1
|
Hung TH, Wu ETY, Zeltiņš P, Jansons Ā, Ullah A, Erbilgin N, Bohlmann J, Bousquet J, Birol I, Clegg SM, MacKay JJ. Long-insert sequence capture detects high copy numbers in a defence-related beta-glucosidase gene βglu-1 with large variations in white spruce but not Norway spruce. BMC Genomics 2024; 25:118. [PMID: 38281030 PMCID: PMC10821269 DOI: 10.1186/s12864-024-09978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024] Open
Abstract
Conifers are long-lived and slow-evolving, thus requiring effective defences against their fast-evolving insect natural enemies. The copy number variation (CNV) of two key acetophenone biosynthesis genes Ugt5/Ugt5b and βglu-1 may provide a plausible mechanism underlying the constitutively variable defence in white spruce (Picea glauca) against its primary defoliator, spruce budworm. This study develops a long-insert sequence capture probe set (Picea_hung_p1.0) for quantifying copy number of βglu-1-like, Ugt5-like genes and single-copy genes on 38 Norway spruce (Picea abies) and 40 P. glauca individuals from eight and nine provenances across Europe and North America respectively. We developed local assemblies (Piabi_c1.0 and Pigla_c.1.0), full-length transcriptomes (PIAB_v1 and PIGL_v1), and gene models to characterise the diversity of βglu-1 and Ugt5 genes. We observed very large copy numbers of βglu-1, with up to 381 copies in a single P. glauca individual. We observed among-provenance CNV of βglu-1 in P. glauca but not P. abies. Ugt5b was predominantly single-copy in both species. This study generates critical hypotheses for testing the emergence and mechanism of extreme CNV, the dosage effect on phenotype, and the varying copy number of genes with the same pathway. We demonstrate new approaches to overcome experimental challenges in genomic research in conifer defences.
Collapse
Affiliation(s)
- Tin Hang Hung
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| | - Ernest T Y Wu
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Pauls Zeltiņš
- Latvian State Forest Research Institute "Silava", Salaspils, 2169, Latvia
| | - Āris Jansons
- Latvian State Forest Research Institute "Silava", Salaspils, 2169, Latvia
| | - Aziz Ullah
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Sonya M Clegg
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - John J MacKay
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
2
|
SNP Detection in Pinus pinaster Transcriptome and Association with Resistance to Pinewood Nematode. FORESTS 2022. [DOI: 10.3390/f13060946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pinewood nematode (PWN, Bursaphelenchus xylophilus) is the causal agent of pine wilt disease (PWD), which severely affects Pinus pinaster stands in southwestern Europe. Despite the high susceptibility of P. pinaster, individuals of selected half-sib families have shown genetic variability in survival after PWN inoculation, indicating that breeding for resistance can be a valuable strategy to control PWD. In this work, RNA-seq data from susceptible and resistant plants inoculated with PWN were used for SNP discovery and analysis. A total of 186,506 SNPs were identified, of which 31 were highly differentiated between resistant and susceptible plants, including SNPs in genes involved in cell wall lignification, a process previously linked to PWN resistance. Fifteen of these SNPs were selected for validation through Sanger sequencing and 14 were validated. To evaluate SNP-phenotype associations, 40 half-sib plants were genotyped for six validated SNPs. Associations with phenotype after PWN inoculation were found for two SNPs in two different genes (MEE12 and PCMP-E91), as well as two haplotypes of HIPP41, although significance was not maintained following Bonferroni correction. SNPs here detected may be useful for the development of molecular markers for PWD resistance and should be further investigated in future association studies.
