1
|
Chen PY, Nguyen TTT, Lee RH, Hsu TW, Kao MH, Gojobori T, Chiang TY, Huang CL. Genome-wide expression analysis of vegetative organs during developmental and herbicide-induced whole plant senescence in Arabidopsis thaliana. BMC Genomics 2024; 25:621. [PMID: 38898417 PMCID: PMC11188203 DOI: 10.1186/s12864-024-10518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Whole plant senescence represents the final stage in the life cycle of annual plants, characterized by the decomposition of aging organs and transfer of nutrients to seeds, thereby ensuring the survival of next generation. However, the transcriptomic profile of vegetative organs during this death process remains to be fully elucidated, especially regarding the distinctions between natural programmed death and artificial sudden death induced by herbicide. RESULTS Differential genes expression analysis using RNA-seq in leaves and roots of Arabidopsis thaliana revealed that natural senescence commenced in leaves at 45-52 days after planting, followed by roots initiated at 52-60 days. Additionally, both organs exhibited similarities with artificially induced senescence by glyphosate. Transcription factors Rap2.6L and WKRY75 appeared to serve as central mediators of regulatory changes during natural senescence, as indicated by co-expression networks. Furthermore, the upregulation of RRTF1, exclusively observed during natural death, suggested its role as a regulator of jasmonic acid and reactive oxygen species (ROS) responses, potentially triggering nitrogen recycling in leaves, such as the glutamate dehydrogenase (GDH) shunt. Root senescence was characterized by the activation of AMT2;1 and GLN1;3, facilitating ammonium availability for root-to-shoot translocation, likely under the regulation of PDF2.1. CONCLUSIONS Our study offers valuable insights into the transcriptomic interplay between phytohormones and ROS during whole plant senescence. We observed distinct regulatory networks governing nitrogen utilization in leaf and root senescence processes. Furthermore, the efficient allocation of energy from vegetative organs to seeds emerges as a critical determinant of population sustainability of annual Arabidopsis.
Collapse
Affiliation(s)
- Po-Yi Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Thi Thuy Tu Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ruey-Hua Lee
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tsai-Wen Hsu
- Taiwan Biodiversity Research Institute, Nantou, 552, Taiwan
| | - Ming-Hong Kao
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Takashi Gojobori
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
- King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Tzen-Yuh Chiang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chao-Li Huang
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701, Taiwan.
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, 701, Taiwan.
| |
Collapse
|
2
|
Ważny R, Jędrzejczyk RJ, Domka A, Pliszko A, Kosowicz W, Githae D, Rozpądek P. How does metal soil pollution change the plant mycobiome? Environ Microbiol 2023; 25:2913-2930. [PMID: 37127295 DOI: 10.1111/1462-2920.16392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms play a key role in plant adaptation to the environment. The aim of this study was to evaluate the effect of toxic metals present in the soil on the biodiversity of plant-related, endophytic mycobiota. The mycobiome of plants and soil from a Zn-Pb heap and a metal-free ruderal area were compared via Illumina sequencing of the ITS1 rDNA. The biodiversity of plants and fungi inhabiting mine dump substrate was lower than that of the metal free site. In the endosphere of Arabidopsis arenosa from the mine dump the number of endophytic fungal taxa was comparable to that in the reference population, but the community structure significantly differed. Agaricomycetes was the most notably limited class of fungi. The results of plant mycobiota evaluation from the field study were verified in terms of the role of toxic metals in plant endophytic fungi community assembly in a reconstruction experiment. The results presented in this study indicate that metal toxicity affects the structure of the plant mycobiota not by changing the pool of microorganisms available in the soil from which the fungal symbionts are recruited but most likely by altering plant and fungi behaviour and the organisms' preferences towards associating in symbiotic relationships.
Collapse
Affiliation(s)
- Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Roman J Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Agnieszka Domka
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- W. Szafer Institute of Botany Polish Academy of Sciences, Kraków, Poland
| | - Artur Pliszko
- Institute of Botany, Jagiellonian University in Kraków, Kraków, Poland
| | - Weronika Kosowicz
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Kraków, Poland
| | - Dedan Githae
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Kraków, Poland
| | - Piotr Rozpądek
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| |
Collapse
|
3
|
Wunder J, Fulgione A, Toräng P, Wötzel S, Herzog M, Obeso JR, Kourmpetis Y, van Ham R, Odong T, Bink M, Kemi U, Ågren J, Coupland G. Adaptation of perennial flowering phenology across the European range of Arabis alpina. Proc Biol Sci 2023; 290:20231401. [PMID: 37989245 PMCID: PMC10688268 DOI: 10.1098/rspb.2023.1401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Flowering phenology is important in the adaptation of many plants to their local environment, but its adaptive value has not been extensively studied in herbaceous perennials. We used Arabis alpina as a model system to determine the importance of flowering phenology to fitness of a herbaceous perennial with a wide geographical range. Individual plants representative of local genetic diversity (accessions) were collected across Europe, including in Spain, the Alps and Scandinavia. The flowering behaviour of these accessions was documented in controlled conditions, in common-garden experiments at native sites and in situ in natural populations. Accessions from the Alps and Scandinavia varied in whether they required exposure to cold (vernalization) to induce flowering, and in the timing and duration of flowering. By contrast, all Spanish accessions obligately required vernalization and had a short duration of flowering. Using experimental gardens at native sites, we show that an obligate requirement for vernalization increases survival in Spain. Based on our analyses of genetic diversity and flowering behaviour across Europe, we propose that in the model herbaceous perennial A. alpina, an obligate requirement for vernalization, which is correlated with short duration of flowering, is favoured by selection in Spain where the plants experience a long growing season.
