1
|
Wu S, Wang J, Wang M, Zhou K, Huang D, Zhang Y, Zhang H. Glucose deprivation-induced disulfidptosis in human nucleus pulposus cells: a novel pathological mechanism of intervertebral disc degeneration. Biol Direct 2024; 19:81. [PMID: 39267140 PMCID: PMC11396215 DOI: 10.1186/s13062-024-00528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Limited supply of certain nutrients and deregulation of nucleus pulposus (NP) plays a key role in the pathogenesis of intervertebral disc degeneration (IVDD). However, whether nutrient deprivation-induced cell death, particularly disulfidptosis, contributes to the depletion of NP cells and the development of IVDD, is unknown. METHODS RNA-seq, single-cell RNA-seq, and Genome-wide DNA methylation datasets of nucleus pulposus tissue were collected for bioinformatic analysis. Predictive models of disulfidptosis related genes in IVDD were constructed by machine learning and their differential expression was analyzed. In addition, we performed cell subsets identification analysis, cell-cell communications analysis, and functional enrichment analysis of key genes in the core subset based on single-cell RNA-seq data of NP tissues isolated from one normal sample and one IVDD sample. Finally, glucose deprivation-induced disulfidptosis in human NP cells (HNPCs) was verified by various cell death inhibitors and disulfidptosis-related molecular markers. RESULTS We found the disulfidptosis signal was significantly activated in the IVDD group. Using single-cell RNA-seq analysis, we focused on the chondrocytes and found that disulfidptosis-related genes significantly highly expressed in the IVDD C4 chondrocyte subset, which was identified as a new disulfidptosis-associated cell subset. Correlation analysis revealed the negative correlation between SLC7A11 (driving gene of disulfidptosis) and the glucose transporter GLUTs (SLC2A1-4) family genes (suppressing genes of disulfidptosis) in the IVDD group. We also found obvious cell death in HNPC upon glucose starvation, while employment of various cell death inhibitors could not inhibit glucose starvation-induced death in HNPCs. Moreover, the accumulation of disulfide bonds in cytoskeletal proteins was indicated by slowed migration in non-reducible protein blotting experiments. 2-DG, a key disulfidptosis inhibitor, significantly rescued cell death caused by glucose starvation through lowering the NADP+/NADPH ratio. CONCLUSIONS We validated the occurrence of disulfidptosis in HPNCs and identified a novel disulfidptosis-associated cell subset, followed by experimental verification of disulfidptosis in a glucose-limited context to mimic a fall in nutrient supply during the development disc degeneration. These findings provided new insights into the pathological mechanisms of IVDD and encourage us to explore potential therapeutic targets involved in the regulation of disulfidptosis for the prevention of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Shaobo Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Jin Wang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Minglin Wang
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Kaisheng Zhou
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| | - Yilei Zhang
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Haihong Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
2
|
Chen X, Chen G, Guo S, Wang Y, Sun J. SlSAMS1 enhances salt tolerance through regulation DNA methylation of SlGI in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111808. [PMID: 37482302 DOI: 10.1016/j.plantsci.2023.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
S-adenosylmethionine (SAM), which is synthesized from methionine and ATP catalyzed by S-adenosylmethionine synthetase (SAMS), is an important methyl donor in plants. SAMS and DNA methylation play an important role in the plant response to abiotic stresses. Previous studies have shown that SAMS improves salt tolerance in tomato plants, but it is not clear whether the DNA methylation pathway mediates SAMS-induced salt tolerance. This study confirmed that SlSAMS1-overexpressing plants exhibited improved salt tolerance. Through whole-genome bisulfite sequencing (WGBS) and transcriptome sequencing (RNA-seq) analysis, the study screened the circadian rhythm pathway and identified the gene SlGI in this pathway, which was regulated by SlSAMS1. The gene body region of SlGI, the core gene of the circadian rhythm pathway, was hypermethylated in SlSAMS1-overexpressing plants, and its expression level was significantly increased. Furthermore, the SlGI-overexpressing plants showed higher salt tolerance, less reduction in plant height and fresh weight, lower electrolyte leakage, malondialdehyde and H2O2 content, and higher antioxidant enzyme activity compared to wild type plants. Therefore, SlSAMS1-overexpressing plants regulated significant changes in CHG-type methylation sites of the SlGI gene body and its expression levels, leading to an enhanced salt tolerance of tomato plants.
Collapse
Affiliation(s)
- Xinyang Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangling Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Liu ZW, Liu J, Liu F, Zhong X. Depositing centromere repeats induces heritable intragenic heterochromatin establishment and spreading in Arabidopsis. Nucleic Acids Res 2023; 51:6039-6054. [PMID: 37094065 PMCID: PMC10325890 DOI: 10.1093/nar/gkad306] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Stable transmission of non-DNA-sequence-based epigenetic information contributes to heritable phenotypic variants and thus to biological diversity. While studies on spontaneous natural epigenome variants have revealed an association of epialleles with a wide range of biological traits in both plants and animals, the function, transmission mechanism, and stability of an epiallele over generations in a locus-specific manner remain poorly investigated. Here, we invented a DNA sequence deposition strategy to generate a locus-specific epiallele by depositing CEN180 satellite repeats into a euchromatic target locus in Arabidopsis. Using CRISPR/Cas9-mediated knock-in system, we demonstrated that depositing CEN180 repeats can induce heterochromatin nucleation accompanied by DNA methylation, H3K9me2, and changes in the nucleosome occupancy at the insertion sites. Interestingly, both DNA methylation and H3K9me2 are restricted within the depositing sites and depletion of an H3K9me2 demethylase IBM1 enables the outward heterochromatin propagation into the neighboring regions, leading to inheritable target gene silencing to persist for at least five generations. Together, these results demonstrate the promise of employing a cis-engineering system for the creation of stable and site-specific epialleles and provide important insights into functional epigenome studies and locus-specific transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Zhang-Wei Liu
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jie Liu
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xuehua Zhong
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Fu C, Ma C, Zhu M, Liu W, Ma X, Li J, Liao Y, Liu D, Gu X, Wang H, Wang F. Transcriptomic and methylomic analyses provide insights into the molecular mechanism and prediction of heterosis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:139-154. [PMID: 36995901 DOI: 10.1111/tpj.16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Heterosis has been widely used in multiple crops. However, the molecular mechanism and prediction of heterosis remains elusive. We generated five F1 hybrids [four showing better-parent heterosis (BPH) and one showing mid-parent heterosis], and performed the transcriptomic and methylomic analyses to identify the candidate genes for BPH and explore the molecular mechanism of heterosis and the potential predictors for heterosis. Transcriptomic results showed that most of the differentially expressed genes shared in the four better-parent hybrids were significantly enriched into the terms of molecular function, and the additive and dominant effects played crucial roles for BPH. DNA methylation level, especially in CG context, significantly and positively correlated with grain yield per plant. The ratios of differentially methylated regions in CG context in exons to transcription start sites between the parents exhibited significantly negative correlation with the heterosis levels of their hybrids, as was further confirmed in 24 pairwise comparisons of other rice lines, implying that this ratio could be a feasible predictor for heterosis level, and this ratio of less than 5 between parents in early growth stages might be a critical index for judging that their F1 hybrids would show BPH. Additionally, we identified some important genes showing differential expression and methylation, such as OsDCL2, Pi5, DTH2, DTH8, Hd1 and GLW7 in the four better-parent hybrids as the candidate genes for BPH. Our findings helped shed more light on the molecular mechanism and heterosis prediction.
Collapse
Affiliation(s)
- Chongyun Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| | - Ce Ma
- Novogene Biotechnology Inc, Beijing, China
| | - Manshan Zhu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| | - Wuge Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| | - Xiaozhi Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| | - Jinhua Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| | - Yilong Liao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| | - Dilin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Feng Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| |
Collapse
|
5
|
Silva AC, Ruiz‐Ferrer V, Müller SY, Pellegrin C, Abril‐Urías P, Martínez‐Gómez Á, Gómez‐Rojas A, Berenguer E, Testillano PS, Andrés MF, Fenoll C, Eves‐van den Akker S, Escobar C. The DNA methylation landscape of the root-knot nematode-induced pseudo-organ, the gall, in Arabidopsis, is dynamic, contrasting over time, and critically important for successful parasitism. THE NEW PHYTOLOGIST 2022; 236:1888-1907. [PMID: 35872574 PMCID: PMC9825882 DOI: 10.1111/nph.18395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Root-knot nematodes (RKNs) induce giant cells (GCs) within galls which are characterized by large-scale gene repression at early stages. However, the epigenetic mechanism(s) underlying gene silencing is (are) still poorly characterized. DNA methylation in Arabidopsis galls induced by Meloidogyne javanica was studied at crucial infection stages (3 d post-infection (dpi) and 14 dpi) using enzymatic, cytological, and sequencing approaches. DNA methyltransferase mutants (met1, cmt2, cmt3, cmt2/3, drm1/2, ddc) and a DNA demethylase mutant (ros1), were analyzed for RKN resistance/tolerance, and galls were characterized by confocal microscopy and RNA-seq. Early galls were hypermethylated, and the GCs were found to be the major contributors to this hypermethylation, consistent with the very high degree of gene repression they exhibit. By contrast, medium/late galls showed no global increase in DNA methylation compared to uninfected roots, but exhibited large-scale redistribution of differentially methylated regions (DMRs). In line with these findings, it was also shown that DNA methylation and demethylation mutants showed impaired nematode reproduction and gall/GC-development. Moreover, siRNAs that were exclusively present in early galls accumulated at hypermethylated DMRs, overlapping mostly with retrotransposons in the CHG/CG contexts that might be involved in their repression, contributing to their stability/genome integrity. Promoter/gene methylation correlated with differentially expressed genes encoding proteins with basic cell functions. Both mechanisms are consistent with reprogramming host tissues for gall/GC formation. In conclusion, RNA-directed DNA methylation (RdDM; DRM2/1) pathways, maintenance methyltransferases (MET1/CMT3) and demethylation (ROS1) appear to be prominent mechanisms driving a dynamic regulation of the epigenetic landscape during RKN infection.