Collapse
|
3
|
Matulja D, Vranješević F, Kolympadi Markovic M, Pavelić SK, Marković D. Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. Molecules 2022; 27:molecules27041449. [PMID: 35209235 PMCID: PMC8879422 DOI: 10.3390/molecules27041449] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
Since the middle of the last century, marine organisms have been identified as producers of chemically and biologically diverse secondary metabolites which have exerted various biological activities including anticancer, anti-inflammatory, antioxidant, antimicrobial, antifouling and others. This review primarily focuses on the marine phenolic compounds and their derivatives with potent anticancer activity, isolated and/or modified in the last decade. Reports on the elucidation of their structures as well as biosynthetic studies and total synthesis are also covered. Presented phenolic compounds inhibited cancer cells proliferation or migration, at sub-micromolar or nanomolar concentrations (lamellarins D (37), M (38), K (39), aspergiolide B (41), fradimycin B (62), makulavamine J (66), mayamycin (69), N-acetyl-N-demethylmayamycin (70) or norhierridin B (75)). In addition, they exhibited anticancer properties by a diverse biological mechanism including induction of apoptosis or inhibition of cell migration and invasive potential. Finally, phlorotannins 1–7 and bromophenols 12–29 represent the most researched phenolic compounds, of which the former are recognized as protective agents against UVB or gamma radiation-induced skin damages. Finally, phenolic metabolites were assorted into six main classes: phlorotannins, bromophenols, flavonoids, coumarins, terpenophenolics, quinones and hydroquinones. The derivatives that could not be attributed to any of the above-mentioned classes were grouped in a separate class named miscellaneous compounds.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Filip Vranješević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Maria Kolympadi Markovic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| |
Collapse
|
4
|
Chemotyping of three Morchella species reveals species- and age-related aroma volatile biomarkers. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Srivastava P, Garg A, Misra RC, Chanotiya CS, Ghosh S. UGT86C11 is a novel plant UDP-glycosyltransferase involved in labdane diterpene biosynthesis. J Biol Chem 2021; 297:101045. [PMID: 34363833 PMCID: PMC8427245 DOI: 10.1016/j.jbc.2021.101045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022] Open
Abstract
Glycosyltransferases constitute a large family of enzymes across all domains of life, but knowledge of their biochemical function remains largely incomplete, particularly in the context of plant specialized metabolism. The labdane diterpenes represent a large class of phytochemicals with many pharmacological benefits, such as anti-inflammatory, hepatoprotective, and anticarcinogenic. The medicinal plant kalmegh (Andrographis paniculata) produces bioactive labdane diterpenes; notably, the C19-hydroxyl diterpene (andrograpanin) is predominantly found as C19-O-glucoside (neoandrographolide), whereas diterpenes having additional hydroxylation(s) at C3 (14-deoxy-11,12-didehydroandrographolide) or C3 and C14 (andrographolide) are primarily detected as aglycones, signifying scaffold-selective C19-O-glucosylation of diterpenes in planta. Here, we analyzed UDP-glycosyltransferase (UGT) activity and diterpene levels across various developmental stages and tissues and found an apparent correlation of UGT activity with the spatiotemporal accumulation of neoandrographolide, the major diterpene C19-O-glucoside. The biochemical analysis of recombinant UGTs preferentially expressed in neoandrographolide-accumulating tissues identified a previously uncharacterized UGT86 member (ApUGT12/UGT86C11) that catalyzes C19-O-glucosylation of diterpenes with strict scaffold selectivity. ApUGT12 localized to the cytoplasm and catalyzed diterpene C19-O-glucosylation in planta. The substrate selectivity demonstrated by the recombinant ApUGT12 expressed in plant and bacterium hosts was comparable to native UGT activity. Recombinant ApUGT12 showed significantly higher catalytic efficiency using andrograpanin compared with 14-deoxy-11,12-didehydroandrographolide and trivial activity using andrographolide. Moreover, ApUGT12 silencing in plants led to a drastic reduction in neoandrographolide content and increased levels of andrograpanin. These data suggest the involvement of ApUGT12 in scaffold-selective C19-O-glucosylation of labdane diterpenes in plants. This knowledge of UGT86 function might help in developing plant chemotypes and synthesis of pharmacologically relevant diterpenes.