Collapse
Affiliation(s)
- Jörg Wunder
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Andrea Fulgione
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Per Toräng
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - Stefan Wötzel
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Michel Herzog
- Laboratoire d’Écologie Alpine, LECA, Université Grenoble Alpes, 38000 Grenoble, France
| | - José Ramón Obeso
- Research Unit of Biodiversity (UO-CSIC-PA), Universidad de Oviedo, Campus de Mieres, 33600 Mieres, Spain
| | - Yiannis Kourmpetis
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Roeland van Ham
- Laboratory of Bioinformatics, Wageningen University, 6708 PB Wageningen, The Netherlands
- KeyGene, 6708 PW Wageningen, The Netherlands
| | - Thomas Odong
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Marco Bink
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Ulla Kemi
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jon Ågren
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - George Coupland
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
4
|
Preston JC, Fjellheim S. Flowering time runs hot and cold. PLANT PHYSIOLOGY 2022; 190:5-18. [PMID: 35274728 PMCID: PMC9434294 DOI: 10.1093/plphys/kiac111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 05/16/2023]
Abstract
Evidence suggests that anthropogenically-mediated global warming results in accelerated flowering for many plant populations. However, the fact that some plants are late flowering or unaffected by warming, underscores the complex relationship between phase change, temperature, and phylogeny. In this review, we present an emerging picture of how plants sense temperature changes, and then discuss the independent recruitment of ancient flowering pathway genes for the evolution of ambient, low, and high temperature-regulated reproductive development. As well as revealing areas of research required for a better understanding of how past thermal climates have shaped global patterns of plasticity in plant phase change, we consider the implications for these phenological thermal responses in light of climate change.
Collapse
Affiliation(s)
- Jill C Preston
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405, USA
| | - Siri Fjellheim
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås 1430, Norway
| |
Collapse
|
5
|
Dukić M, Bomblies K. Male and female recombination landscapes of diploid Arabidopsis arenosa. Genetics 2022; 220:iyab236. [PMID: 35100396 PMCID: PMC8893250 DOI: 10.1093/genetics/iyab236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
The number and placement of meiotic crossover events during meiosis have important implications for the fidelity of chromosome segregation as well as patterns of inheritance. Despite the functional importance of recombination, recombination landscapes vary widely among and within species, and this can have a strong impact on evolutionary processes. A good knowledge of recombination landscapes is important for model systems in evolutionary and ecological genetics, since it can improve interpretation of genomic patterns of differentiation and genome evolution, and provides an important starting point for understanding the causes and consequences of recombination rate variation. Arabidopsis arenosa is a powerful evolutionary genetic model for studying the molecular basis of adaptation and recombination rate evolution. Here, we generate genetic maps for 2 diploid A. arenosa individuals from distinct genetic lineages where we have prior knowledge that meiotic genes show evidence of selection. We complement the genetic maps with cytological approaches to map and quantify recombination rates, and test the idea that these populations might have distinct patterns of recombination. We explore how recombination differs at the level of populations, individuals, sexes and genomic regions. We show that the positioning of crossovers along a chromosome correlates with their number, presumably a consequence of crossover interference, and discuss how this effect can cause differences in recombination landscape among sexes or species. We identify several instances of female segregation distortion. We found that averaged genome-wide recombination rate is lower and sex differences subtler in A. arenosa than in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Marinela Dukić
- Department of Biology, Plant Evolutionary Genetics, Institute of Plant Molecular Biology, ETH Zürich, Zürich 8092, Switzerland
| | - Kirsten Bomblies
- Department of Biology, Plant Evolutionary Genetics, Institute of Plant Molecular Biology, ETH Zürich, Zürich 8092, Switzerland
| |
Collapse
|
6
|
Parallel adaptation in autopolyploid Arabidopsis arenosa is dominated by repeated recruitment of shared alleles. Nat Commun 2021; 12:4979. [PMID: 34404804 PMCID: PMC8370997 DOI: 10.1038/s41467-021-25256-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/21/2021] [Indexed: 01/26/2023] Open
Abstract
Relative contributions of pre-existing vs de novo genomic variation to adaptation are poorly understood, especially in polyploid organisms. We assess this in high resolution using autotetraploid Arabidopsis arenosa, which repeatedly adapted to toxic serpentine soils that exhibit skewed elemental profiles. Leveraging a fivefold replicated serpentine invasion, we assess selection on SNPs and structural variants (TEs) in 78 resequenced individuals and discover significant parallelism in candidate genes involved in ion homeostasis. We further model parallel selection and infer repeated sweeps on a shared pool of variants in nearly all these loci, supporting theoretical expectations. A single striking exception is represented by TWO PORE CHANNEL 1, which exhibits convergent evolution from independent de novo mutations at an identical, otherwise conserved site at the calcium channel selectivity gate. Taken together, this suggests that polyploid populations can rapidly adapt to environmental extremes, calling on both pre-existing variation and novel polymorphisms. Relative contributions of pre-existing versus de novo genomic variation to adaptation remain unclear. Here, the authors address this problem by examining the adaptation of autotetraploid Arabidopsis arenosa to serpentine soils and find that both types of variations contribute to rapid adaptation.
