1
|
Chen X, Han C, Yang R, Wang X, Ma J, Wang Y. Influence of the transcription factor ABI5 on growth and development in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154316. [PMID: 39098091 DOI: 10.1016/j.jplph.2024.154316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
ABA-insensitive 5 (ABI5) belongs to the basic leucine zipper class of transcription factors and is named for being the fifth identified Arabidopsis mutant unresponsive to ABA. To understand the influence of ABI5 in its active state on downstream gene expression and plant growth and development, we overexpressed the full-length ABI5 (A.t.MX-4) and the active forms of ABI5 with deleted transcriptional repression domains (A.t.MX-1, A.t.MX-2, and A.t.MX-3). Compared with the wild type, A.t.MX-1, A.t.MX-2, and A.t.MX-3 exhibited an increase in rosette leaf number and size, earlier flowering, increased thousand-seed weight, and significantly enhanced drought resistance. Thirty-five upregulated/downregulated proteins in the A.t.MX-1 were identified by proteomic analysis, and these proteins were involved in ABA biosynthesis and degradation, abiotic stress, fatty acid synthesis, and energy metabolism. These proteins participate in the regulation of plant drought resistance, flowering timing, and seed size at the levels of transcription and post-translational modification.
Collapse
Affiliation(s)
- Xin Chen
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Changze Han
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Rongrong Yang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Xinwen Wang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China.
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China.
| |
Collapse
|
2
|
Rao S, Cao H, O’Hanna FJ, Zhou X, Lui A, Wrightstone E, Fish T, Yang Y, Thannhauser T, Cheng L, Dudareva N, Li L. Nudix hydrolase 23 post-translationally regulates carotenoid biosynthesis in plants. THE PLANT CELL 2024; 36:1868-1891. [PMID: 38299382 PMCID: PMC11653588 DOI: 10.1093/plcell/koae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Carotenoids are essential for photosynthesis and photoprotection. Plants must evolve multifaceted regulatory mechanisms to control carotenoid biosynthesis. However, the regulatory mechanisms and the regulators conserved among plant species remain elusive. Phytoene synthase (PSY) catalyzes the highly regulated step of carotenogenesis and geranylgeranyl diphosphate synthase (GGPPS) acts as a hub to interact with GGPP-utilizing enzymes for the synthesis of specific downstream isoprenoids. Here, we report a function of Nudix hydrolase 23 (NUDX23), a Nudix domain-containing protein, in post-translational regulation of PSY and GGPPS for carotenoid biosynthesis. NUDX23 expresses highly in Arabidopsis (Arabidopsis thaliana) leaves. Overexpression of NUDX23 significantly increases PSY and GGPPS protein levels and carotenoid production, whereas knockout of NUDX23 dramatically reduces their abundances and carotenoid accumulation in Arabidopsis. NUDX23 regulates carotenoid biosynthesis via direct interactions with PSY and GGPPS in chloroplasts, which enhances PSY and GGPPS protein stability in a large PSY-GGPPS enzyme complex. NUDX23 was found to co-migrate with PSY and GGPPS proteins and to be required for the enzyme complex assembly. Our findings uncover a regulatory mechanism underlying carotenoid biosynthesis in plants and offer promising genetic tools for developing carotenoid-enriched food crops.