Collapse
Affiliation(s)
- Payal Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anchal Garg
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Rajesh Chandra Misra
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Chandan Singh Chanotiya
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Ji C, Tanabe P, Shi Q, Qian L, McGruer V, Magnuson JT, Wang X, Gan J, Gadepalli RS, Rimoldi J, Schlenk D. Stage Dependent Enantioselective Metabolism of Bifenthrin in Embryos of Zebrafish ( Danio rerio) and Japanese Medaka ( Oryzias latipes). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9087-9096. [PMID: 34106693 DOI: 10.1021/acs.est.1c01663] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bifenthrin (BF) is a widely used pyrethroid that has been frequently detected in surface waters. Previous studies indicated that BF had antiestrogenic activity in zebrafish embryos but estrogenic activity in posthatch fish. To determine whether age-related differences in metabolism contribute to the endocrine effects in developing fish, embryos from zebrafish and Japanese medaka were exposed to BF before and after liver development. Since the commercial mixture of BF is an isomer-enriched product containing two enantiomers (1R-cis-BF and 1S-cis-BF), enantioselective metabolism was also evaluated. The estrogenic metabolite, 4-hydroxybifenthrin (4-OH-BF) was identified in zebrafish embryos, and formation was higher in animals after liver development (>48 hpf). Treatments with β-glucuronidase indicated that 4-OH-BF underwent conjugation in embryos. Formation was reduced by cotreatment of the cytochrome P450 (CYP450) inhibitor, ketoconazole. Formation of 4-OH-BF was greater when treated with 1R-cis-BF compared to the S-enantiomer. However, metabolites were not observed in medaka embryos. These data indicate enantioselective oxidation of BF to an estrogenic metabolite occurs in zebrafish embryos and, since it is increased after liver development, may partially explain estrogenic activity observed in older animals. The lack of activity in medaka suggests species-specific effects with BF metabolism and may influence risk assessment strategies in wildlife.
Collapse
Affiliation(s)
- Chenyang Ji
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, P. R. China
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Philip Tanabe
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Le Qian
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- College of Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Victoria McGruer
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Xinru Wang
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, P. R. China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Rama S Gadepalli
- Department of Biomolecular Sciences, College of Pharmacy, University of Mississipi, University, Mississippi 38677, United States
| | - John Rimoldi
- Department of Biomolecular Sciences, College of Pharmacy, University of Mississipi, University, Mississippi 38677, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
7
|
Beaulieu J, Nadeau S, Ding C, Celedon JM, Azaiez A, Ritland C, Laverdière J, Deslauriers M, Adams G, Fullarton M, Bohlmann J, Lenz P, Bousquet J. Genomic selection for resistance to spruce budworm in white spruce and relationships with growth and wood quality traits. Evol Appl 2020; 13:2704-2722. [PMID: 33294018 PMCID: PMC7691460 DOI: 10.1111/eva.13076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
With climate change, the pressure on tree breeding to provide varieties with improved resilience to biotic and abiotic stress is increasing. As such, pest resistance is of high priority but has been neglected in most tree breeding programs, given the complexity of phenotyping for these traits and delays to assess mature trees. In addition, the existing genetic variation of resistance and its relationship with productivity should be better understood for their consideration in multitrait breeding. In this study, we evaluated the prospects for genetic improvement of the levels of acetophenone aglycones (AAs) in white spruce needles, which have been shown to be tightly linked to resistance to spruce budworm. Furthermore, we estimated the accuracy of genomic selection (GS) for these traits, allowing selection at a very early stage to accelerate breeding. A total of 1,516 progeny trees established on five sites and belonging to 136 full-sib families from a mature breeding population in New Brunswick were measured for height growth and genotyped for 4,148 high-quality SNPs belonging to as many genes along the white spruce genome. In addition, 598 trees were assessed for levels of AAs piceol and pungenol in needles, and 578 for wood stiffness. GS models were developed with the phenotyped trees and then applied to predict the trait values of unphenotyped trees. AAs were under moderate-to-high genetic control (h 2: 0.43-0.57) with null or marginally negative genetic correlations with other traits. The prediction accuracy of GS models (GBLUP) for AAs was high (PAAC: 0.63-0.67) and comparable or slightly higher than pedigree-based (ABLUP) or BayesCπ models. We show that AA traits can be improved and that GS speeds up the selection of improved trees for insect resistance and for growth and wood quality traits. Various selection strategies were tested to optimize multitrait gains.