Collapse
|
7
|
Weitz AP, Dukic M, Zeitler L, Bomblies K. Male meiotic recombination rate varies with seasonal temperature fluctuations in wild populations of autotetraploid Arabidopsis arenosa. Mol Ecol 2021; 30:4630-4641. [PMID: 34273213 PMCID: PMC9292783 DOI: 10.1111/mec.16084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022]
Abstract
Meiosis, the cell division by which eukaryotes produce haploid gametes, is essential for fertility in sexually reproducing species. This process is sensitive to temperature, and can fail outright at temperature extremes. At less extreme values, temperature affects the genome‐wide rate of homologous recombination, which has important implications for evolution and population genetics. Numerous studies in laboratory conditions have shown that recombination rate plasticity is common, perhaps nearly universal, among eukaryotes. These studies have also shown that variation in the length or timing of stresses can strongly affect results, raising the important question whether these findings translate to more variable field conditions. Moreover, lower or higher recombination rate could cause certain kinds of meiotic aberrations, especially in polyploid species—raising the additional question whether temperature fluctuations in field conditions cause problems. Here, we tested whether (1) recombination rate varies across a season in the wild in two natural populations of autotetraploid Arabidopsis arenosa, (2) whether recombination rate correlates with temperature fluctuations in nature, and (3) whether natural temperature fluctuations might cause meiotic aberrations. We found that plants in two genetically distinct populations showed a similar plastic response with recombination rate increases correlated with both high and low temperatures. In addition, increased recombination rate correlated with increased multivalent formation, especially at lower temperature, hinting that polyploids in particular may suffer meiotic problems in conditions they encounter in nature. Our results show that studies of recombination rate plasticity done in laboratory settings inform our understanding of what happens in nature.
Collapse
Affiliation(s)
- Andrew P Weitz
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.,Department of Environmental Sciences, Western Washington University, Bellingham, Washington, USA
| | - Marinela Dukic
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Leo Zeitler
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.,Department of Biology, Ecological Genomics, Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Kirsten Bomblies
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Gieroń Ż, Sitko K, Małkowski E. The Different Faces of Arabidopsis arenosa-A Plant Species for a Special Purpose. PLANTS (BASEL, SWITZERLAND) 2021; 10:1342. [PMID: 34209450 PMCID: PMC8309363 DOI: 10.3390/plants10071342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/01/2022]
Abstract
The following review article collects information on the plant species Arabidopsis arenosa. Thus far, A. arenosa has been known as a model species for autotetraploidy studies because, apart from diploid individuals, there are also tetraploid populations, which is a unique feature of this Arabidopsis species. In addition, A arenosa has often been reported in heavy metal-contaminated sites, where it occurs together with a closely related species A. halleri, a model plant hyperaccumulator of Cd and Zn. Recent studies have shown that several populations of A. arenosa also exhibit Cd and Zn hyperaccumulation. However, it is assumed that the mechanism of hyperaccumulation differs between these two Arabidopsis species. Nevertheless, this phenomenon is still not fully understood, and thorough research is needed. In this paper, we summarize the current state of knowledge regarding research on A. arenosa.
Collapse
Affiliation(s)
| | - Krzysztof Sitko
- Plant Ecophysiology Team, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska Str., 40-032 Katowice, Poland;
| | - Eugeniusz Małkowski
- Plant Ecophysiology Team, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska Str., 40-032 Katowice, Poland;
| |
Collapse
|
9
|
Miryeganeh M. Senescence: The Compromised Time of Death That Plants May Call on Themselves. Genes (Basel) 2021; 12:143. [PMID: 33499161 PMCID: PMC7912376 DOI: 10.3390/genes12020143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/03/2023] Open
Abstract
Plants synchronize their life history events with proper seasonal conditions, and as the fitness consequences of each life stage depend on previous and/or subsequent one, changes in environmental cues create cascading effects throughout their whole life cycle. For monocarpic plants, proper senescence timing is very important as the final production of plants depends on it. Citing available literatures, this review discusses how plants not only may delay senescence until after they reproduce successfully, but they may also bring senescence time forward, in order to reproduce in favored conditions. It demonstrates that even though senescence is part of aging, it does not necessarily mean plants have to reach a certain age to senesce. Experiments using different aged plants have suggested that in interest of their final outcome and fitness, plants carefully weigh out environmental cues and transit to next developmental phase at proper time, even if that means transiting to terminal senescence phase earlier and shortening their lifespan. How much plants have control over senescence timing and how they balance internal and external signals for that is not well understood. Future studies are needed to identify processes that trigger senescence timing in response to environment and investigate genetic/epigenetic mechanisms behind it.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0412, Japan
| |
Collapse
|
10
|
Madrid E, Chandler JW, Coupland G. Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4-14. [PMID: 32369593 PMCID: PMC7816851 DOI: 10.1093/jxb/eraa216] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/28/2020] [Indexed: 05/07/2023]
Abstract
Responses to environmental cues synchronize reproduction of higher plants to the changing seasons. The genetic basis of these responses has been intensively studied in the Brassicaceae. The MADS-domain transcription factor FLOWERING LOCUS C (FLC) plays a central role in the regulatory network that controls flowering of Arabidopsis thaliana in response to seasonal cues. FLC blocks flowering until its transcription is stably repressed by extended exposure to low temperatures in autumn or winter and, therefore, FLC activity is assumed to limit flowering to spring. Recent reviews describe the complex epigenetic mechanisms responsible for FLC repression in cold. We focus on the gene regulatory networks controlled by FLC and how they influence floral transition. Genome-wide approaches determined the in vivo target genes of FLC and identified those whose transcription changes during vernalization or in flc mutants. We describe how studying FLC targets such as FLOWERING LOCUS T, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 15, and TARGET OF FLC AND SVP 1 can explain different flowering behaviours in response to vernalization and other environmental cues, and help define mechanisms by which FLC represses gene transcription. Elucidating the gene regulatory networks controlled by FLC provides access to the developmental and physiological mechanisms that regulate floral transition.