Collapse
Affiliation(s)
- Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| | - Hongbo Cao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- College of Horticulture, Hebei Agricultural University,
Baoding, Hebei 071000, China
| | - Franz Joseph O’Hanna
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| | - Andy Lui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| | - Emalee Wrightstone
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell
University, Ithaca, NY 14853, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University,
West Lafayette, IN 47907-2063, USA
- Department of Horticulture and Landscape Architecture, Purdue
University, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University,
West Lafayette, IN 47907, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Wang YQ, Ye JJ, Yang HZ, Li D, Li XX, Wang YK, Zheng XQ, Ye JH, Li QS, Liang YR, Lu JL. Shading-Dependent Greening Process of the Leaves in the Light-Sensitive Albino Tea Plant 'Huangjinya': Possible Involvement of the Light-Harvesting Complex II Subunit of Photosystem II in the Phenotypic Characteristic. Int J Mol Sci 2023; 24:10314. [PMID: 37373460 DOI: 10.3390/ijms241210314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The light-sensitive albino tea plant can produce pale-yellow shoots with high levels of amino acids which are suitable to process high-quality tea. In order to understand the mechanism of the albino phenotype formation, the changes in the physio-chemical characteristics, chloroplast ultrastructure, chlorophyll-binding proteins, and the relevant gene expression were comprehensively investigated in the leaves of the light-sensitive albino cultivar 'Huangjinya' ('HJY') during short-term shading treatment. In the content of photosynthetic pigments, the ultrastructure of the chloroplast, and parameters of the photosynthesis in the leaves of 'HJY' could be gradually normalized along with the extension of the shading time, resulting in the leaf color transformed from pale yellow to green. BN-PAGE and SDS-PAGE revealed that function restoration of the photosynthetic apparatus was attributed to the proper formation of the pigment-protein complexes on the thylakoid membrane that benefited from the increased levels of the LHCII subunits in the shaded leaves of 'HJY', indicating the low level of LHCII subunits, especially the lack of the Lhcb1 might be responsible for the albino phenotype of the 'HJY' under natural light condition. The deficiency of the Lhcb1 was mainly subject to the strongly suppressed expression of the Lhcb1.x which might be modulated by the chloroplast retrograde signaling pathway GUN1 (GENOMES UNCOUPLED 1)-PTM (PHD type transcription factor with transmembrane domains)-ABI4 (ABSCISIC ACID INSENSITIVE 4).
Collapse
Affiliation(s)
- Ying-Qi Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jing-Jing Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiao-Xiang Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yong-Kang Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Qing-Sheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Zhang P, Ni Y, Jiao Z, Li J, Wang T, Yao Z, Jiang Y, Yang X, Sun Y, Li H, He D, Niu J. The wheat leaf delayed virescence of mutant dv4 is associated with the abnormal photosynthetic and antioxidant systems. Gene X 2023; 856:147134. [PMID: 36586497 DOI: 10.1016/j.gene.2022.147134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Chlorophyll (Chl) is a key pigment for wheat (Triticum aestivum L.) photosynthesis, consequently impacts grain yield. A wheat mutant named as delayed virescence 4 (dv4) was obtained from cultivar Guomai 301 (wild type, WT) treated with ethyl methane sulfonate (EMS). The seedling leaves of dv4 were shallow yellow, apparently were chlorophyll deficient. They started to turn green at the jointing stage and returned to almost ordinary green at the heading stage. Leaf transcriptome comparison of Guomai 301 and dv4 at the jointing stage showed that most differentially expressed genes (DEGs) of transcription and translation were highly expressed in dv4, one key gene nicotianamine aminotransferase A (NAAT-A) involved in the synthesis and metabolism pathways of tyrosine, methionine and phenylalanine was significantly lowly expressed. The expression levels of the most photosynthesis related genes, such as photosystem I (PS I), ATPase and light-harvesting chlorophyll protein complex-related homeotypic genes, and protochlorophyllide reductase A (PORA) were lower; but macromolecule degradation and hypersensitivity response (HR) related gene heat shock protein 82 (HSP82) was highly expressed. Compared to WT, the contents of macromolecules such as proteins and sugars were reduced; the contents of Chl a, Chl b, total Chl, and carotenoids in leaves of dv4 were significantly less at the jointing stage, while the ratio of Chl a / Chl b was the same as that of WT. The net photosynthetic rate, stomatal conductance and transpiration rate of dv4 were significantly lower. The H2O2 content were higher, while the contents of total phenol and malondialdehyde (MDA), antioxidant enzyme activities were lower in leaves of dv4. In conclusion, the reduced contents of macromolecules and photosynthetic pigments, the abnormal photosynthetic and antioxidant systems were closely related to the phenotype of dv4.