Collapse
Affiliation(s)
- Jean Beaulieu
- Canada Research Chair in Forest GenomicsInstitute of Systems and Integrative Biology and Systems, and Centre for Forest ResearchUniversité LavalQuébecQCCanada
| | - Simon Nadeau
- Natural Resources CanadaCanadian Wood Fibre CentreQuébecQCCanada
| | - Chen Ding
- Canada Research Chair in Forest GenomicsInstitute of Systems and Integrative Biology and Systems, and Centre for Forest ResearchUniversité LavalQuébecQCCanada
- Present address:
Western Gulf Forest Tree Improvement ProgramTexas A&M Forest ServiceForest Science LaboratoryCollege StationTXUSA
| | - Jose M. Celedon
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
| | - Aïda Azaiez
- Canada Research Chair in Forest GenomicsInstitute of Systems and Integrative Biology and Systems, and Centre for Forest ResearchUniversité LavalQuébecQCCanada
| | - Carol Ritland
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| | - Jean‐Philippe Laverdière
- Canada Research Chair in Forest GenomicsInstitute of Systems and Integrative Biology and Systems, and Centre for Forest ResearchUniversité LavalQuébecQCCanada
| | | | | | - Michele Fullarton
- Forest Development SectionNatural Resources and Energy DevelopmentGovernment of New BrunswickIsland ViewNBCanada
| | - Joerg Bohlmann
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Patrick Lenz
- Canada Research Chair in Forest GenomicsInstitute of Systems and Integrative Biology and Systems, and Centre for Forest ResearchUniversité LavalQuébecQCCanada
- Natural Resources CanadaCanadian Wood Fibre CentreQuébecQCCanada
| | - Jean Bousquet
- Canada Research Chair in Forest GenomicsInstitute of Systems and Integrative Biology and Systems, and Centre for Forest ResearchUniversité LavalQuébecQCCanada
| |
Collapse
|
8
|
Petit E, Berger M, Camborde L, Vallejo V, Daydé J, Jacques A. Development of screening methods for functional characterization of UGTs from Stevia rebaudiana. Sci Rep 2020; 10:15137. [PMID: 32934264 PMCID: PMC7493886 DOI: 10.1038/s41598-020-71746-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Glycosylation is a key modification that contributes to determine bioactivity and bioavailability of plant natural products, including that of terpenoids and steviol glycosides (SVglys). It is mediated by uridine-diphosphate glycosyltransferases (UGTs), that achieve their activity by transferring sugars on small molecules. Thus, the diversity of SVglys is due to the number, the position and the nature of glycosylations on the hydroxyl groups in C-13 and C-19 of steviol. Despite the intense sweetener property of SVglys and the numerous studies conducted, the SVglys biosynthetic pathway remains largely unknown. More than 60 SVglys and 68 putative UGTs have been identified in Stevia rebaudiana. This study aims to provide methods to characterize UGTs putatively involved in SVglys biosynthesis. After agroinfiltration-based transient gene expression in Nicotiana benthamiana, functionality of the recombinant UGT can be tested simply and directly in plants expressing it or from a crude extract. The combined use of binary vectors from pGWBs series to produce expression vectors containing the stevia's UGT, enables functionality testing with many substrates as well as other applications for further analysis, including subcellular localization.
Collapse
Affiliation(s)
- Eva Petit
- Equipe Physiologie, Pathologie et Génétique Végétales (PPGV), INP-PURPAN, Université de Toulouse, 75 voie du TOEC, BP 57611, 31076, Toulouse Cedex 03, France
| | - Monique Berger
- Equipe Physiologie, Pathologie et Génétique Végétales (PPGV), INP-PURPAN, Université de Toulouse, 75 voie du TOEC, BP 57611, 31076, Toulouse Cedex 03, France.
| | - Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales (LRSV), CNRS, Université Paul Sabatier (UPS), Toulouse, France
| | | | - Jean Daydé
- Equipe Physiologie, Pathologie et Génétique Végétales (PPGV), INP-PURPAN, Université de Toulouse, 75 voie du TOEC, BP 57611, 31076, Toulouse Cedex 03, France
| | - Alban Jacques
- Equipe Physiologie, Pathologie et Génétique Végétales (PPGV), INP-PURPAN, Université de Toulouse, 75 voie du TOEC, BP 57611, 31076, Toulouse Cedex 03, France
| |
Collapse
|
9
|
Celedon JM, Whitehill JGA, Madilao LL, Bohlmann J. Gymnosperm glandular trichomes: expanded dimensions of the conifer terpenoid defense system. Sci Rep 2020; 10:12464. [PMID: 32719384 PMCID: PMC7385631 DOI: 10.1038/s41598-020-69373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Glandular trichomes (GTs) are defensive structures that produce and accumulate specialized metabolites and protect plants against herbivores, pathogens, and abiotic stress. GTs have been extensively studied in angiosperms for their roles in defense and biosynthesis of high-value metabolites. In contrast, trichomes of gymnosperms have been described in fossilized samples, but have not been studied in living plants. Here, we describe the characterization of GTs on young stems of a hybrid white spruce. Metabolite and histological analysis of spruce GTs support a glandular function with accumulation of a diverse array of mono-, sesqui- and diterpenes including diterpene methylesters. Methylated diterpenes have previously been associated with insect resistance in white spruce. Headspeace analysis of spruce GTs showed a profile of volatiles dominated by monoterpenes and a highly diverse array of sesquiterpenes. Spruce GTs appear early during shoot growth, prior to the development of a lignified bark and prior to accumulation of terpenes in needles. Spruce GTs may provide an early, terpene-based chemical defense system at a developmental stage when young shoots are particularly vulnerable to foliage and shoot feeding insects, and before the resin duct system characteristic of conifers has fully developed.
Collapse
Affiliation(s)
- Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lufiani L Madilao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
10
|
Parent GJ, Méndez‐Espinoza C, Giguère I, Mageroy MH, Charest M, Bauce É, Bohlmann J, MacKay JJ. Hydroxyacetophenone defenses in white spruce against spruce budworm. Evol Appl 2020; 13:62-75. [PMID: 31892944 PMCID: PMC6935585 DOI: 10.1111/eva.12885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/17/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
We review a recently discovered white spruce (Picea glauca) chemical defense against spruce budworm (Choristoneura fumiferana) involving hydroxyacetophenones. These defense metabolites detected in the foliage accumulate variably as the aglycons, piceol and pungenol, or the corresponding glucosides, picein and pungenin. We summarize current knowledge of the genetic, genomic, molecular, and biochemical underpinnings of this defense and its effects on C. fumiferana. We present an update with new results on the ontogenic variation and the phenological window of this defense, including analysis of transcript responses in P. glauca to C. fumiferana herbivory. We also discuss this chemical defense from an evolutionary and a breeding context.
Collapse
Affiliation(s)
- Geneviève J. Parent
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
- Institut de biologie intégrative et des systèmesUniversité LavalQuébecQCCanada
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Claudia Méndez‐Espinoza
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
- Institut de biologie intégrative et des systèmesUniversité LavalQuébecQCCanada
- Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas ForestalesInstituto Nacional de Investigaciones Forestales, Agrícolas y PecuariasCiudad de MéxicoMexico
| | - Isabelle Giguère
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
- Institut de biologie intégrative et des systèmesUniversité LavalQuébecQCCanada
| | - Melissa H. Mageroy
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Norwegian Institute for Bioeconomy ResearchÅsNorway
| | - Martin Charest
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
| | - Éric Bauce
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
| | - Joerg Bohlmann
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
| | - John J. MacKay
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
- Institut de biologie intégrative et des systèmesUniversité LavalQuébecQCCanada
- Department of Plant SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
11
|
Whitehill JG, Bohlmann J. A molecular and genomic reference system for conifer defence against insects. PLANT, CELL & ENVIRONMENT 2019; 42:2844-2859. [PMID: 31042808 PMCID: PMC6852437 DOI: 10.1111/pce.13571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 05/29/2023]
Abstract
Insect pests are part of natural forest ecosystems contributing to forest rejuvenation but can also cause ecological disturbance and economic losses that are expected to increase with climate change. The white pine or spruce weevil (Pissodes strobi) is a pest of conifer forests in North America. Weevil-host interactions with various spruce (Picea) species have been explored as a genomic and molecular reference system for conifer defence against insects. Interactions occur in two major phases of the insect life cycle. In the exophase, adult weevils are free-moving and display behaviour of host selection for oviposition that is affected by host traits. In the endophase, insects live within the host where mobility and development from eggs to young adults are affected by a complex system of host defences. Genetic resistance exists in several spruce species and involves synergism of constitutive and induced chemical and physical defences that comprise the conifer defence syndrome. Here, we review conifer defences that disrupt the weevil life cycle and mechanisms by which trees resist weevil attack. We highlight molecular and genomic aspects and a possible role for the weevil microbiome. Knowledge of this conifer defence system is supporting forest health strategies and tree breeding for insect resistance.