Collapse
Affiliation(s)
- Eva Madrid
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
| | - John W Chandler
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
- Correspondence:
| |
Collapse
|
11
|
Soppe WJJ, Viñegra de la Torre N, Albani MC. The Diverse Roles of FLOWERING LOCUS C in Annual and Perennial Brassicaceae Species. FRONTIERS IN PLANT SCIENCE 2021; 12:627258. [PMID: 33679840 PMCID: PMC7927791 DOI: 10.3389/fpls.2021.627258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/25/2021] [Indexed: 05/07/2023]
Abstract
Most temperate species require prolonged exposure to winter chilling temperatures to flower in the spring. In the Brassicaceae, the MADS box transcription factor FLOWERING LOCUS C (FLC) is a major regulator of flowering in response to prolonged cold exposure, a process called vernalization. Winter annual Arabidopsis thaliana accessions initiate flowering in the spring due to the stable silencing of FLC by vernalization. The role of FLC has also been explored in perennials within the Brassicaceae family, such as Arabis alpina. The flowering pattern in A. alpina differs from the one in A. thaliana. A. alpina plants initiate flower buds during vernalization but only flower after subsequent exposure to growth-promoting conditions. Here we discuss the role of FLC in annual and perennial Brassicaceae species. We show that, besides its conserved role in flowering, FLC has acquired additional functions that contribute to vegetative and seed traits. PERPETUAL FLOWERING 1 (PEP1), the A. alpina FLC ortholog, contributes to the perennial growth habit. We discuss that PEP1 directly and indirectly, regulates traits such as the duration of the flowering episode, polycarpic growth habit and shoot architecture. We suggest that these additional roles of PEP1 are facilitated by (1) the ability of A. alpina plants to form flower buds during long-term cold exposure, (2) age-related differences between meristems, which enable that not all meristems initiate flowering during cold exposure, and (3) differences between meristems in stable silencing of PEP1 after long-term cold, which ensure that PEP1 expression levels will remain low after vernalization only in meristems that commit to flowering during cold exposure. These features result in spatiotemporal seasonal changes of PEP1 expression during the A. alpina life cycle that contribute to the perennial growth habit. FLC and PEP1 have also been shown to influence the timing of another developmental transition in the plant, seed germination, by influencing seed dormancy and longevity. This suggests that during evolution, FLC and its orthologs adopted both similar and divergent roles to regulate life history traits. Spatiotemporal changes of FLC transcript accumulation drive developmental decisions and contribute to life history evolution.
Collapse
Affiliation(s)
| | - Natanael Viñegra de la Torre
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria C. Albani
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Maria C. Albani, ;
| |
Collapse
|
12
|
Gaudinier A, Blackman BK. Evolutionary processes from the perspective of flowering time diversity. THE NEW PHYTOLOGIST 2020; 225:1883-1898. [PMID: 31536639 DOI: 10.1111/nph.16205] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/30/2019] [Indexed: 05/18/2023]
Abstract
Although it is well appreciated that genetic studies of flowering time regulation have led to fundamental advances in the fields of molecular and developmental biology, the ways in which genetic studies of flowering time diversity have enriched the field of evolutionary biology have received less attention despite often being equally profound. Because flowering time is a complex, environmentally responsive trait that has critical impacts on plant fitness, crop yield, and reproductive isolation, research into the genetic architecture and molecular basis of its evolution continues to yield novel insights into our understanding of domestication, adaptation, and speciation. For instance, recent studies of flowering time variation have reconstructed how, when, and where polygenic evolution of phenotypic plasticity proceeded from standing variation and de novo mutations; shown how antagonistic pleiotropy and temporally varying selection maintain polymorphisms in natural populations; and provided important case studies of how assortative mating can evolve and facilitate speciation with gene flow. In addition, functional studies have built detailed regulatory networks for this trait in diverse taxa, leading to new knowledge about how and why developmental pathways are rewired and elaborated through evolutionary time.