Collapse
Affiliation(s)
- Ana Cláudia Silva
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Virginia Ruiz‐Ferrer
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | | | - Clement Pellegrin
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Patricia Abril‐Urías
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Ángela Martínez‐Gómez
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Almudena Gómez‐Rojas
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Eduardo Berenguer
- Centro de Investigaciones Biológicas Margarita SalasCIB‐CSIC, Pollen Biotechnology of Crop PlantsRamiro de Maeztu 928040MadridSpain
| | - Pilar S. Testillano
- Centro de Investigaciones Biológicas Margarita SalasCIB‐CSIC, Pollen Biotechnology of Crop PlantsRamiro de Maeztu 928040MadridSpain
| | - Maria Fe Andrés
- Instituto de Ciencias Agrarias (ICA, CSIC)Protección Vegetal, Calle de Serrano 11528006MadridSpain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | | | - Carolina Escobar
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
- International Research Organization for Advanced Science and Technology (IROAST)Kumamoto UniversityKumamoto860‐8555Japan
| |
Collapse
|
6
|
Přibylová A, Fischer L, Pyott DE, Bassett A, Molnar A. DNA methylation can alter CRISPR/Cas9 editing frequency and DNA repair outcome in a target-specific manner. THE NEW PHYTOLOGIST 2022; 235:2285-2299. [PMID: 35524464 PMCID: PMC9545110 DOI: 10.1111/nph.18212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 05/31/2023]
Abstract
The impact of epigenetic modifications on the efficacy of CRISPR/Cas9-mediated double-stranded DNA breaks and subsequent DNA repair is poorly understood, especially in plants. In this study, we investigated the effect of the level of cytosine methylation on the outcome of CRISPR/Cas9-induced mutations at multiple Cas9 target sites in Nicotiana benthamiana leaf cells using next-generation sequencing. We found that high levels of promoter methylation, but not gene-body methylation, decreased the frequency of Cas9-mediated mutations. DNA methylation also influenced the ratio of insertions and deletions and potentially the type of Cas9 cleavage in a target-specific manner. In addition, we detected an over-representation of deletion events governed by a single 5'-terminal nucleotide at Cas9-induced DNA breaks. Our findings suggest that DNA methylation can indirectly impair Cas9 activity and subsequent DNA repair, probably through changes in the local chromatin structure. In addition to the well described Cas9-induced blunt-end double-stranded DNA breaks, we provide evidence for Cas9-mediated staggered DNA cuts in plant cells. Both types of cut may direct microhomology-mediated DNA repair by a novel, as yet undescribed, mechanism.
Collapse
Affiliation(s)
- Adéla Přibylová
- Institute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
- Faculty of ScienceCharles UniversityPrague128 44Czech Republic
| | - Lukáš Fischer
- Faculty of ScienceCharles UniversityPrague128 44Czech Republic
| | - Douglas E. Pyott
- The Wellcome Trust Center for Cell BiologyInstitute of Cell BiologyThe University of EdinburghEdinburghEH9 3BFUK
| | - Andrew Bassett
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonCB10 1SAUK
| | - Attila Molnar
- Institute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
| |
Collapse
|
7
|
Flavonoid Biosynthesis Genes in Triticum aestivum L.: Methylation Patterns in Cis-Regulatory Regions of the Duplicated CHI and F3H Genes. Biomolecules 2022; 12:biom12050689. [PMID: 35625617 PMCID: PMC9138379 DOI: 10.3390/biom12050689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Flavonoids are a diverse group of secondary plant metabolites that play an important role in the regulation of plant development and protection against stressors. The biosynthesis of flavonoids occurs through the activity of several enzymes, including chalcone isomerase (CHI) and flavanone 3-hydroxylase (F3H). A functional divergence between some copies of the structural TaCHI and TaF3H genes was previously shown in the allohexaploid bread wheat Triticum aestivum L. (BBAADD genome). We hypothesized that the specific nature of TaCHI and TaF3H expression may be induced by the methylation of the promoter. It was found that the predicted position of CpG islands in the promoter regions of the analyzed genes and the actual location of methylation sites did not match. We found for the first time that differences in the methylation status could affect the expression of TaCHI copies, but not the expression of TaF3Hs. At the same time, we revealed significant differences in the structure of the promoters of only the TaF3H genes, while the TaCHI promoters were highly homologous. We assume that the promoter structure in TaF3Hs primarily affects the change in the nature of gene expression. The data obtained are important for understanding the mechanisms that regulate the synthesis of flavonoids in allopolyploid wheat and show that differences in the structure of promoters have a key effect on gene expression.
Collapse
|
8
|
DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nat Commun 2022; 13:1335. [PMID: 35288562 PMCID: PMC8921224 DOI: 10.1038/s41467-022-28940-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/16/2022] [Indexed: 12/17/2022] Open
Abstract
A contribution of DNA methylation to defense against invading nucleic acids and maintenance of genome integrity is uncontested; however, our understanding of the extent of involvement of this epigenetic mark in genome-wide gene regulation and plant developmental control is incomplete. Here, we knock out all five known DNA methyltransferases in Arabidopsis, generating DNA methylation-free plants. This quintuple mutant exhibits a suite of developmental defects, unequivocally demonstrating that DNA methylation is essential for multiple aspects of plant development. We show that CG methylation and non-CG methylation are required for a plethora of biological processes, including pavement cell shape, endoreduplication, cell death, flowering, trichome morphology, vasculature and meristem development, and root cell fate determination. Moreover, we find that DNA methylation has a strong dose-dependent effect on gene expression and repression of transposable elements. Taken together, our results demonstrate that DNA methylation is dispensable for Arabidopsis survival but essential for the proper regulation of multiple biological processes. Our understanding of the extent of involvement of DNA methylation in genome-wide gene regulation and plant developmental control is incomplete. Here, the authors knock out all five known DNA methyltransferases and show the developmental and gene expression changes in the DNA methylation-free Arabidopsis plants.
Collapse
|
9
|
Local and global crosstalk among heterochromatin marks drives DNA methylome patterning in Arabidopsis. Nat Commun 2022; 13:861. [PMID: 35165291 PMCID: PMC8844080 DOI: 10.1038/s41467-022-28468-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) are robustly silenced by multiple epigenetic marks, but dynamics of crosstalk among these marks remains enigmatic. In Arabidopsis, TEs are silenced by cytosine methylation in both CpG and non-CpG contexts (mCG and mCH) and histone H3 lysine 9 methylation (H3K9me). While mCH and H3K9me are mutually dependent for their maintenance, mCG and mCH/H3K9me are independently maintained. Here, we show that establishment, rather than maintenance, of mCH depends on mCG, accounting for the synergistic colocalization of these silent marks in TEs. When mCG is lost, establishment of mCH is abolished in TEs. mCG also guides mCH in active genes, though the resulting mCH/H3K9me is removed thereafter. Unexpectedly, targeting efficiency of mCH depends on relative, rather than absolute, levels of mCG within the genome, suggesting underlying global negative controls. We propose that local positive feedback in heterochromatin dynamics, together with global negative feedback, drive robust and balanced DNA methylome patterning. In plant genomes, both mCG and H3K9me2/mCH are important for silencing transposable elements (TEs). Here, the authors show that establishment of mCH is abolished in both TE and active genes when mCG is lost and targeting efficiency of mCH depends on relative levels of mCG within the genome.
Collapse
|
10
|
Hannan Parker A, Wilkinson SW, Ton J. Epigenetics: a catalyst of plant immunity against pathogens. THE NEW PHYTOLOGIST 2022; 233:66-83. [PMID: 34455592 DOI: 10.1111/nph.17699] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/20/2021] [Indexed: 05/11/2023]
Abstract
The plant immune system protects against pests and diseases. The recognition of stress-related molecular patterns triggers localised immune responses, which are often followed by longer-lasting systemic priming and/or up-regulation of defences. In some cases, this induced resistance (IR) can be transmitted to following generations. Such transgenerational IR is gradually reversed in the absence of stress at a rate that is proportional to the severity of disease experienced in previous generations. This review outlines the mechanisms by which epigenetic responses to pathogen infection shape the plant immune system across expanding time scales. We review the cis- and trans-acting mechanisms by which stress-inducible epigenetic changes at transposable elements (TEs) regulate genome-wide defence gene expression and draw particular attention to one regulatory model that is supported by recent evidence about the function of AGO1 and H2A.Z in transcriptional control of defence genes. Additionally, we explore how stress-induced mobilisation of epigenetically controlled TEs acts as a catalyst of Darwinian evolution by generating (epi)genetic diversity at environmentally responsive genes. This raises questions about the long-term evolutionary consequences of stress-induced diversification of the plant immune system in relation to the long-held dichotomy between Darwinian and Lamarckian evolution.
Collapse
Affiliation(s)
- Adam Hannan Parker
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| | - Samuel W Wilkinson
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
11
|
You L, Lin J, Xu H, Chen C, Chen J, Zhang J, Zhang J, Li Y, Ye C, Zhang H, Jiang J, Zhu J, Li QQ, Duan C. Intragenic heterochromatin-mediated alternative polyadenylation modulates miRNA and pollen development in rice. THE NEW PHYTOLOGIST 2021; 232:835-852. [PMID: 34289124 PMCID: PMC9292364 DOI: 10.1111/nph.17635] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/25/2021] [Indexed: 05/02/2023]
Abstract
Despite a much higher proportion of intragenic heterochromatin-containing genes in crop genomes, the importance of intragenic heterochromatin in crop development remains unclear. Intragenic heterochromatin can be recognised by a protein complex, ASI1-AIPP1-EDM2 (AAE) complex, to regulate alternative polyadenylation. Here, we investigated the impact of rice ASI1 on global poly(A) site usage through poly(A) sequencing and ASI1-dependent regulation on rice development. We found that OsASI1 is essential for rice pollen development and flowering. OsASI1 dysfunction has an important impact on global poly(A) site usage, which is closely related to heterochromatin marks. Intriguingly, OsASI1 interacts with the intronic heterochromatin of OsXRNL, a nuclear XRN family exonuclease gene involved in the processing of an miRNA precursor, to promote the processing of full-length OsXRNL and regulate miRNA abundance. We found that OsASI1-mediated regulation of pollen development partially depends on OsXRNL. Finally, we characterised the rice AAE complex and its involvement in alternative polyadenylation and pollen development. Our findings help to elucidate an epigenetic mechanism governing miRNA abundance and rice development, and provide a valuable resource for studying the epigenetic mechanisms of many important processes in crops.