Collapse
Affiliation(s)
- Peipei Zhang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, Henan, China
| | - Zhixin Jiao
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Junchang Li
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Ting Wang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Ziping Yao
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yumei Jiang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Xiwen Yang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yulong Sun
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Huijuan Li
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Dexian He
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Jishan Niu
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| |
Collapse
|
5
|
Lin YP, Shen YY, Shiu YB, Charng YY, Grimm B. Chlorophyll dephytylase 1 and chlorophyll synthase: a chlorophyll salvage pathway for the turnover of photosystems I and II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:979-994. [PMID: 35694901 DOI: 10.1111/tpj.15865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Chlorophyll (Chl) is made up of the tetrapyrrole chlorophyllide and phytol, a diterpenoid alcohol. The photosynthetic protein complexes utilize Chl for light harvesting to produce biochemical energy for plant development. However, excess light and adverse environmental conditions facilitate generation of reactive oxygen species, which damage photosystems I and II (PSI and PSII) and induce their turnover. During this process, Chl is released, and is thought to be recycled via dephytylation and rephytylation. We previously demonstrated that Chl recycling in Arabidopsis under heat stress is mediated by the enzymes chlorophyll dephytylase 1 (CLD1) and chlorophyll synthase (CHLG) using chlg and cld1 mutants. Here, we show that the mutants with high CLD1/CHLG ratio, by different combinations of chlg-1 (a knock-down mutant) and the hyperactive cld1-1 alleles, develop necrotic leaves when grown under long- and short-day, but not continuous light conditions, owing to the accumulation of chlorophyllide in the dark. Combination of chlg-1 with cld1-4 (a knock-out mutant) leads to reduced chlorophyllide accumulation and necrosis. The operation of CLD1 and CHLG as a Chl salvage pathway was also explored in the context of Chl recycling during the turnover of Chl-binding proteins of the two photosystems. CLD1 was found to interact with CHLG and the light-harvesting complex-like proteins OHP1 and LIL3, implying that auxiliary factors are required for this process.
Collapse
Affiliation(s)
- Yao-Pin Lin
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13 Building 12, 10115, Berlin, Germany
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Yu-Yen Shen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Yen-Bin Shiu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13 Building 12, 10115, Berlin, Germany
| |
Collapse
|
6
|
Fölsche V, Großmann C, Richter AS. Impact of Porphyrin Binding to GENOMES UNCOUPLED 4 on Tetrapyrrole Biosynthesis in planta. FRONTIERS IN PLANT SCIENCE 2022; 13:850504. [PMID: 35371166 PMCID: PMC8967248 DOI: 10.3389/fpls.2022.850504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Plant tetrapyrrole biosynthesis (TPS) provides the indispensable chlorophyll (Chl) and heme molecules in photosynthetic organisms. Post-translational mechanisms control the enzymes to ensure a balanced flow of intermediates in the pathway and synthesis of appropriate amounts of both endproducts. One of the critical regulators of TPS is GENOMES UNCOUPLED 4 (GUN4). GUN4 interacts with magnesium chelatase (MgCh), and its binding of the catalytic substrate and product of the MgCh reaction stimulates the insertion of Mg2+ into protoporphyrin IX. Despite numerous in vitro studies, knowledge about the in vivo function of the GUN4:porphyrin interaction for the whole TPS pathway, particularly in plants, is still limited. To address this, we focused on two highly conserved amino acids crucial for porphyrin-binding to GUN4 and analyzed GUN4-F191A, R211A, and R211E substitution mutants in vitro and in vivo. Our analysis confirmed the importance of these amino acids for porphyrin-binding and the stimulation of plant MgCh by GUN4 in vitro. Expression of porphyrin-binding deficient F191A, R211A, and R211E in the Arabidopsis gun4-2 knockout mutant background revealed that, unlike in cyanobacteria and green algae, GUN4:porphyrin interactions did not affect the stability of GUN4 or other Arabidopsis TPS pathway enzymes in vivo. In addition, although they shared diminished porphyrin-binding and MgCh activation in vitro, expression of the different GUN4 mutants in gun4-2 had divergent effects on the TPS and the accumulation of Chl and Chl-binding proteins. For instance, expression of R211E, but not R211A, induced a substantial decrease of ALA synthesis rate, lower TPS intermediate and Chl level, and strongly impaired accumulation of photosynthetic complexes compared to wild-type plants. Furthermore, the presence of R211E led to significant growth retardation and paler leaves compared to GUN4 knockdown mutants, indicating that the exchange of R211 to glutamate compromised TPS and Chl accumulation more substantially than the almost complete lack of GUN4. Extensive in vivo analysis of GUN4 point mutants suggested that F191 and R211 might also play a role beyond porphyrin-binding.