Collapse
Affiliation(s)
- Allison Gaudinier
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
13
|
Relaxed purifying selection in autopolyploids drives transposable element over-accumulation which provides variants for local adaptation. Nat Commun 2019; 10:5818. [PMID: 31862875 PMCID: PMC6925279 DOI: 10.1038/s41467-019-13730-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/21/2019] [Indexed: 11/28/2022] Open
Abstract
Polyploidization is frequently associated with increased transposable element (TE) content. However, what drives TE dynamics following whole genome duplication (WGD) and the evolutionary implications remain unclear. Here, we leverage whole-genome resequencing data available for ~300 individuals of Arabidopsis arenosa, a well characterized natural diploid-autotetraploid plant species, to address these questions. Based on 43,176 TE insertions we detect in these genomes, we demonstrate that relaxed purifying selection rather than transposition bursts is the main driver of TE over-accumulation after WGD. Furthermore, the increased pool of TE insertions in tetraploids is especially enriched within or near environmentally responsive genes. Notably, we show that the major flowering-time repressor gene FLC is disrupted by a TE insertion specifically in the rapid-cycling tetraploid lineage that colonized mainland railways. Together, our findings indicate that tetrasomy leads to an enhanced accumulation of genic TE insertions, some of which likely contribute to local adaptation. Why transposable elements (TEs) accumulate in polyploids and the evolutionary implications remain unclear. Here, the authors show that following whole genome duplication, relaxed purifying selection is the main driver of TE over-accumulation, which provides variants for rapid local adaptation.
Collapse
|
14
|
Honjo MN, Kudoh H. Arabidopsis halleri: a perennial model system for studying population differentiation and local adaptation. AOB PLANTS 2019; 11:plz076. [PMID: 31832127 PMCID: PMC6899346 DOI: 10.1093/aobpla/plz076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/26/2019] [Indexed: 05/21/2023]
Abstract
Local adaptation is assumed to occur when populations differ in a phenotypic trait or a set of traits, and such variation has a genetic basis. Here, we introduce Arabidopsis halleri and its life history as a perennial model system to study population differentiation and local adaptation. Studies on altitudinal adaptation have been conducted in two regions: Mt. Ibuki in Japan and the European Alps. Several studies have demonstrated altitudinal adaptation in ultraviolet-B (UV-B) tolerance, leaf water repellency against spring frost and anti-herbivore defences. Studies on population differentiation in A. halleri have also focused on metal hyperaccumulation and tolerance to heavy metal contamination. In these study systems, genome scans to identify candidate genes under selection have been applied. Lastly, we briefly discuss how RNA-Seq can broaden phenotypic space and serve as a link to underlying mechanisms. In conclusion, A. halleri provides us with opportunities to study population differentiation and local adaptation, and relate these to the genetic systems underlying target functional traits.
Collapse
Affiliation(s)
- Mie N Honjo
- Center for Ecological Research, Kyoto University, Hirano, Otsu, Shiga, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano, Otsu, Shiga, Japan
| |
Collapse
|
15
|
Wos G, Mořkovská J, Bohutínská M, Šrámková G, Knotek A, Lučanová M, Španiel S, Marhold K, Kolář F. Role of ploidy in colonization of alpine habitats in natural populations of Arabidopsis arenosa. ANNALS OF BOTANY 2019; 124:255-268. [PMID: 31185073 PMCID: PMC6758580 DOI: 10.1093/aob/mcz070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/17/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Polyploidy is an important driver of plant diversification and adaptation to novel environments. As a consequence of genome doubling, polyploids often exhibit greater colonizing ability or occupy a wider ecological niche than diploids. Although elevation has been traditionally considered as a key driver structuring ploidy variation, we do not know if environmental and phenotypic differentiation among ploidy cytotypes varies along an elevational gradient. Here, we tested for the consequences of genome duplication on genetic diversity, phenotypic variation and habitat preferences on closely related diploid and tetraploid populations that coexist along approx. 2300 m of varying elevation. METHODS We sampled and phenotyped 45 natural diploid and tetraploid populations of Arabidopsis arenosa in one mountain range in Central Europe (Western Carpathians) and recorded abiotic and biotic variables at each collection site. We inferred genetic variation, population structure and demographic history in a sub-set of 29 populations genotyped for approx. 36 000 single nucleotide polymorphisms. KEY RESULTS We found minor effects of polyploidy on colonization of alpine stands and low genetic differentiation between the two cytotypes, mirroring recent divergence of the polyploids from the local diploid lineage and repeated reticulation events among the cytotypes. This pattern was corroborated by the absence of ecological niche differentiation between the two cytotypes and overall phenotypic similarity at a given elevation. CONCLUSIONS The case of A. arenosa contrasts with previous studies that frequently showed clear niche differentiation between cytotypes. Our work stresses the importance of considering genetic structure and past demographic processes when interpreting the patterns of ploidy distributions, especially in species that underwent recent polyploidization events.