Collapse
Affiliation(s)
- Li‐Yuan You
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamenFujian361102China
| | - Hua‐Wei Xu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- College of AgricultureHenan University of Science and TechnologyLuoyang471023China
| | - Chun‐Xiang Chen
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jun‐Yu Chen
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jinshan Zhang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
| | - Jian Zhang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ying‐Xin Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamenFujian361102China
| | - Hui Zhang
- College of Life ScienceShanghai Normal UniversityShanghai200234China
| | - Jing Jiang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Jian‐Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
| | - Qingshun Q. Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamenFujian361102China
- Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaCA91766USA
| | - Cheng‐Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifeng475004China
| |
Collapse
|
12
|
Park JS, Shin YH, Park YD. DNA Methylation Level Changes in Transgenic Chinese Cabbage ( Brassica rapa ssp. pekinensis) Plants and Their Effects on Corresponding Gene Expression Patterns. Genes (Basel) 2021; 12:genes12101563. [PMID: 34680957 PMCID: PMC8535332 DOI: 10.3390/genes12101563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022] Open
Abstract
Plant tissue culture is an in vitro technique used to manipulate cells, tissues, or organs, and plays an important role in genetic transformation. However, plants cultured in vitro often exhibit unintended genetic and epigenetic variations. Since it is important to secure the stability of endogenous and exogenous gene expressions in transgenic plants, it is preferable to avoid the occurrence of such variations. In this study, we focused on epigenetic variations, exclusively on methylation level changes of DNA, in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) plants. To detect these methylation level changes of DNA, bisulfite sequencing was performed and the obtained sequences were compared with the ‘CT001’ reference genome. Differentially methylated regions (DMRs) of DNA between the non-transgenic and transgenic lines were detected by bisulfite sequencing, and ten DMRs located in exonic regions were identified. The regions with methylation variations that were inherited and consistently maintained in the next generation lines were selected and validated. We also analyzed the relationship between methylation status and expression levels of transformant-conserved DMR (TCD) genes by quantitative reverse transcription-PCR. These results suggested that the changes in methylation levels of these DMRs might have been related to the plant transformation process, affecting subsequent gene expression. Our findings can be used in fundamental research on methylation variations in transgenic plants and suggest that these variations affect the expression of the associated genes.
Collapse
Affiliation(s)
| | | | - Young-Doo Park
- Correspondence: ; Tel.: +82-10-3338-9344; Fax: +82-31-202-8395
| |
Collapse
|
13
|
Ince AG, Karaca M. Tissue and/or developmental stage specific methylation of nrDNA in Capsicum annuum. JOURNAL OF PLANT RESEARCH 2021; 134:841-855. [PMID: 33886005 DOI: 10.1007/s10265-021-01287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
The nuclear ribosomal DNA (nrDNA) sequences are often used for phylogenetic analysis among organisms. Because DNA cytosine methylation and nucleolar dominancy are two common epigenetic mechanisms of nrDNA, we hypothesized that internal transcribed spacer 1 (ITS1), 5.8S rRNA and ITS2 of nrDNA sequences could be used as epigenetic biomarkers. Thus, this research was undertaken to study level and pattern of site-specific cytosine methylation of ITS1, 5.8S and ITS2 in nine tissues and/or developmental stage of pepper Capsicum annuum L. cultivar Demre Sivrisi. Tissues studied consisted of young and old roots at 30 and 90 days after sowing (das), mature dry seeds and seeds at 26 days of post anthesis (dpa), flowering buds at 1 day before flowering, pericarps at 3, 15 and 65 dpa. Levels and patterns of DNA cytosine methylation were identified at single base resolution using bisulfite conversion sequencing. Results of this study revealed that DNA cytosine level and pattern of ITS1, 5.8S and ITS2 were different in most tissues and/or developmental stages studied. In addition, methylation levels of CG, CHG and CHH contexts were also significantly different among the regions. Based on the findings of this study, it was concluded that high level of methylation of nrDNA sequences was relatively higher as observed in transposable element and promoter. On the other hand, its tissue-specific gene expression was effective as that of gene body and promoter methylation. Overall findings revealed that methylation levels of nrDNA could be used as biomarkers for tissue identification or age estimation in plants.
Collapse
Affiliation(s)
- Ayse Gul Ince
- Vocational School of Technical Sciences, Akdeniz University, 07059, Antalya, Turkey.
| | - Mehmet Karaca
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07059, Antalya, Turkey
| |
Collapse
|
14
|
Zhang Z, Wang H, Wang Y, Xi F, Wang H, Kohnen MV, Gao P, Wei W, Chen K, Liu X, Gao Y, Han X, Hu K, Zhang H, Zhu Q, Zheng Y, Liu B, Ahmad A, Hsu YH, Jacobsen SE, Gu L. Whole-genome characterization of chronological age-associated changes in methylome and circular RNAs in moso bamboo (Phyllostachys edulis) from vegetative to floral growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:435-453. [PMID: 33506534 DOI: 10.1111/tpj.15174] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
In mammals, DNA methylation is associated with aging. However, age-related DNA methylation changes during phase transitions largely remain unstudied in plants. Moso bamboo (Phyllostachys edulis) requires a very long time to transition from the vegetative to the floral phase. To comprehensively investigate the association of DNA methylation with aging, we present here single-base-resolution DNA methylation profiles using both high-throughput bisulfite sequencing and single-molecule nanopore-based DNA sequencing, covering the long period of vegetative growth and transition to flowering in moso bamboo. We discovered that CHH methylation gradually accumulates from vegetative to reproductive growth in a time-dependent fashion. Differentially methylated regions, correlating with chronological aging, occurred preferentially at both transcription start sites and transcription termination sites. Genes with CG methylation changes showed an enrichment of Gene Ontology (GO) categories in 'vegetative to reproductive phase transition of meristem'. Combining methylation data with mRNA sequencing revealed that DNA methylation in promoters, introns and exons may have different roles in regulating gene expression. Finally, circular RNA (circRNA) sequencing revealed that the flanking introns of circRNAs are hypermethylated and enriched in long terminal repeat (LTR) retrotransposons. Together, the observations in this study provide insights into the dynamic DNA methylation and circRNA landscapes, correlating with chronological age, which paves the way to study further the impact of epigenetic factors on flowering in moso bamboo.
Collapse
Affiliation(s)
- Zeyu Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huihui Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongsheng Wang
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Feihu Xi
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Huiyuan Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Markus V Kohnen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengfei Gao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wentao Wei
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kai Chen
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Xuqing Liu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Ximei Han
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kaiqiang Hu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yushan Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bo Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Steven E Jacobsen
- Department of Molecular, Cell & Developmental Biology, Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095, USA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
15
|
Zhang YZ, Lin J, Ren Z, Chen CX, Miki D, Xie SS, Zhang J, Chang YN, Jiang J, Yan J, Li QQ, Zhu JK, Duan CG. Genome-wide distribution and functions of the AAE complex in epigenetic regulation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:707-722. [PMID: 33438356 DOI: 10.1111/jipb.13068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Heterochromatin is widespread in eukaryotic genomes and has diverse impacts depending on its genomic context. Previous studies have shown that a protein complex, the ASI1-AIPP1-EDM2 (AAE) complex, participates in polyadenylation regulation of several intronic heterochromatin-containing genes. However, the genome-wide functions of AAE are still unknown. Here, we show that the ASI1 and EDM2 mostly target the common genomic regions on a genome-wide level and preferentially interacts with genetic heterochromatin. Polyadenylation (poly(A) sequencing reveals that AAE complex has a substantial influence on poly(A) site usage of heterochromatin-containing genes, including not only intronic heterochromatin-containing genes but also the genes showing overlap with heterochromatin. Intriguingly, AAE is also involved in the alternative splicing regulation of a number of heterochromatin-overlapping genes, such as the disease resistance gene RPP4. We provided evidence that genic heterochromatin is indispensable for the recruitment of AAE in polyadenylation and splicing regulation. In addition to conferring RNA processing regulation at genic heterochromatin-containing genes, AAE also targets some transposable elements (TEs) outside of genes (including TEs sandwiched by genes and island TEs) for epigenetic silencing. Our results reveal new functions of AAE in RNA processing and epigenetic silencing, and thus represent important advances in epigenetic regulation.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhizhong Ren
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Chun-Xiang Chen
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Si-Si Xie
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Chang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jun Yan
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, 91766, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, 47907, USA
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
16
|
Orłowska R. Barley somatic embryogenesis-an attempt to modify variation induced in tissue culture. ACTA ACUST UNITED AC 2021; 28:9. [PMID: 33726856 PMCID: PMC7962293 DOI: 10.1186/s40709-021-00138-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Background Somatic embryogenesis is a phenomenon carried out in an environment that generates abiotic stress. Thus, regenerants may differ from the source of explants at the morphological, genetic, and epigenetic levels. The DNA changes may be the outcome of induction media ingredients (i.e., copper and silver ions) and their concentrations and time of in vitro cultures. Results This study optimised the level of copper and silver ion concentration in culture media parallel with the induction medium longevity step towards obtaining barley regenerants via somatic embryogenesis with a minimum or maximum level of tissue culture-induced differences between the donor plant and its regenerants. The optimisation process is based on tissue culture-induced variation evaluated via the metAFLP approach for regenerants derived under varying in vitro tissue culture conditions and exploited by the Taguchi method. In the optimisation and verification experiments, various copper and silver ion concentrations and the different number of days differentiated the tested trials concerning the tissue culture-induced variation level, DNA demethylation, and de novo methylation, including symmetric (CG, CHG) and asymmetric (CHH) DNA sequence contexts. Verification of optimised conditions towards obtaining regenerants with minimum and maximum variability compared to donor plants proved useful. The main changes that discriminate optimised conditions belonged to DNA demethylation events with particular stress on CHG context. Conclusions The combination of tissue culture-induced variation evaluated for eight experimental trials and implementation of the Taguchi method allowed the optimisation of the in vitro tissue culture conditions towards the minimum and maximum differences between a source of tissue explants (donor plant) and its regenerants from somatic embryos. The tissue culture-induced variation characteristic is mostly affected by demethylation with preferences towards CHG sequence context.
Collapse
Affiliation(s)
- Renata Orłowska
- Plant Breeding & Acclimatization Institute-National Research Institute, 05-870 Błonie, Radzików, Poland.
| |
Collapse
|
17
|
Zhang S, Zheng Y, Zhang G, Lin P, Wang W. Genomic DNA methylation analysis reveals that BLNK is a key potential gene in the regulation of autophagy-related thyroid cancer progression. Genome 2021; 64:801-812. [PMID: 33617368 DOI: 10.1139/gen-2020-0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to explore the relationship between autophagy and DNA methylation, and to identify key genes for autophagy-regulated thyroid cancer progression. We divided patients with thyroid cancer into high-autophagy score (AS) group and low-AS group based on their AS values. The results found that AS was associated with the distant metastasis of thyroid cancer, and adversely affected prognosis. Then, we screened 359 differently expressed genes (DEGs) with DNA methylation status consistent with gene expression change. Functional classification analysis demonstrated that the 359 DEGs consistent with DNA methylation status were significantly involved in adhesion, migration, and differentiation of immune cells. To further screen the key genes in the autophagy-related thyroid cancer progression, we constructed a protein-protein interactions (PPI) network and performed prognostic analysis. B cell linker (BLNK) was identified as the key potential gene affecting autophagy-related thyroid cancer progression. Finally, we verified that BLNK promoted the proliferation of thyroid cancer cells, and BLNK expression was regulated by DNA methylation. Our research provides a new perspective for exploring the relationship between autophagy and DNA methylation during the progression of thyroid cancer and provides a new target for the treatment of metastatic thyroid cancer.