Collapse
Affiliation(s)
- Vincent Fölsche
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
- Department of Plant Physiology, Humboldt-Universität Berlin, Berlin, Germany
| | - Christopher Großmann
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
| | - Andreas S. Richter
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
- Department of Plant Physiology, Humboldt-Universität Berlin, Berlin, Germany
- Physiology of Plant Metabolism, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
Wu J, Rong L, Lin W, Kong L, Wei D, Zhang L, Rochaix JD, Xu X. Functional redox links between lumen thiol oxidoreductase1 and serine/threonine-protein kinase STN7. PLANT PHYSIOLOGY 2021; 186:964-976. [PMID: 33620491 PMCID: PMC8195503 DOI: 10.1093/plphys/kiab091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/11/2021] [Indexed: 05/07/2023]
Abstract
In response to changing light quantity and quality, photosynthetic organisms perform state transitions, a process which optimizes photosynthetic yield and mitigates photo-damage. The serine/threonine-protein kinase STN7 phosphorylates the light-harvesting complex of photosystem II (PSII; light-harvesting complex II), which then migrates from PSII to photosystem I (PSI), thereby rebalancing the light excitation energy between the photosystems and restoring the redox poise of the photosynthetic electron transport chain. Two conserved cysteines forming intra- or intermolecular disulfide bonds in the lumenal domain (LD) of STN7 are essential for the kinase activity although it is still unknown how activation of the kinase is regulated. In this study, we show lumen thiol oxidoreductase 1 (LTO1) is co-expressed with STN7 in Arabidopsis (Arabidopsis thaliana) and interacts with the LD of STN7 in vitro and in vivo. LTO1 contains thioredoxin (TRX)-like and vitamin K epoxide reductase domains which are related to the disulfide-bond formation system in bacteria. We further show that the TRX-like domain of LTO1 is able to oxidize the conserved lumenal cysteines of STN7 in vitro. In addition, loss of LTO1 affects the kinase activity of STN7 in Arabidopsis. Based on these results, we propose that LTO1 helps to maintain STN7 in an oxidized active state in state 2 through redox interactions between the lumenal cysteines of STN7 and LTO1.
Collapse
Affiliation(s)
- Jianghao Wu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei Rong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijun Lin
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxi Kong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dengjie Wei
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jean-David Rochaix
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva 1211, Switzerland
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Author for communication:
| |
Collapse
|
8
|
Wang P, Grimm B. Connecting Chlorophyll Metabolism with Accumulation of the Photosynthetic Apparatus. TRENDS IN PLANT SCIENCE 2021; 26:484-495. [PMID: 33422426 DOI: 10.1016/j.tplants.2020.12.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 12/09/2020] [Indexed: 05/14/2023]
Abstract
Chlorophyll (Chl) is indispensable for photosynthesis. In association with Chl-binding proteins (CBPs), it is responsible for light absorption, excitation energy transfer, and charge separation within the photosynthetic complexes. By contrast, photoexcitation of free Chl and its metabolic intermediates generates hazardous reactive oxygen species (ROS). While antagonistic activities of Chl synthesis and catabolism have been mostly elucidated, the tight synchronization of these metabolic activities with the formation and dismantling of the photosynthetic complexes is poorly understood. Recently, a set of auxiliary factors were identified to adjust metabolic activities and provide accurate amounts of Chl for pigment-protein complexes. Here, we review current knowledge of post-translational coordination of Chl formation, breakdown, and turnover with the assembly and disassembly of various CBPs and highlight future research perspectives.
Collapse
Affiliation(s)
- Peng Wang
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 Building 12, 10115 Berlin, Germany.