Collapse
Affiliation(s)
- Guillaume Wos
- Department of Botany, Charles University, Prague, Czech Republic
| | - Jana Mořkovská
- Department of Botany, Charles University, Prague, Czech Republic
| | - Magdalena Bohutínská
- Department of Botany, Charles University, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | | | - Adam Knotek
- Department of Botany, Charles University, Prague, Czech Republic
| | - Magdalena Lučanová
- Department of Botany, Charles University, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Stanislav Španiel
- Department of Botany, Charles University, Prague, Czech Republic
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Karol Marhold
- Department of Botany, Charles University, Prague, Czech Republic
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Filip Kolář
- Department of Botany, Charles University, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Institute of Botany, University of Innsbruck, Innsbruck, Austria
- For correspondence. E-mail
| |
Collapse
|
16
|
Hyun Y, Vincent C, Tilmes V, Bergonzi S, Kiefer C, Richter R, Martinez-Gallegos R, Severing E, Coupland G. A regulatory circuit conferring varied flowering response to cold in annual and perennial plants. Science 2019; 363:409-412. [PMID: 30679374 DOI: 10.1126/science.aau8197] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/19/2018] [Indexed: 12/23/2022]
Abstract
The reproductive strategies of plants are highly variable. Short-lived annuals flower abundantly soon after germination, whereas longer-lived perennials postpone and spatially restrict flowering. We used CRISPR/Cas9 and interspecies gene transfer to understand divergence in reproductive patterns between annual and perennial crucifers. We show that in perennial Arabis alpina, flowering in response to winter cold depends on the floral integrator SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 15 (SPL15), whose activity is limited to older shoots and branches during cold exposure. In annuals, this regulatory system is conserved, but cold-induced flowering occurs in young shoots, without requirement for SPL15, through the photoperiodic pathway when plants return to warm. By reconstructing the annual response in perennials, we conclude that characteristic patterns of reproduction in annuals and perennials are conferred through variation in dependency on distinct flowering pathways acting in parallel.
Collapse
Affiliation(s)
- Youbong Hyun
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany
| | - Coral Vincent
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany
| | - Vicky Tilmes
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany
| | - Sara Bergonzi
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany
| | - Christiane Kiefer
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany
| | - René Richter
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany
| | | | - Edouard Severing
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany.
| |
Collapse
|
17
|
Rejlová L, Chrtek J, Trávníček P, Lučanová M, Vít P, Urfus T. Polyploid evolution: The ultimate way to grasp the nettle. PLoS One 2019; 14:e0218389. [PMID: 31260474 PMCID: PMC6602185 DOI: 10.1371/journal.pone.0218389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/01/2019] [Indexed: 11/18/2022] Open
Abstract
Polyploidy is one of the major forces of plant evolution and widespread mixed-ploidy species offer an opportunity to evaluate its significance. We therefore selected the cosmopolitan species Urtica dioica (stinging nettle), examined its cytogeography and pattern of absolute genome size, and assessed correlations with bioclimatic and ecogeographic data (latitude, longitude, elevation). We evaluated variation in ploidy level using an extensive dataset of 7012 samples from 1317 populations covering most of the species' distribution area. The widespread tetraploid cytotype (87%) was strongly prevalent over diploids (13%). A subsequent analysis of absolute genome size proved a uniform Cx-value of core U. dioica (except for U. d. subsp. cypria) whereas other closely related species, namely U. bianorii, U. kioviensis and U. simensis, differed significantly. We detected a positive correlation between relative genome size and longitude and latitude in the complete dataset of European populations and a positive correlation between relative genome size and longitude in a reduced dataset of diploid accessions (the complete dataset of diploids excluding U. d. subsp. kurdistanica). In addition, our data indicate an affinity of most diploids to natural and near-natural habitats and that the tetraploid cytotype and a small part of diploids (population from the Po river basin in northern Italy) tend to inhabit synanthropic sites. To sum up, the pattern of ploidy variation revealed by our study is in many aspects unique to the stinging nettle, being most likely first of all driven by the greater ecological plasticity and invasiveness of the tetraploid cytotype.
Collapse
Affiliation(s)
- Ludmila Rejlová
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jindřich Chrtek
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Trávníček
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Magdalena Lučanová
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Vít
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Tomáš Urfus
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat Ecol Evol 2019; 3:457-468. [DOI: 10.1038/s41559-019-0807-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022]
|
19
|
Takou M, Wieters B, Kopriva S, Coupland G, Linstädter A, De Meaux J. Linking genes with ecological strategies in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1141-1151. [PMID: 30561727 PMCID: PMC6382341 DOI: 10.1093/jxb/ery447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 05/22/2023]
Abstract
Arabidopsis thaliana is the most prominent model system in plant molecular biology and genetics. Although its ecology was initially neglected, collections of various genotypes revealed a complex population structure, with high levels of genetic diversity and substantial levels of phenotypic variation. This helped identify the genes and gene pathways mediating phenotypic change. Population genetics studies further demonstrated that this variation generally contributes to local adaptation. Here, we review evidence showing that traits affecting plant life history, growth rate, and stress reactions are not only locally adapted, they also often co-vary. Co-variation between these traits indicates that they evolve as trait syndromes, and reveals the ecological diversification that took place within A. thaliana. We argue that examining traits and the gene that control them within the context of global summary schemes that describe major ecological strategies will contribute to resolve important questions in both molecular biology and ecology.