Collapse
Affiliation(s)
- Shengchi Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Yongzhe Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Guimin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Peng Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| |
Collapse
|
18
|
Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response. Int J Mol Sci 2021; 22:ijms22042013. [PMID: 33670556 PMCID: PMC7922328 DOI: 10.3390/ijms22042013] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023] Open
Abstract
Sessile plants are exposed throughout their existence to environmental abiotic and biotic stress factors, such as cold, heat, salinity, drought, dehydration, submergence, waterlogging, and pathogen infection. Chromatin organization affects genome stability, and its dynamics are crucial in plant stress responses. Chromatin dynamics are epigenetically regulated and are required for stress-induced transcriptional regulation or reprogramming. Epigenetic regulators facilitate the phenotypic plasticity of development and the survival and reproduction of plants in unfavorable environments, and they are highly diversified, including histone and DNA modifiers, histone variants, chromatin remodelers, and regulatory non-coding RNAs. They contribute to chromatin modifications, remodeling and dynamics, and constitute a multilayered and multifaceted circuitry for sophisticated and robust epigenetic regulation of plant stress responses. However, this complicated epigenetic regulatory circuitry creates challenges for elucidating the common or differential roles of chromatin modifications for transcriptional regulation or reprogramming in different plant stress responses. Particularly, interacting chromatin modifications and heritable stress memories are difficult to identify in the aspect of chromatin-based epigenetic regulation of transcriptional reprogramming and memory. Therefore, this review discusses the recent updates from the three perspectives—stress specificity or dependence of transcriptional reprogramming, the interplay of chromatin modifications, and transcriptional stress memory in plants. This helps solidify our knowledge on chromatin-based transcriptional reprogramming for plant stress response and memory.
Collapse
|
19
|
Nai YS, Huang YC, Yen MR, Chen PY. Diversity of Fungal DNA Methyltransferases and Their Association With DNA Methylation Patterns. Front Microbiol 2021; 11:616922. [PMID: 33552027 PMCID: PMC7862722 DOI: 10.3389/fmicb.2020.616922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022] Open
Abstract
DNA methyltransferases (DNMTs) are a group of proteins that catalyze DNA methylation by transferring a methyl group to DNA. The genetic variation in DNMTs results in differential DNA methylation patterns associated with various biological processes. In fungal species, DNMTs and their DNA methylation profiles were found to be very diverse and have gained many research interests. We reviewed fungal DNMTs in terms of their biological functions, protein domain structures, and their associated epigenetic regulations compared to those known in plant and animal systems. In addition, we summarized recent reports on potential RNA-directed DNA methylation (RdDM) related to DNMT5 in fungi. We surveyed up to 40 fungal species with published genome-wide DNA methylation profiles (methylomes) and presented the associations between the specific patterns of fungal DNA methylation and their DNMTs based on a phylogenetic tree of protein domain structures. For example, the main DNMTs in Basidiomycota, DNMT1 with RFD domain + DNMT5, contributing to CG methylation preference, were distinct from RID + Dim-2 in Ascomycota, resulting in a non-CG methylation preference. Lastly, we revealed that the dynamic methylation involved in fungal life stage changes was particularly low in mycelium and DNA methylation was preferentially located in transposable elements (TEs). This review comprehensively discussed fungal DNMTs and methylomes and their connection with fungal development and taxonomy to present the diverse usages of DNA methylation in fungal genomes.
Collapse
Affiliation(s)
- Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan.,Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan.,Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
To TK, Nishizawa Y, Inagaki S, Tarutani Y, Tominaga S, Toyoda A, Fujiyama A, Berger F, Kakutani T. RNA interference-independent reprogramming of DNA methylation in Arabidopsis. NATURE PLANTS 2020; 6:1455-1467. [PMID: 33257860 DOI: 10.1038/s41477-020-00810-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
DNA methylation is important for silencing transposable elements (TEs) in diverse eukaryotes, including plants. In plant genomes, TEs are silenced by methylation of histone H3 lysine 9 (H3K9) and cytosines in both CG and non-CG contexts. The role of RNA interference (RNAi) in establishing TE-specific silent marks has been extensively studied, but the importance of RNAi-independent pathways remains largely unexplored. Here, we directly investigated transgenerational de novo DNA methylation of TEs after the loss of silent marks. Our analyses uncovered potent and precise RNAi-independent pathways for recovering non-CG methylation and H3K9 methylation in most TE genes (that is, coding regions within TEs). Characterization of a subset of TE genes without the recovery revealed the effects of H3K9 demethylation, replacement of histone H2A variants and their interaction with CG methylation, together with feedback from transcription. These chromatin components are conserved among eukaryotes and may contribute to chromatin reprogramming in a conserved manner.
Collapse
Affiliation(s)
- Taiko Kim To
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yuichiro Nishizawa
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Soichi Inagaki
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Department of Integrated Genetics, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan
- PREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Yoshiaki Tarutani
- Department of Integrated Genetics, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan
| | - Sayaka Tominaga
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Toyoda
- Center for Genetic Resource Information, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Center for Genetic Resource Information, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Tetsuji Kakutani
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
- Department of Integrated Genetics, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan.
| |
Collapse
|
21
|
da Silva MF, Gonçalves MC, Brito MDS, Medeiros CN, Harakava R, Landell MGDA, Pinto LR. Sugarcane mosaic virus mediated changes in cytosine methylation pattern and differentially transcribed fragments in resistance-contrasting sugarcane genotypes. PLoS One 2020; 15:e0241493. [PMID: 33166323 PMCID: PMC7652275 DOI: 10.1371/journal.pone.0241493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Sugarcane mosaic virus (SCMV) is the causal agent of sugarcane mosaic disease (SMD) in Brazil; it is mainly controlled by using resistant cultivars. Studies on the changes in sugarcane transcriptome provided the first insights about the molecular basis underlying the genetic resistance to SMD; nonetheless, epigenetic modifications such as cytosine methylation is also informative, considering its roles in gene expression regulation. In our previous study, differentially transcribed fragments (DTFs) were obtained using cDNA-amplified fragment length polymorphism by comparing mock- and SCMV-inoculated plants from two sugarcane cultivars with contrasting responses to SMD. In this study, the identification of unexplored DTFs was continued while the same leaf samples were used to evaluate SCMV-mediated changes in the cytosine methylation pattern by using methylation-sensitive amplification polymorphism. This analysis revealed minor changes in cytosine methylation in response to SCMV infection, but distinct changes between the cultivars with contrasting responses to SMD, with higher hypomethylation events 24 and 72 h post-inoculation in the resistant cultivar. The differentially methylated fragments (DMFs) aligned with transcripts, putative promoters, and genomic regions, with a preponderant distribution within CpG islands. The transcripts found were associated with plant immunity and other stress responses, epigenetic changes, and transposable elements. The DTFs aligned with transcripts assigned to stress responses, epigenetic changes, photosynthesis, lipid transport, and oxidoreductases, in which the transcriptional start site is located in proximity with CpG islands and tandem repeats. Real-time quantitative polymerase chain reaction results revealed significant upregulation in the resistant cultivar of aspartyl protease and VQ protein, respectively, selected from DMF and DTF alignments, suggesting their roles in genetic resistance to SMD and supporting the influence of cytosine methylation in gene expression. Thus, we identified new candidate genes for further validation and showed that the changes in cytosine methylation may regulate important mechanisms underlying the genetic resistance to SMD.
Collapse
Affiliation(s)
- Marcel Fernando da Silva
- Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV) Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | | | - Michael dos Santos Brito
- Departamento de Ciência e Tecnologia, Instituto de Ciência e Tecnologia da Universidade Federal de São Paulo, São José dos Campos, São Paulo, Brazil
| | | | - Ricardo Harakava
- Crop Protection Research Centre, Instituto Biológico, São Paulo, Brazil
| | | | | |
Collapse
|
22
|
Leone M, Zavallo D, Venturuzzi A, Asurmendi S. RdDM pathway components differentially modulate Tobamovirus symptom development. PLANT MOLECULAR BIOLOGY 2020; 104:467-481. [PMID: 32813230 DOI: 10.1007/s11103-020-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The crop yield losses induced by phytoviruses are mainly associated with the symptoms of the disease. DNA modifications as methylation can modulate the information coded by the sequence, process named epigenetics. Viral infection can change the expression patterns of different genes linked to defenses and symptoms. This work represents the initial step to expose the role of epigenetic process, in the production of symptoms associated with plants-virus interactions. Small RNAs (sRNAs) are important molecules for gene regulation in plants and play an essential role in plant-pathogen interactions. Researchers have evaluated the relationship between viral infections as well as the endogenous accumulation of sRNAs and the transcriptional changes associated with the production of symptoms, but little is known about a possible direct role of epigenetics, mediated by 24-nt sRNAs, in the induction of these symptoms. Using different RNA directed DNA methylation (RdDM) pathway mutants and a triple demethylase mutant; here we demonstrate that the disruption of RdDM pathway during viral infection produce alterations in the plant transcriptome and in consequence changes in plant symptoms. This study represents the initial step in exposing that DNA methylation directed by endogenous sRNAs has an important role, uncoupled to defense, in the production of symptoms associated with plant-virus interactions.
Collapse
Affiliation(s)
- Melisa Leone
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De Los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Buenos Aires, Argentina
| | - Diego Zavallo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De Los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina
| | - Andrea Venturuzzi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De Los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De Los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Comparative Study of Pine Reference Genomes Reveals Transposable Element Interconnected Gene Networks. Genes (Basel) 2020; 11:genes11101216. [PMID: 33081418 PMCID: PMC7602945 DOI: 10.3390/genes11101216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing the giga-genomes of several pine species has enabled comparative genomic analyses of these outcrossing tree species. Previous studies have revealed the wide distribution and extraordinary diversity of transposable elements (TEs) that occupy the large intergenic spaces in conifer genomes. In this study, we analyzed the distribution of TEs in gene regions of the assembled genomes of Pinus taeda and Pinus lambertiana using high-performance computing resources. The quality of draft genomes and the genome annotation have significant consequences for the investigation of TEs and these aspects are discussed. Several TE families frequently inserted into genes or their flanks were identified in both species’ genomes. Potentially important sequence motifs were identified in TEs that could bind additional regulatory factors, promoting gene network formation with faster or enhanced transcription initiation. Node genes that contain many TEs were observed in multiple potential transposable element-associated networks. This study demonstrated the increased accumulation of TEs in the introns of stress-responsive genes of pines and suggests the possibility of rewiring them into responsive networks and sub-networks interconnected with node genes containing multiple TEs. Many such regulatory influences could lead to the adaptive environmental response clines that are characteristic of naturally spread pine populations.