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 Building 12, 10115 Berlin, Germany.
| |
Collapse
|
9
|
Li T, Yang H, Lu Y, Dong Q, Liu G, Chen F, Zhou Y. Comparative transcriptome analysis of differentially expressed genes related to the physiological changes of yellow-green leaf mutant of maize. PeerJ 2021; 9:e10567. [PMID: 33628629 PMCID: PMC7894110 DOI: 10.7717/peerj.10567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
Chlorophylls, green pigments in chloroplasts, are essential for photosynthesis. Reduction in chlorophyll content may result in retarded growth, dwarfism, and sterility. In this study, a yellow-green leaf mutant of maize, indicative of abnormity in chlorophyll content, was identified. The physiological parameters of this mutant were measured. Next, global gene expression of this mutant was determined using transcriptome analysis and compared to that of wild-type maize plants. The yellow-green leaf mutant of maize was found to contain lower contents of chlorophyll a, chlorophyll b and carotenoid compounds. It contained fewer active PSII centers and displayed lower values of original chlorophyll fluorescence parameters than the wild-type plants. The real-time fluorescence yield, the electron transport rate, and the net photosynthetic rate of the mutant plants showed reduction as well. In contrast, the maximum photochemical quantum yield of PSII of the mutant plants was similar to that of the wild-type plants. Comparative transcriptome analysis of the mutant plants and wild-type plants led to the identification of differentially expressed 1,122 genes, of which 536 genes were up-regulated and 586 genes down-regulated in the mutant. Five genes in the chlorophyll metabolism pathway, nine genes in the tricarboxylic acid cycle and seven genes related to the conversion of sucrose to starch displayed down-regulated expression. In contrast, genes encoding a photosystem II reaction center PsbP family protein and the PGR5-like protein 1A (PGRL1A) exhibited increased transcript abundance.
Collapse
Affiliation(s)
- Tingchun Li
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China.,Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Huaying Yang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Qing Dong
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Guihu Liu
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Yingbing Zhou
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
10
|
Compensation Mechanism of the Photosynthetic Apparatus in Arabidopsis thaliana ch1 Mutants. Int J Mol Sci 2020; 22:ijms22010221. [PMID: 33379339 PMCID: PMC7794896 DOI: 10.3390/ijms22010221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
The origin of chlorophyll b deficiency is a mutation (ch1) in chlorophyllide a oxygenase (CAO), the enzyme responsible for Chl b synthesis. Regulation of Chl b synthesis is essential for understanding the mechanism of plant acclimation to various conditions. Therefore, the main aim of this study was to find the strategy in plants for compensation of low chlorophyll content by characterizing and comparing the performance and spectral properties of the photosynthetic apparatus related to the lipid and protein composition in four selected Arabidopsis ch1 mutants and two Arabidopsis ecotypes. Mutation in different loci of the CAO gene, viz., NW41, ch1.1, ch1.2 and ch1.3, manifested itself in a distinct chlorina phenotype, pigment and photosynthetic protein composition. Changes in the CAO mRNA levels and chlorophyllide a (Chlide a) content in ecotypes and ch1 mutants indicated their significant role in the adjustment mechanism of the photosynthetic apparatus to low-light conditions. Exposure of mutants with a lower chlorophyll b content to short-term (1LL) and long-term low-light stress (10LL) enabled showing a shift in the structure of the PSI and PSII complexes via spectral analysis and the thylakoid composition studies. We demonstrated that both ecotypes, Col-1 and Ler-0, reacted to high-light (HL) conditions in a way remarkably resembling the response of ch1 mutants to normal (NL) conditions. We also presented possible ways of regulating the conversion of chlorophyll a to b depending on the type of light stress conditions.