Collapse
Affiliation(s)
| | | | | | - George Coupland
- Max Planck Institute of Plant Breeding Research, Cologne, Germany
| | - Anja Linstädter
- Institute of Botany, University of Cologne, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Germany
| | | |
Collapse
|
20
|
Genetic basis and evolution of rapid cycling in railway populations of tetraploid Arabidopsis arenosa. PLoS Genet 2018; 14:e1007510. [PMID: 29975688 PMCID: PMC6049958 DOI: 10.1371/journal.pgen.1007510] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/17/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022] Open
Abstract
Spatially structured plant populations with diverse adaptations provide powerful models to investigate evolution. Human-generated ruderal habitats are abundant and low-competition, but are challenging for plants not adapted to them. Ruderal habitats also sometimes form networked corridors (e.g. roadsides and railways) that allow rapid long-distance spread of successfully adapted variants. Here we use transcriptomic and genomic analyses, coupled with genetic mapping and transgenic follow-up, to understand the evolution of rapid cycling during adaptation to railway sites in autotetraploid Arabidopsis arenosa. We focus mostly on a hybrid population that is likely a secondary colonist of a railway site. These mountain railway plants are phenotypically similar to their cosmopolitan cousins. We thus hypothesized that colonization primarily involved the flow of adaptive alleles from the cosmopolitan railway variant. But our data shows that it is not that simple: while there is evidence of selection having acted on introgressed alleles, selection also acted on rare standing variation, and new mutations may also contribute. Among the genes we show have allelic divergence with functional relevance to flowering time are known regulators of flowering, including FLC and CONSTANS. Prior implications of these genes in weediness and rapid cycling supports the idea that these are “evolutionary hotspots” for these traits. We also find that one of two alleles of CONSTANS under selection in the secondary colonist was selected from rare standing variation in mountain populations, while the other was introgressed from the cosmopolitan railway populations. The latter allele likely arose in diploid populations over 700km away, highlighting how ruderal populations could act as allele conduits and thus influence local adaptation.
Collapse
|
21
|
Agniel D, Hejblum BP. Variance component score test for time-course gene set analysis of longitudinal RNA-seq data. Biostatistics 2018; 18:589-604. [PMID: 28334305 DOI: 10.1093/biostatistics/kxx005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/04/2017] [Indexed: 01/28/2023] Open
Abstract
As gene expression measurement technology is shifting from microarrays to sequencing, the statistical tools available for their analysis must be adapted since RNA-seq data are measured as counts. It has been proposed to model RNA-seq counts as continuous variables using nonparametric regression to account for their inherent heteroscedasticity. In this vein, we propose tcgsaseq, a principled, model-free, and efficient method for detecting longitudinal changes in RNA-seq gene sets defined a priori. The method identifies those gene sets whose expression varies over time, based on an original variance component score test accounting for both covariates and heteroscedasticity without assuming any specific parametric distribution for the (transformed) counts. We demonstrate that despite the presence of a nonparametric component, our test statistic has a simple form and limiting distribution, and both may be computed quickly. A permutation version of the test is additionally proposed for very small sample sizes. Applied to both simulated data and two real datasets, tcgsaseq is shown to exhibit very good statistical properties, with an increase in stability and power when compared to state-of-the-art methods ROAST (rotation gene set testing), edgeR, and DESeq2, which can fail to control the type I error under certain realistic settings. We have made the method available for the community in the R package tcgsaseq.
Collapse
Affiliation(s)
- Denis Agniel
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115, USA
| | - Boris P Hejblum
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA University of Bordeaux, ISPED, INSERM U1219, INRIA SISTM, 146 rue Léo Saignat, 33076 Bordeaux, FRANCE Vaccine Research Institute, Créteil, FRANCE
| |
Collapse
|
22
|
Janská A, Svoboda P, Spiwok V, Kučera L, Ovesná J. The dehydration stress of couch grass is associated with its lipid metabolism, the induction of transporters and the re-programming of development coordinated by ABA. BMC Genomics 2018; 19:317. [PMID: 29720087 PMCID: PMC5930771 DOI: 10.1186/s12864-018-4700-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/18/2018] [Indexed: 11/10/2022] Open
Abstract
Background The wild relatives of crop species represent a potentially valuable source of novel genetic variation, particularly in the context of improving the crop’s level of tolerance to abiotic stress. The mechanistic basis of these tolerances remains largely unexplored. Here, the focus was to characterize the transcriptomic response of the nodes (meristematic tissue) of couch grass (a relative of barley) to dehydration stress, and to compare it to that of the barley crown formed by both a drought tolerant and a drought sensitive barley cultivar. Results Many of the genes up-regulated in the nodes by the stress were homologs of genes known to be mediated by abscisic acid during the response to drought, or were linked to either development or lipid metabolism. Transporters also featured prominently, as did genes acting on root architecture. The resilience of the couch grass node arise from both their capacity to develop an altered, more effective root architecture, but also from their formation of a lipid barrier on their outer surface and their ability to modify both their lipid metabolism and transporter activity when challenged by dehydration stress. Conclusions Our analysis revealed the nature of dehydration stress response in couch grass. We suggested the tolerance is associated with lipid metabolism, the induction of transporters and the re-programming of development coordinated by ABA. We also proved the applicability of barley microarray for couch grass stress-response analysis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4700-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Janská
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Svoboda
- Division of Crop Genetics and Breeding, Crop Research Institute, Prague, Czech Republic. .,Factulty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic.