Collapse
|
24
|
Grzybkowska D, Nowak K, Gaj MD. Hypermethylation of Auxin-Responsive Motifs in the Promoters of the Transcription Factor Genes Accompanies the Somatic Embryogenesis Induction in Arabidopsis. Int J Mol Sci 2020; 21:E6849. [PMID: 32961931 PMCID: PMC7555384 DOI: 10.3390/ijms21186849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
The auxin-induced embryogenic reprogramming of plant somatic cells is associated with extensive modulation of the gene expression in which epigenetic modifications, including DNA methylation, seem to play a crucial role. However, the function of DNA methylation, including the role of auxin in epigenetic regulation of the SE-controlling genes, remains poorly understood. Hence, in the present study, we analysed the expression and methylation of the TF genes that play a critical regulatory role during SE induction (LEC1, LEC2, BBM, WUS and AGL15) in auxin-treated explants of Arabidopsis. The results showed that auxin treatment substantially affected both the expression and methylation patterns of the SE-involved TF genes in a concentration-dependent manner. The auxin treatment differentially modulated the methylation of the promoter (P) and gene body (GB) sequences of the SE-involved genes. Relevantly, the SE-effective auxin treatment (5.0 µM of 2,4-D) was associated with the stable hypermethylation of the P regions of the SE-involved genes and a significantly higher methylation of the P than the GB fragments was a characteristic feature of the embryogenic culture. The presence of auxin-responsive (AuxRE) motifs in the hypermethylated P regions suggests that auxin might substantially contribute to the DNA methylation-mediated control of the SE-involved genes.
Collapse
Affiliation(s)
| | | | - Małgorzata D. Gaj
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (D.G.); (K.N.)
| |
Collapse
|
25
|
Rambani A, Pantalone V, Yang S, Rice JH, Song Q, Mazarei M, Arelli PR, Meksem K, Stewart CN, Hewezi T. Identification of introduced and stably inherited DNA methylation variants in soybean associated with soybean cyst nematode parasitism. THE NEW PHYTOLOGIST 2020; 227:168-184. [PMID: 32112408 DOI: 10.1111/nph.16511] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
DNA methylation is a widespread epigenetic mark that contributes to transcriptome reprogramming during plant-pathogen interactions. However, the distinct role of DNA methylation in establishing resistant and susceptible responses remains largely unexplored. Here, we developed and used a pair of near-isogenic lines (NILs) to characterize DNA methylome landscapes of soybean roots during the susceptible and resistant interactions with soybean cyst nematode (SCN; Heterodera glycines). We also compared the methylomes of the NILs and their parents to identify introduced and stably inherited methylation variants. The genomes of the NILs were substantially differentially methylated under uninfected conditions. This difference was associated with differential gene expression that may prime the NIL responses to SCN infection. In response to SCN infection, the susceptible line exhibited reduced global methylation levels in both protein-coding genes and transposable elements, whereas the resistant line showed the opposite response, increased global methylation levels. Heritable and novel nonparental differentially methylated regions overlapping with genes associated with soybean response to SCN infection were identified and validated using transgenic hairy root system. Our analyses indicate that DNA methylation patterns associated with the susceptible and resistant interactions are highly specific and that novel and stably inherited methylation variants are of biological significance.
Collapse
Affiliation(s)
- Aditi Rambani
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Songnan Yang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - J Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
26
|
Martins AA, da Silva MF, Pinto LR. Epigenetic diversity of Saccharum spp. accessions assessed by methylation-sensitive amplification polymorphism (MSAP). 3 Biotech 2020; 10:265. [PMID: 32509498 DOI: 10.1007/s13205-020-02257-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/13/2020] [Indexed: 01/15/2023] Open
Abstract
The epigenetic diversity of six genotype groups (commercial cultivars, S. officinarum, S. spontaneum, S. robustum, S. barberi, and Erianthus sp.) was assessed through methylation-sensitive amplification polymorphism (MSAP). A total of 1341 MSAP loci were analyzed, of which 1117 (83.29%) were susceptible to cytosine methylation and responsible for a higher proportion of overall diversity among genotypes. The MSAP selective primer combinations captured different proportions of internal and external cytosine methylation loci across genotype groups, while the average external cytosine frequency was higher for all genotype groups. The genotypes were divided into two subpopulations with a high differentiation index (φst = 0.086) based on epigenetic loci. The genotypes were clustered in three subgroups for both methylated and unmethylated loci, considering dissimilarity values. Four methylated fragments (MFs) were randomly selected and subsequently sequenced and compared with sugarcane public databases using BLASTN. MF alignments suggest that cytosine methylation occurs in sugarcane near CpG islands and tandem repeats within transcribed regions and putative cis-regulatory sequences, which assigned functions are associated with stress adaptation. These results provide the first insights about the distribution of this epigenetic mark in sugarcane genome, and suggest a biological relevance of methylated loci.
Collapse
Affiliation(s)
| | - Marcel F da Silva
- Instituto Agronômico, Centro de Cana, CP 206, Ribeirão Preto, SP CEP 14001‑970 Brazil
| | - Luciana Rossini Pinto
- Instituto Agronômico, Centro de Cana, CP 206, Ribeirão Preto, SP CEP 14001‑970 Brazil
| |
Collapse
|
27
|
Xing L, Qi S, Zhou H, Zhang W, Zhang C, Ma W, Zhang Q, Shah K, Han M, Zhao J. Epigenomic Regulatory Mechanism in Vegetative Phase Transition of Malus hupehensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4812-4829. [PMID: 32227940 DOI: 10.1021/acs.jafc.0c00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In woody plants, phase transitions substantially affect growth and development. Although there has been considerable interest in the regulatory mechanisms underlying phase changes, the associated epigenetic modifications remain relatively uncharacterized. We examined the DNA methylation changes and the transcriptional responses in adult and juvenile Malus hupehensis leaves. The DNA methylations were 66.61% and 68.3% in the CG context, 49.12% and 52.44% in the CHG context, and 7.02% and 8.22% in the CHH context for the adult and juvenile leaves, respectively. The number of differentially methylated regions in all contexts distributed in the genic regions varied. Additionally, inhibited DNA methylation in adult leaves activated the transcription of indole-3-acetic acid related genes in the signaling, response, and transport pathways. Moreover, the opposite methylation and expression patterns were observed for the SPL and AP2 family genes between the adult and juvenile leaves. Both gene families contribute to the M. hupehensis vegetative phase transition. Furthermore, the hyper-/hypomethylation of the gene body or promoter of transcription factor genes may lead to up-/downregulated gene expression. The methylation levels of the WRKY (22), NAC (21), ERF (8), WOX (2), KNAT (6), EIN3 (2), SCL (7), ZAT (7), and HSF (4) genes were higher in the adult leaves than in the juvenile leaves, whereas the opposite pattern was observed for the TCP (2), MADS-box (11), and DOF (3) genes. An analysis of the correlation between methylation and transcription indicated the methylation of the gene body in all contexts and the methylation of the promoter in the CG and CHG contexts are negatively correlated with gene expression. However, the methylation of the promoter in the CHH context is positively correlated with gene expression. These findings reflect the diversity in the epigenetic regulation of gene expression and may be useful for elucidating the epigenetic regulatory mechanism underlying the M. hupehensis vegetative phase transition.
Collapse
Affiliation(s)
- Libo Xing
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Yangling, Shaanxi, People's Republic of China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Hua Zhou
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Wei Zhang
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Chenguang Zhang
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Wenchun Ma
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Qingwei Zhang
- College of Life Science, Southwest University, Chongqing, People's Republic of China
| | - Kamran Shah
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Juan Zhao
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Yangling, Shaanxi, People's Republic of China
- College of Mechanical and Electronic Engineering, Northwest A & F University, 712100 Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
28
|
Su SY, Lu IH, Cheng WC, Chung WC, Chen PY, Ho JM, Chen SH, Lin CY. EpiMOLAS: an intuitive web-based framework for genome-wide DNA methylation analysis. BMC Genomics 2020; 21:163. [PMID: 32241255 PMCID: PMC7114791 DOI: 10.1186/s12864-019-6404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation is a crucial epigenomic mechanism in various biological processes. Using whole-genome bisulfite sequencing (WGBS) technology, methylated cytosine sites can be revealed at the single nucleotide level. However, the WGBS data analysis process is usually complicated and challenging. RESULTS To alleviate the associated difficulties, we integrated the WGBS data processing steps and downstream analysis into a two-phase approach. First, we set up the required tools in Galaxy and developed workflows to calculate the methylation level from raw WGBS data and generate a methylation status summary, the mtable. This computation environment is wrapped into the Docker container image DocMethyl, which allows users to rapidly deploy an executable environment without tedious software installation and library dependency problems. Next, the mtable files were uploaded to the web server EpiMOLAS_web to link with the gene annotation databases that enable rapid data retrieval and analyses. CONCLUSION To our knowledge, the EpiMOLAS framework, consisting of DocMethyl and EpiMOLAS_web, is the first approach to include containerization technology and a web-based system for WGBS data analysis from raw data processing to downstream analysis. EpiMOLAS will help users cope with their WGBS data and also conduct reproducible analyses of publicly available data, thereby gaining insights into the mechanisms underlying complex biological phenomenon. The Galaxy Docker image DocMethyl is available at https://hub.docker.com/r/lsbnb/docmethyl/. EpiMOLAS_web is publicly accessible at http://symbiosis.iis.sinica.edu.tw/epimolas/.
Collapse
Affiliation(s)
- Sheng-Yao Su
- Taiwan International Graduate Program (TIGP) on Bioinformatics, Academia Sinica, Taipei, Taiwan
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - I-Hsuan Lu
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Wen-Chih Cheng
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan Miaoli, Taiwan
| | - Wei-Chun Chung
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Jan-Ming Ho
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Shu-Hwa Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan Miaoli, Taiwan
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
29
|
Espinas NA, Tu LN, Furci L, Shimajiri Y, Harukawa Y, Miura S, Takuno S, Saze H. Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. PLoS Genet 2020; 16:e1008637. [PMID: 32187179 PMCID: PMC7145194 DOI: 10.1371/journal.pgen.1008637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 04/09/2020] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Intronic regions of eukaryotic genomes accumulate many Transposable Elements (TEs). Intronic TEs often trigger the formation of transcriptionally repressive heterochromatin, even within transcription-permissive chromatin environments. Although TE-bearing introns are widely observed in eukaryotic genomes, their epigenetic states, impacts on gene regulation and function, and their contributions to genetic diversity and evolution, remain poorly understood. In this study, we investigated the genome-wide distribution of intronic TEs and their epigenetic states in the Oryza sativa genome, where TEs comprise 35% of the genome. We found that over 10% of rice genes contain intronic heterochromatin, most of which are associated with TEs and repetitive sequences. These heterochromatic introns are longer and highly enriched in promoter-proximal positions. On the other hand, introns also accumulate hypomethylated short TEs. Genes with heterochromatic introns are implicated in various biological functions. Transcription of genes bearing intronic heterochromatin is regulated by an epigenetic mechanism involving the conserved factor OsIBM2, mutation of which results in severe developmental and reproductive defects. Furthermore, we found that heterochromatic introns evolve rapidly compared to non-heterochromatic introns. Our study demonstrates that heterochromatin is a common epigenetic feature associated with actively transcribed genes in the rice genome.