Collapse
|
11
|
Koskela MM, Brünje A, Ivanauskaite A, Grabsztunowicz M, Lassowskat I, Neumann U, Dinh TV, Sindlinger J, Schwarzer D, Wirtz M, Tyystjärvi E, Finkemeier I, Mulo P. Chloroplast Acetyltransferase NSI Is Required for State Transitions in Arabidopsis thaliana. THE PLANT CELL 2018; 30:1695-1709. [PMID: 29967049 PMCID: PMC6139681 DOI: 10.1105/tpc.18.00155] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 05/18/2023]
Abstract
The amount of light energy received by the photosynthetic reaction centers photosystem II (PSII) and photosystem I (PSI) is balanced through state transitions. Reversible phosphorylation of a light-harvesting antenna trimer (L-LHCII) orchestrates the association between L-LHCII and the photosystems, thus adjusting the amount of excitation energy received by the reaction centers. In this study, we identified the enzyme NUCLEAR SHUTTLE INTERACTING (NSI; AT1G32070) as an active lysine acetyltransferase in the chloroplasts of Arabidopsis thaliana Intriguingly, nsi knockout mutant plants were defective in state transitions, even though they had a similar LHCII phosphorylation pattern as the wild type. Accordingly, nsi plants were not able to accumulate the PSI-LHCII state transition complex, even though the LHCII docking site of PSI and the overall amounts of photosynthetic protein complexes remained unchanged. Instead, the nsi mutants showed a decreased Lys acetylation status of specific photosynthetic proteins including PSI, PSII, and LHCII subunits. Our work demonstrates that the chloroplast acetyltransferase NSI is needed for the dynamic reorganization of thylakoid protein complexes during photosynthetic state transitions.
Collapse
Affiliation(s)
- Minna M Koskela
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20520 Turku, Finland
| | - Annika Brünje
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, 48149 Münster, Germany
| | - Aiste Ivanauskaite
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20520 Turku, Finland
| | - Magda Grabsztunowicz
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20520 Turku, Finland
| | - Ines Lassowskat
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, 48149 Münster, Germany
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Trinh V Dinh
- Department of Plant Molecular Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Markus Wirtz
- Department of Plant Molecular Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Esa Tyystjärvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20520 Turku, Finland
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, 48149 Münster, Germany
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Paula Mulo
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20520 Turku, Finland
| |
Collapse
|
12
|
Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis. Proc Natl Acad Sci U S A 2018; 115:E3588-E3596. [PMID: 29581280 DOI: 10.1073/pnas.1719645115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.
Collapse
|
13
|
Physiological and transcriptomic analyses of a yellow-green mutant with high photosynthetic efficiency in wheat (Triticum aestivum L.). Funct Integr Genomics 2017; 18:175-194. [DOI: 10.1007/s10142-017-0583-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/31/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
|
14
|
Allen JF. Why we need to know the structure of phosphorylated chloroplast light-harvesting complex II. PHYSIOLOGIA PLANTARUM 2017; 161:28-44. [PMID: 28393369 DOI: 10.1111/ppl.12577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 05/11/2023]
Abstract
In oxygenic photosynthesis there are two 'light states' - adaptations of the photosynthetic apparatus to spectral composition that otherwise favours either photosystem I or photosystem II. In chloroplasts of green plants the transition to light state 2 depends on phosphorylation of apoproteins of a membrane-intrinsic antenna, the chlorophyll-a/b-binding, light-harvesting complex II (LHC II), and on the resulting redistribution of absorbed excitation energy from photosystem II to photosystem I. The transition to light state 1 reverses these events and requires a phospho-LHC II phosphatase. Current structures of LHC II reveal little about possible steric effects of phosphorylation. The surface-exposed N-terminal domain of an LHC II polypeptide contains its phosphorylation site and is disordered in its unphosphorylated form. A molecular recognition hypothesis proposes that state transitions are a consequence of movement of LHC II between binding sites on photosystems I and II. In state 1, LHC II forms part of the antenna of photosystem II. In state 2, a unique but as yet unidentified 3-D structure of phospho-LHC II may attach it instead to photosystem I. One possibility is that the LHC II N-terminus becomes ordered upon phosphorylation, adopting a local alpha-helical secondary structure that initiates changes in LHC II tertiary and quaternary structure that sever contact with photosystem II while securing contact with photosystem I. In order to understand redistribution of absorbed excitation energy in photosynthesis we need to know the structure of LHC II in its phosphorylated form, and in its complex with photosystem I.
Collapse
Affiliation(s)
- John F Allen
- Research Department of Genetics, Evolution and Environment, Darwin Building, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|