| | - Vojtěch Spiwok
- Factulty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Ladislav Kučera
- Division of Crop Genetics and Breeding, Crop Research Institute, Prague, Czech Republic
| | - Jaroslava Ovesná
- Division of Crop Genetics and Breeding, Crop Research Institute, Prague, Czech Republic
| |
Collapse
|
23
|
Novikova PY, Hohmann N, Van de Peer Y. Polyploid Arabidopsis species originated around recent glaciation maxima. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:8-15. [PMID: 29448159 DOI: 10.1016/j.pbi.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/17/2018] [Indexed: 05/20/2023]
Abstract
Polyploidy may provide adaptive advantages and is considered to be important for evolution and speciation. Polyploidy events are found throughout the evolutionary history of plants, however they do not seem to be uniformly distributed along the time axis. For example, many of the detected ancient whole-genome duplications (WGDs) seem to cluster around the K/Pg boundary (∼66Mya), which corresponds to a drastic climate change event and a mass extinction. Here, we discuss more recent polyploidy events using Arabidopsis as the most developed plant model at the level of the entire genus. We review the history of the origin of allotetraploid species A. suecica and A. kamchatica, and tetraploid lineages of A. lyrata, A. arenosa and A. thaliana, and discuss potential adaptive advantages. Also, we highlight an association between recent glacial maxima and estimated times of origins of polyploidy in Arabidopsis. Such association might further support a link between polyploidy and environmental challenge, which has been observed now for different time-scales and for both ancient and recent polyploids.
Collapse
Affiliation(s)
- Polina Yu Novikova
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Nora Hohmann
- University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | - Yves Van de Peer
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium; Department of Genetics, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
24
|
Zuther E, Lee YP, Erban A, Kopka J, Hincha DK. Natural Variation in Freezing Tolerance and Cold Acclimation Response in Arabidopsis thaliana and Related Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:81-98. [DOI: 10.1007/978-981-13-1244-1_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Bloomer RH, Dean C. Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5439-5452. [PMID: 28992087 DOI: 10.1093/jxb/erx270] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The evolution of diverse life history strategies has allowed Arabidopsis thaliana to adapt to worldwide locations, spanning a range of latitudinal and environmental conditions. Arabidopsis thaliana accessions are either vernalization-requiring winter annuals or rapid cyclers, with extensive natural variation in vernalization requirement and response. Genetic and molecular analysis of this variation has enhanced our understanding of the mechanisms involved in life history determination, with translation to both natural and crop systems in the Brassicaceae and beyond.
Collapse
Affiliation(s)
- R H Bloomer
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - C Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
26
|
Yant L, Bomblies K. Genomic studies of adaptive evolution in outcrossing Arabidopsis species. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:9-14. [PMID: 27988391 DOI: 10.1016/j.pbi.2016.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Large-scale population genomic approaches have very recently been fruitfully applied to the Arabidopsis relatives Arabidopsis halleri, A. lyrata and especially A. arenosa. In contrast to A. thaliana, these species are obligately outcrossing and thus the footprints of natural selection are more straightforward to detect. Furthermore, both theoretical and empirical studies indicate that outcrossers are better able to evolve in response to selection pressure. As a result, recent work in these species serves as a paradigm of population genomic studies of adaptation both to environmental as well as intracellular challenges.
Collapse
Affiliation(s)
- Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Kirsten Bomblies
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
27
|
Kolář F, Fuxová G, Záveská E, Nagano AJ, Hyklová L, Lučanová M, Kudoh H, Marhold K. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant modelArabidopsis arenosa. Mol Ecol 2016; 25:3929-49. [DOI: 10.1111/mec.13721] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/25/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Filip Kolář
- Natural History Museum; University of Oslo; PO Box 1172 Blindern Oslo NO-0318 Norway
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
- Institute of Botany; The Czech Academy of Sciences; Průhonice CZ-252 43 Czech Republic
| | - Gabriela Fuxová
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
| | - Eliška Záveská
- Institute of Botany; University of Innsbruck; Innsbruck AT-6020 Austria
| | - Atsushi J. Nagano
- Center for Ecological Research; Kyoto University; Kyoto JP-520-2113 Japan
- Faculty of Agriculture; Ryukoku University; Shiga JP-612-8577 Japan
- JST PRESTO; Saitama JP-332-0012 Japan
| | - Lucie Hyklová
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
| | - Magdalena Lučanová
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
- Institute of Botany; The Czech Academy of Sciences; Průhonice CZ-252 43 Czech Republic
| | - Hiroshi Kudoh
- Center for Ecological Research; Kyoto University; Kyoto JP-520-2113 Japan
| | - Karol Marhold
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
- Institute of Botany; Slovak Academy of Sciences; Bratislava SK-845 23 Slovak Republic
| |
Collapse
|