieder A, Sparkes IA, Botchway SW, Ward A, Ketelaar T, de Ruijter N, Hawes C. 2017. Stacks off tracks: a role for the golgin AtCASP in plant endoplasmic reticulum–Golgi apparatus tethering. Journal of Experimental Botany 68, 3339–3350.
Collapse
Affiliation(s)
- Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy, European Union
| | - Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy, European Union
| |
Collapse
|
49
|
Osterrieder A, Sparkes IA, Botchway SW, Ward A, Ketelaar T, de Ruijter N, Hawes C. Stacks off tracks: a role for the golgin AtCASP in plant endoplasmic reticulum-Golgi apparatus tethering. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3339-3350. [PMID: 28605454 PMCID: PMC5853478 DOI: 10.1093/jxb/erx167] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/25/2017] [Indexed: 05/18/2023]
Abstract
The plant Golgi apparatus modifies and sorts incoming proteins from the endoplasmic reticulum (ER) and synthesizes cell wall matrix material. Plant cells possess numerous motile Golgi bodies, which are connected to the ER by yet to be identified tethering factors. Previous studies indicated a role for cis-Golgi plant golgins, which are long coiled-coil domain proteins anchored to Golgi membranes, in Golgi biogenesis. Here we show a tethering role for the golgin AtCASP at the ER-Golgi interface. Using live-cell imaging, Golgi body dynamics were compared in Arabidopsis thaliana leaf epidermal cells expressing fluorescently tagged AtCASP, a truncated AtCASP-ΔCC lacking the coiled-coil domains, and the Golgi marker STtmd. Golgi body speed and displacement were significantly reduced in AtCASP-ΔCC lines. Using a dual-colour optical trapping system and a TIRF-tweezer system, individual Golgi bodies were captured in planta. Golgi bodies in AtCASP-ΔCC lines were easier to trap and the ER-Golgi connection was more easily disrupted. Occasionally, the ER tubule followed a trapped Golgi body with a gap, indicating the presence of other tethering factors. Our work confirms that the intimate ER-Golgi association can be disrupted or weakened by expression of truncated AtCASP-ΔCC and suggests that this connection is most likely maintained by a golgin-mediated tethering complex.
Collapse
Affiliation(s)
- Anne Osterrieder
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | - Imogen A Sparkes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | - Stan W Botchway
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, UK
| | - Andy Ward
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, UK
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Norbert de Ruijter
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| |
Collapse
|
50
|
Abstract
The plant endomembrane system is an extensively connected functional unit for exchanging material between compartments. Secretory and endocytic pathways allow dynamic trafficking of proteins, lipids, and other molecules, regulating a myriad of biological processes. Chemical genetics-the use of compounds to perturb biological processes in a fast, tunable, and transient manner-provides elegant tools for investigating this system. Here, we review how chemical genetics has helped to elucidate different aspects of membrane trafficking. We discuss different strategies for uncovering the modes of action of such compounds and their use in unraveling membrane trafficking regulators. We also discuss how the bioactive chemicals that are currently used as probes to interrogate endomembrane trafficking were discovered and analyze the results regarding membrane trafficking and pathway crosstalk. The integration of different expertises and the rational implementation of chemical genetic strategies will improve the identification of molecular mechanisms that drive intracellular trafficking and our understanding of how trafficking interfaces with plant physiology and development.
Collapse
Affiliation(s)
- Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
| | - Ricardo Tejos
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, 111093 Iquique, Chile
| |
Collapse
|