Collapse
Affiliation(s)
- Nino A. Espinas
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama city, Kanagawa, Japan
| | - Le Ngoc Tu
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Leonardo Furci
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Yasuka Shimajiri
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- EditForce, Fukuoka, Japan
| | - Yoshiko Harukawa
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Saori Miura
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
30
|
Zhao H, Zhang W, Zhang T, Lin Y, Hu Y, Fang C, Jiang J. Genome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in Arabidopsis thaliana. Genome Biol 2020; 21:24. [PMID: 32014062 PMCID: PMC6996174 DOI: 10.1186/s13059-020-1927-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Regulation of transcription depends on interactions between cis-regulatory elements (CREs) and regulatory proteins. Active CREs are imbedded in open chromatin that are accessible to nucleases. Several techniques, including DNase-seq, which is based on nuclease DNase I, and ATAC-seq, which is based on transposase Tn5, have been widely used to identify genomic regions associated with open chromatin. These techniques have played a key role in dissecting the regulatory networks in gene expression in both animal and plant species. RESULTS We develop a technique, named MNase hypersensitivity sequencing (MH-seq), to identify genomic regions associated with open chromatin in Arabidopsis thaliana. Genomic regions enriched with MH-seq reads are referred as MNase hypersensitive sites (MHSs). MHSs overlap with the majority (~ 90%) of the open chromatin identified previously by DNase-seq and ATAC-seq. Surprisingly, 22% MHSs are not covered by DNase-seq or ATAC-seq reads, which are referred to "specific MHSs" (sMHSs). sMHSs tend to be located away from promoters, and a substantial portion of sMHSs are derived from transposable elements. Most interestingly, genomic regions containing sMHSs are enriched with epigenetic marks, including H3K27me3 and DNA methylation. In addition, sMHSs show a number of distinct characteristics including association with transcriptional repressors. Thus, sMHSs span distinct classes of open chromatin that may not be accessible to DNase I or Tn5. We hypothesize that the small size of the MNase enzyme relative to DNase I or Tn5 allows its access to relatively more condensed chromatin domains. CONCLUSION MNase can be used to identify open chromatin regions that are not accessible to DNase I or Tn5. Thus, MH-seq provides an important tool to identify and catalog all classes of open chromatin in plants.
Collapse
Affiliation(s)
- Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Wenli Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, 210095, Jiangsu, China.
| | - Tao Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yuan Lin
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Yaodong Hu
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.
| |
Collapse
|
31
|
DNA Methylation and Histone H1 Jointly Repress Transposable Elements and Aberrant Intragenic Transcripts. Mol Cell 2020; 77:310-323.e7. [DOI: 10.1016/j.molcel.2019.10.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/26/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
|
32
|
McCahill IW, Hazen SP. Regulation of Cell Wall Thickening by a Medley of Mechanisms. TRENDS IN PLANT SCIENCE 2019; 24:853-866. [PMID: 31255545 DOI: 10.1016/j.tplants.2019.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 05/08/2023]
Abstract
To provide physical support for developing structures and to withstand the pressures associated with water and nutrient transport, some cells deposit a secondary cell wall, a rigid matrix of polysaccharide and phenolic biopolymers. The biosynthesis and deposition of these materials and the patterning of secondary wall-forming cells is controlled by a network of transcription factors. However, recent work suggests that this network forms the core of a more complex, multilevel regulatory system. This expanded system includes epigenetic, post-transcriptional, and post-translational regulation, and is coordinated with other pathways controlling primary growth and responses to environmental stimuli. New findings expand the set of transcription factors identified as secondary cell wall regulators and reveal novel regulatory processes that further govern secondary wall biogenesis.
Collapse
Affiliation(s)
- Ian W McCahill
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Samuel P Hazen
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
33
|
Molecular programs underlying differences in the expression of mood disorders in males and females. Brain Res 2019; 1719:89-103. [DOI: 10.1016/j.brainres.2019.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/20/2019] [Accepted: 05/13/2019] [Indexed: 01/13/2023]
|
34
|
Potential of epigenetic events in human thyroid cancer. Cancer Genet 2019; 239:13-21. [PMID: 31472323 DOI: 10.1016/j.cancergen.2019.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/27/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Thyroid cancer remains the highest prevailing endocrine malignancy, and its incidence rate has progressively increased in the previous years. Above 95% of thyroid tumor are follicular cells types of carcinoma in which are considered invasive type of tumor. The pathogenesis and molecular mechanism of thyroid tumors are yet remains elucidated, in spite of activating RET, RAS and BRAF carcinogenesis have been well introduced. Nemours molecular alterations have been defined and have revealed promise for their diagnostic, prognostic and therapeutic capacity but still need further confirmation. Among different types of mechanisms, the current article reviews the importance of epigenetic modifications in thyroid cancer. Increasing data from previous reports demonstrate that acquired epigenetic abnormalities together with genetic changes plays an important role in alteration of gene expression patterns. Aberrant DNA methylation has been well known in the CpG regions and profile of microRNAs (mi-RNAs) expression also involved in cancer development. In addition, the gene expression through epigenetic control contribution to thyroid cancer is analyzed and it is semi considered in the clinic. However the epigenetic of the thyroid cancer is yet remains in its early stages, and it carries encouraging potential thyroid cancer detections in its early stages, assessment of prognosis and targeted cancer treatment.
Collapse
|
35
|
Xing L, Li Y, Qi S, Zhang C, Ma W, Zuo X, Liang J, Gao C, Jia P, Shah K, Zhang D, An N, Zhao C, Han M, Zhao J. Comparative RNA-Sequencing and DNA Methylation Analyses of Apple (Malus domestica Borkh.) Buds with Diverse Flowering Capabilities Reveal Novel Insights into the Regulatory Mechanisms of Flower Bud Formation. PLANT & CELL PHYSIOLOGY 2019; 60:1702-1721. [PMID: 31077318 DOI: 10.1093/pcp/pcz080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
In plants, DNA methylation (i.e. chromatin modification) is important for various biological processes, including growth, development and flowering. Because 'Fuji' apple trees are alternate bearing and have a long ripening period and poor-quality flower buds, we used bud types with diverse flowering capabilities to investigate the epigenetic regulatory mechanisms influencing flower bud formation. We examined the DNA methylation changes and the transcriptional responses in the selected apple bud types. We observed that in the apple genome, approximately 79.5%, 67.4% and 23.7% of the CG, CHG and CHH sequences are methylated, respectively. For each sequence context, differentially methylated regions exhibited distinct methylation patterns among the analyzed apple bud types. Global methylation and transcriptional analyses revealed that nonexpressed genes or genes expressed at low levels were highly methylated in the gene-body regions, suggesting that gene-body methylation is negatively correlated with gene expression. Moreover, genes with methylated promoters were more highly expressed than genes with unmethylated promoters, implying promoter methylation and gene expression are positively correlated. Additionally, flowering-related genes (e.g. SOC1, AP1 and SPLs) and some transcription factor genes (e.g. GATA, bHLH, bZIP and WOX) were highly expressed in spur buds (highest flowering rate), but were associated with low methylation levels in the gene-body regions. Our findings indicate a potential correlation between DNA methylation and gene expression in apple buds with diverse flowering capabilities, suggesting an epigenetic regulatory mechanism influences apple flower bud formation.
Collapse
Affiliation(s)
- Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
- Ministry of Agriculture Rural Affairs, Key Laboratory of Agricultural Internet of Things, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, Yangling, Shaanxi, P. R. China
| | - Youmei Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Chenguang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Wenchun Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiya Zuo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jiayan Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Cai Gao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Pen Jia
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Kamran Shah
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Juan Zhao
- Ministry of Agriculture Rural Affairs, Key Laboratory of Agricultural Internet of Things, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, Yangling, Shaanxi, P. R. China
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
36
|
Liu XS, Feng SJ, Zhang BQ, Wang MQ, Cao HW, Rono JK, Chen X, Yang ZM. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC PLANT BIOLOGY 2019; 19:283. [PMID: 31248369 PMCID: PMC6598308 DOI: 10.1186/s12870-019-1899-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/19/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Metal homeostasis is critical for plant growth, development and adaptation to environmental stresses and largely governed by a variety of metal transporters. The plant ZIP (Zn-regulated transporter, Iron-regulated transporter-like Protein) family proteins belong to the integral membrane transporters responsible for uptake and allocation of essential and non-essential metals. However, whether the ZIP family members mediate metal efflux and its regulatory mechanism remains unknown. RESULTS In this report, we provided evidence that OsZIP1 is a metal-detoxified transporter through preventing excess Zn, Cu and Cd accumulation in rice. OsZIP1 is abundantly expressed in roots throughout the life span and sufficiently induced by excess Zn, Cu and Cd but not by Mn and Fe at transcriptional and translational levels. Expression of OsZIP-GFP fusion in rice protoplasts and tobacco leaves shows that OsZIP1 resides in the endoplasmic reticulum (ER) and plasma membrane (PM). The yeast (Saccharomyces cerevisiae) complementation test shows that expression of OsZIP1 reduced Zn accumulation. Transgenic rice overexpressing OsZIP1 grew better under excess metal stress but accumulated less of the metals in plants. In contrast, both oszip1 mutant and RNA interference (RNAi) lines accumulated more metal in roots and contributed to metal sensitive phenotypes. These results suggest OsZIP1 is able to function as a metal exporter in rice when Zn, Cu and Cd are excess in environment. We further identified the DNA methylation of histone H3K9me2 of OsZIP1 and found that OsZIP1 locus, whose transcribed regions imbed a 242 bp sequence, is demethylated, suggesting that epigenetic modification is likely associated with OsZIP1 function under Cd stress. CONCLUSION OsZIP1 is a transporter that is required for detoxification of excess Zn, Cu and Cd in rice.
Collapse
Affiliation(s)
- Xue Song Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095 China
- Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture & Forestry University, Hangzhou, 311300 China
| | - Bai Qing Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Meng Qi Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hong Wei Cao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Justice Kipkoir Rono
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xi Chen
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
37
|
Jiang J, Ma J, Liu B, Wang Y. Combining a Simple Method for DNA/RNA/Protein Co-Purification and Arabidopsis Protoplast Assay to Facilitate Viroid Research. Viruses 2019; 11:v11040324. [PMID: 30987196 PMCID: PMC6521142 DOI: 10.3390/v11040324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Plant–viroid interactions represent a valuable model for delineating structure–function relationships of noncoding RNAs. For various functional studies, it is desirable to minimize sample variations by using DNA, RNA, and proteins co-purified from the same samples. Currently, most of the co-purification protocols rely on TRI Reagent (Trizol as a common representative) and require protein precipitation and dissolving steps, which render difficulties in experimental handling and high-throughput analyses. Here, we established a simple and robust method to minimize the precipitation steps and yield ready-to-use RNA and protein in solutions. This method can be applied to samples in small quantities, such as protoplasts. Given the ease and the robustness of this new method, it will have broad applications in virology and other disciplines in molecular biology.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Junfei Ma
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Bin Liu
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| |
Collapse
|
38
|
Hobza R, Hudzieczek V, Kubat Z, Cegan R, Vyskot B, Kejnovsky E, Janousek B. Sex and the flower - developmental aspects of sex chromosome evolution. ANNALS OF BOTANY 2018; 122:1085-1101. [PMID: 30032185 PMCID: PMC6324748 DOI: 10.1093/aob/mcy130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 05/07/2023]
Abstract
Background The evolution of dioecious plants is occasionally accompanied by the establishment of sex chromosomes: both XY and ZW systems have been found in plants. Structural studies of sex chromosomes are now being followed up by functional studies that are gradually shedding light on the specific genetic and epigenetic processes that shape the development of separate sexes in plants. Scope This review describes sex determination diversity in plants and the genetic background of dioecy, summarizes recent progress in the investigation of both classical and emerging model dioecious plants and discusses novel findings. The advantages of interspecies hybrids in studies focused on sex determination and the role of epigenetic processes in sexual development are also overviewed. Conclusions We integrate the genic, genomic and epigenetic levels of sex determination and stress the impact of sex chromosome evolution on structural and functional aspects of plant sexual development. We also discuss the impact of dioecy and sex chromosomes on genome structure and expression.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Vojtech Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| |
Collapse
|
39
|
Duan CG, Zhu JK, Cao X. Retrospective and perspective of plant epigenetics in China. J Genet Genomics 2018; 45:621-638. [PMID: 30455036 DOI: 10.1016/j.jgg.2018.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 01/21/2023]
Abstract
Epigenetics refers to the study of heritable changes in gene function that do not involve changes in the DNA sequence. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors or be part of normal developmental program. In eukaryotes, DNA wraps on a histone octamer (two copies of H2A, H2B, H3 and H4) to form nucleosome, the fundamental unit of chromatin. The structure of chromatin is subjected to a dynamic regulation through multiple epigenetic mechanisms, including DNA methylation, histone posttranslational modifications (PTMs), chromatin remodeling and noncoding RNAs. As conserved regulatory mechanisms in gene expression, epigenetic mechanisms participate in almost all the important biological processes ranging from basal development to environmental response. Importantly, all of the major epigenetic mechanisms in mammalians also occur in plants. Plant studies have provided numerous important contributions to the epigenetic research. For example, gene imprinting, a mechanism of parental allele-specific gene expression, was firstly observed in maize; evidence of paramutation, an epigenetic phenomenon that one allele acts in a single locus to induce a heritable change in the other allele, was firstly reported in maize and tomato. Moreover, some unique epigenetic mechanisms have been evolved in plants. For example, the 24-nt siRNA-involved RNA-directed DNA methylation (RdDM) pathway is plant-specific because of the involvements of two plant-specific DNA-dependent RNA polymerases, Pol IV and Pol V. A thorough study of epigenetic mechanisms is of great significance to improve crop agronomic traits and environmental adaptability. In this review, we make a brief summary of important progress achieved in plant epigenetics field in China over the past several decades and give a brief outlook on future research prospects. We focus our review on DNA methylation and histone PTMs, the two most important aspects of epigenetic mechanisms.
Collapse
Affiliation(s)
- Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
40
|
Richard MMS, Gratias A, Thareau V, Kim KD, Balzergue S, Joets J, Jackson SA, Geffroy V. Genomic and epigenomic immunity in common bean: the unusual features of NB-LRR gene family. DNA Res 2018; 25:161-172. [PMID: 29149287 PMCID: PMC5909424 DOI: 10.1093/dnares/dsx046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022] Open
Abstract
In plants, a key class of genes comprising most of disease resistance (R) genes encodes Nucleotide-binding leucine-rich repeat (NL) proteins. Access to common bean (Phaseolus vulgaris) genome sequence provides unparalleled insight into the organization and evolution of this large gene family (∼400 NL) in this important crop. As observed in other plant species, most common bean NL are organized in cluster of genes. However, a particularity of common bean is that these clusters are often located in subtelomeric regions close to terminal knobs containing the satellite DNA khipu. Phylogenetically related NL are spread between different chromosome ends, suggesting frequent exchanges between non-homologous chromosomes. NL peculiar location, in proximity to heterochromatic regions, led us to study their DNA methylation status using a whole-genome cytosine methylation map. In common bean, NL genes displayed an unusual body methylation pattern since half of them are methylated in the three contexts, reminiscent of the DNA methylation pattern of repeated sequences. Moreover, 90 NL were also abundantly targeted by 24 nt siRNA, with 90% corresponding to methylated NL genes. This suggests the existence of a transcriptional gene silencing mechanism of NL through the RdDM (RNA-directed DNA methylation) pathway in common bean that has not been described in other plant species.
Collapse
Affiliation(s)
- Manon M S Richard
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| | - Ariane Gratias
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Sandrine Balzergue
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, 49071 Beaucouzé cedex, France
| | - Johann Joets
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| |
Collapse
|
41
|
El Baidouri M, Kim KD, Abernathy B, Li YH, Qiu LJ, Jackson SA. Genic C-Methylation in Soybean Is Associated with Gene Paralogs Relocated to Transposable Element-Rich Pericentromeres. MOLECULAR PLANT 2018; 11:485-495. [PMID: 29476915 DOI: 10.1016/j.molp.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Most plants are polyploid due to whole-genome duplications (WGD) and can thus have duplicated genes. Following a WGD, paralogs are often fractionated (lost) and few duplicate pairs remain. Little attention has been paid to the role of DNA methylation in the functional divergence of paralogous genes. Using high-resolution methylation maps of accessions of domesticated and wild soybean, we show that in soybean, a recent paleopolyploid with many paralogs, DNA methylation likely contributed to the elimination of genetic redundancy of polyploidy-derived gene paralogs. Transcriptionally silenced paralogs exhibit particular genomic features as they are often associated with proximal transposable elements (TEs) and are preferentially located in pericentromeres, likely due to gene movement during evolution. Additionally, we provide evidence that gene methylation associated with proximal TEs is implicated in the divergence of expression profiles between orthologous genes of wild and domesticated soybean, and within populations.
Collapse
Affiliation(s)
- Moaine El Baidouri
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA.
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA; Corporate R&D, LG Chem, LG Science Park, 30 Magokjungang 10-ro, Gangseo-gu, Seoul 07796, Republic of Korea.
| | - Brian Abernathy
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
42
|
Lafon-Placette C, Le Gac AL, Chauveau D, Segura V, Delaunay A, Lesage-Descauses MC, Hummel I, Cohen D, Jesson B, Le Thiec D, Bogeat-Triboulot MB, Brignolas F, Maury S. Changes in the epigenome and transcriptome of the poplar shoot apical meristem in response to water availability affect preferentially hormone pathways. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:537-551. [PMID: 29211860 DOI: 10.1093/jxb/erx409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/25/2017] [Indexed: 05/04/2023]
Abstract
The adaptive capacity of long-lived organisms such as trees to the predicted climate changes, including severe and successive drought episodes, will depend on the presence of genetic diversity and phenotypic plasticity. Here, the involvement of epigenetic mechanisms in phenotypic plasticity toward soil water availability was examined in Populus×euramericana. This work aimed at characterizing (i) the transcriptome plasticity, (ii) the genome-wide plasticity of DNA methylation, and (iii) the function of genes affected by a drought-rewatering cycle in the shoot apical meristem. Using microarray chips, differentially expressed genes (DEGs) and differentially methylated regions (DMRs) were identified for each water regime. The rewatering condition was associated with the highest variations of both gene expression and DNA methylation. Changes in methylation were observed particularly in the body of expressed genes and to a lesser extent in transposable elements. Together, DEGs and DMRs were significantly enriched in genes related to phytohormone metabolism or signaling pathways. Altogether, shoot apical meristem responses to changes in water availability involved coordinated variations in DNA methylation, as well as in gene expression, with a specific targeting of genes involved in hormone pathways, a factor that may enable phenotypic plasticity.
Collapse
Affiliation(s)
| | | | | | | | - Alain Delaunay
- LBLGC EA 1207, INRA, Université d'Orléans, USC 1328, France
| | | | - Irène Hummel
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | - David Cohen
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | | | - Didier Le Thiec
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | | | | | - Stéphane Maury
- LBLGC EA 1207, INRA, Université d'Orléans, USC 1328, France
| |
Collapse
|
43
|
Abstract
Our understanding of the epigenetic mechanisms that regulate gene expression has been largely increased in recent years by the development and refinement of different techniques. This has revealed that gene transcription is highly influenced by epigenetic mechanisms, i.e., those that do not involve changes in the genome sequence, but rather in nuclear architecture, chromosome conformation and histone and DNA modifications. Our understanding of how these different levels of epigenetic regulation interact with each other and with classical transcription-factor based gene regulation to influence gene transcription has just started to emerge. This review discusses the latest advances in unraveling the complex interactions between different types of epigenetic regulation and transcription factor activity, with special attention to the approaches that can be used to study these interactions.
Collapse
Affiliation(s)
- Marian Bemer
- Department of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.
| |
Collapse
|
44
|
Takuno S, Seymour DK, Gaut BS. The Evolutionary Dynamics of Orthologs That Shift in Gene Body Methylation between Arabidopsis Species. Mol Biol Evol 2017; 34:1479-1491. [PMID: 28333248 DOI: 10.1093/molbev/msx099] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA methylation labels a specific subset of genes in plant genomes. Recent work has shown that this gene-body methylation (gbM) is a conserved feature of orthologs, because highly methylated genes in one species tend to be highly methylated in another. In this study, we examined the exceptions to that rule by identifying genes that differ in gbM status between two plant species-Arabidopsis thaliana and Arabidopsis lyrata. Using Capsella grandiflora as an outgroup, we polarized the loss and gain of gbM for orthologs in the Arabidopsis lineage. Our survey identified a few hundred genes that differed between ingroup species, out of ∼9,000 orthologs. The estimated rate of gbM gain was ∼2 × 10-9 per gene per year for both ingroup taxa and was similar to the loss rate in A. lyrata. In contrast, A. thaliana had a ∼3-fold higher estimated rate of gbM loss per gene, consistent with a recent diminishment of genome size. As in previous studies, we found that body-methylated genes were expressed broadly across tissues and were also longer than other genic sets. Genes that differed in gbM status exhibited higher variance in expression between species than genes that were body-methylated in both species. Moreover, the gain of gbM in one lineage tended to be associated with an increase of expression in that lineage. The genes that varied in gbM status between species varied more significantly in length between species than other sets of genes; we hypothesize that length is a key feature in the transition between body-methylated and nonmethylated genes.
Collapse
Affiliation(s)
- Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Danelle K Seymour
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| |
Collapse
|
45
|
A protein complex regulates RNA processing of intronic heterochromatin-containing genes in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:E7377-E7384. [PMID: 28808009 DOI: 10.1073/pnas.1710683114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In several eukaryotic organisms, heterochromatin (HC) in the introns of genes can regulate RNA processing, including polyadenylation, but the mechanism underlying this regulation is poorly understood. By promoting distal polyadenylation, the bromo-adjacent homology (BAH) domain-containing and RNA recognition motif-containing protein ASI1 and the H3K9me2-binding protein EDM2 are required for the expression of functional full-length transcripts of intronic HC-containing genes in Arabidopsis Here we report that ASI1 and EDM2 form a protein complex in vivo via a bridge protein, ASI1-Immunoprecipitated Protein 1 (AIPP1), which is another RNA recognition motif-containing protein. The complex also may contain the Pol II CTD phosphatase CPL2, the plant homeodomain-containing protein AIPP2, and another BAH domain protein, AIPP3. As is the case with dysfunction of ASI1 and EDM2, dysfunction of AIPP1 impedes the use of distal polyadenylation sites at tested intronic HC-containing genes, such as the histone demethylase gene IBM1, resulting in a lack of functional full-length transcripts. A mutation in AIPP1 causes silencing of the 35S-SUC2 transgene and genome-wide CHG hypermethylation at gene body regions, consistent with the lack of full-length functional IBM1 transcripts in the mutant. Interestingly, compared with asi1, edm2, and aipp1 mutations, mutations in CPL2, AIPP2, and AIPP3 cause the opposite effects on the expression of intronic HC-containing genes and other genes, suggesting that CPL2, AIPP2, and AIPP3 may form a distinct subcomplex. These results advance our understanding of the interplay between heterochromatic epigenetic modifications and RNA processing in higher eukaryotes.
Collapse
|
46
|
Wollmann H, Stroud H, Yelagandula R, Tarutani Y, Jiang D, Jing L, Jamge B, Takeuchi H, Holec S, Nie X, Kakutani T, Jacobsen SE, Berger F. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana. Genome Biol 2017; 18:94. [PMID: 28521766 PMCID: PMC5437678 DOI: 10.1186/s13059-017-1221-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/25/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Gene bodies of vertebrates and flowering plants are occupied by the histone variant H3.3 and DNA methylation. The origin and significance of these profiles remain largely unknown. DNA methylation and H3.3 enrichment profiles over gene bodies are correlated and both have a similar dependence on gene transcription levels. This suggests a mechanistic link between H3.3 and gene body methylation. RESULTS We engineered an H3.3 knockdown in Arabidopsis thaliana and observed transcription reduction that predominantly affects genes responsive to environmental cues. When H3.3 levels are reduced, gene bodies show a loss of DNA methylation correlated with transcription levels. To study the origin of changes in DNA methylation profiles when H3.3 levels are reduced, we examined genome-wide distributions of several histone H3 marks, H2A.Z, and linker histone H1. We report that in the absence of H3.3, H1 distribution increases in gene bodies in a transcription-dependent manner. CONCLUSIONS We propose that H3.3 prevents recruitment of H1, inhibiting H1's promotion of chromatin folding that restricts access to DNA methyltransferases responsible for gene body methylation. Thus, gene body methylation is likely shaped by H3.3 dynamics in conjunction with transcriptional activity.
Collapse
Affiliation(s)
- Heike Wollmann
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Present address: Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Hume Stroud
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095, USA
| | - Ramesh Yelagandula
- Gregor Mendel Institute, Vienna Biocenter VBC, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Yoshiaki Tarutani
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Shizuoka, 411-8540, Japan
| | - Danhua Jiang
- Gregor Mendel Institute, Vienna Biocenter VBC, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Li Jing
- Gregor Mendel Institute, Vienna Biocenter VBC, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- College of Life Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District Wuhan, Hubei, 430070, China
| | - Bhagyshree Jamge
- Gregor Mendel Institute, Vienna Biocenter VBC, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Hidenori Takeuchi
- Gregor Mendel Institute, Vienna Biocenter VBC, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Sarah Holec
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Xin Nie
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Tetsuji Kakutani
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Shizuoka, 411-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Steven E Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095, USA.
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA.
| | - Frédéric Berger
- Gregor Mendel Institute, Vienna Biocenter VBC, Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
47
|
Lai YS, Zhang X, Zhang W, Shen D, Wang H, Xia Y, Qiu Y, Song J, Wang C, Li X. The association of changes in DNA methylation with temperature-dependent sex determination in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2899-2912. [PMID: 28498935 DOI: 10.1093/jxb/erx144] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/13/2017] [Indexed: 05/26/2023]
Abstract
Cucumber (Cucumis sativus L.) is characterized by its diverse and flexible sexual types. Here, we evaluated the effect of low temperature (LT) exposure on cucumber femaleness under short-day conditions. Shoot apices were subjected to whole-genome bisulfate sequencing (WGBS), mRNA-seq, and sRNA-seq. The results showed that temperature had a substantial and global impact on transposable element (TE)-related small RNA-directed DNA methylation (RdDM) mechanisms, resulting in large amounts of CHH-type cytosine demethylation. In the cucumber genome, TEs are common in regions near genes that are also subject to DNA demethylation. TE-gene interactions showed very strong reactions to LT treatment, as nearly 80% of the differentially methylated regions (DMRs) were distributed in genic regions. Demethylation near genes led to the co-ordinated expression of genes and TEs. More importantly, genome-wide de novo methylation changes also resulted in small amounts of CG- and CHG-type DMRs. Methylation changes in CG-DMRs located <600 bp from the transcription start and end sites (TSSs/TESs) negatively correlated with transcription changes in differentially expressed genes (DEGs), probably indicating epiregulation. Ethylene is called the 'sex hormone' of cucumbers. We observed the up-regulation of ethylene biosynthesis-related CsACO3 and the down-regulation of an Arabidopsis RAP2.4-like ethylene-responsive (AP2/ERF) transcription factor, demonstrating the inferred epiregulation. Our study characterized the response of the apex methylome to LT and predicted the possible epiregulation of temperature-dependent sex determination (TSD) in cucumber.
Collapse
Affiliation(s)
- Yun-Song Lai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaohui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Di Shen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yudong Xia
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Qiu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangping Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenchen Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xixiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
48
|
Dimitrova AD, Georgiev O, Mishev K, Tzvetkov S, Ananiev ED, Karagyozov L. Mapping of unmethylated sites in rDNA repeats in barley NOR deletion line. JOURNAL OF PLANT PHYSIOLOGY 2016; 205:97-104. [PMID: 27649325 DOI: 10.1016/j.jplph.2016.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
Extensive cytosine methylation is characteristic of plant rDNA. Evidence exists, however, that the active rRNA genes are less methylated. In this work we report on the mapping of unmethylated CCGG sites in Hordeum vulgare rDNA repeats by digestion with methylation sensitive restriction enzyme HpaII and indirect end-labeling of the generated fragments. For mapping we used genomic DNA from barley deletion line with a single NOR on chromosome 5H. This NOR is more active in order to compensate for the missing NOR 6H. The enhanced NOR 5H activity in the deletion mutant is not due to higher multiplicity of the rRNA genes or, as sequencing showed, to changes in the subunit structure of the intergenic spacer. The HpaII sites in barley rDNA are heavily methylated. Nevertheless, a fraction of the rDNA repeats is hypomethylated with unmethylated CCGG sites at various positions. One unmethylated CCGG sequence is close to the transcription start site, downstream of the 135bp subrepeats. Unmethylated sites are also present in the external transcribed spacer and in the genes coding mature rRNAs. The patterns of unmethylated sites in the barley deletion line and in lines with two NORs were compared. It is hypothesized that the occurrence of unmethylated sites on a fixed subset of rDNA repeats correlates with their transcriptional activity.
Collapse
Affiliation(s)
- Anna D Dimitrova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.
| | - Oleg Georgiev
- Institute of Molecular Life Sciences, University Zurich-Irchel, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| | - Kiril Mishev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Stefan Tzvetkov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Evgueni D Ananiev
- Department of Plant Physiology, Faculty of Biology, St. Kl. Ohridsky University of Sofia, 8 Dragan Tsankov bld., 1164 Sofia, Bulgaria
| | - Luchezar Karagyozov
- Department of Plant Physiology, Faculty of Biology, St. Kl. Ohridsky University of Sofia, 8 Dragan Tsankov bld., 1164 Sofia, Bulgaria
| |
Collapse
|
49
|
Asensi-Fabado MA, Amtmann A, Perrella G. Plant responses to abiotic stress: The chromatin context of transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:106-122. [PMID: 27487458 DOI: 10.1016/j.bbagrm.2016.07.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/09/2016] [Accepted: 07/26/2016] [Indexed: 12/29/2022]
Abstract
The ability of plants to cope with abiotic environmental stresses such as drought, salinity, heat, cold or flooding relies on flexible mechanisms for re-programming gene expression. Over recent years it has become apparent that transcriptional regulation needs to be understood within its structural context. Chromatin, the assembly of DNA with histone proteins, generates a local higher-order structure that impacts on the accessibility and effectiveness of the transcriptional machinery, as well as providing a hub for multiple protein interactions. Several studies have shown that chromatin features such as histone variants and post-translational histone modifications are altered by environmental stress, and they could therefore be primary stress targets that initiate transcriptional stress responses. Alternatively, they could act downstream of stress-induced transcription factors as an integral part of transcriptional activity. A few experimental studies have addressed this 'chicken-and-egg' problem in plants and other systems, but to date the causal relationship between dynamic chromatin changes and transcriptional responses under stress is still unclear. In this review we have collated the existing information on concurrent epigenetic and transcriptional responses of plants to abiotic stress, and we have assessed the evidence using a simple theoretical framework of causality scenarios. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Anna Amtmann
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow, G128QQ, UK
| | - Giorgio Perrella
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow, G128QQ, UK.
| |
Collapse
|
50
|
Affiliation(s)
- Anna Amtmann
- Institute of Molecular, Cell and Systems Biology College of Medical, Veterinary and Life Sciences University of Glasgow Glasgow G12 8QQ United Kingdom
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development School of Life Sciences Fudan University Shanghai 200438, China
| | - Doris Wagner
- Department of Biology University of Pennsylvania Philadelphia, PA 19104
| |
Collapse
|