Collapse
Affiliation(s)
| | - Jörg Bohlmann
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of BotanyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| |
Collapse
|
12
|
Donkor D, Mirzahosseini Z, Bede J, Bauce E, Despland E. Detoxification of host plant phenolic aglycones by the spruce budworm. PLoS One 2019; 14:e0208288. [PMID: 31095557 PMCID: PMC6522000 DOI: 10.1371/journal.pone.0208288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/28/2019] [Indexed: 11/18/2022] Open
Abstract
This study examines the post-ingestive fate of two host-plant derived small-molecule phenolics (the acetophenones piceol and pungenol) that have previously been shown to be toxic to the outbreaking forest pest, spruce budworm (Choristoneura fumiferana). We test first whether these compounds are transformed during passage through the midgut, and second whether the budworm upregulates activity of the detoxification enzyme glutathione-s-transferase (GST) in response to feeding on these compounds. Insects were reared on either foliage or artificial diet to the fourth instar, when they were transferred individually to one of two treatment diets, either control or phenolic-laced, for approximately 10 days, after which midguts were dissected out and used for Bradford soluble protein and GST enzyme activity analysis. Frass was collected and subjected to HPLC-DAD-MS. HPLC showed that the acetophenones do not autoxidize under midgut pH conditions, but that glucose- and glutathione- conjugates are present in the frass of insects fed the phenolic-laced diet. GST enzyme activity increases in insects fed the phenolic-laced diet, in both neutral pH and alkaline assays. These data show that the spruce budwom exhibits counter-adaptations to plant phenolics similar to those seen in angiosperm feeders, upregulating an important detoxifying enzyme (GST) and partially conjugating these acetophenones prior to elimination, but that these counter-measures are not totally effective at mitigating toxic effects of the ingested compounds in the context of our artifical-diet based laboratory experiment.
Collapse
Affiliation(s)
- Dominic Donkor
- Biology Department, Concordia University, Montreal, Canada
| | | | - Jacquie Bede
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Canada
| | - Eric Bauce
- Département des sciences du bois et de la forêt, Université Laval, Ste-Foy, Canada
| | - Emma Despland
- Biology Department, Concordia University, Montreal, Canada
- * E-mail:
| |
Collapse
|
13
|
Meng X, Li Y, Zhou T, Sun W, Shan X, Gao X, Wang L. Functional Differentiation of Duplicated Flavonoid 3- O-Glycosyltransferases in the Flavonol and Anthocyanin Biosynthesis of Freesia hybrida. FRONTIERS IN PLANT SCIENCE 2019; 10:1330. [PMID: 31681396 PMCID: PMC6813240 DOI: 10.3389/fpls.2019.01330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/24/2019] [Indexed: 05/13/2023]
Abstract
Flavonols and anthocyanins are two widely distributed groups of flavonoids that occurred apart during plant evolution and biosynthesized by shared specific enzymes involved in flavonoid metabolism. UDP-glucose, flavonoid 3-O-glycosyltransferase (UF3GT), is one of the common enzymes which could catalyze the glycosylation of both flavonol and anthocyanidin aglycons simultaneously in vitro. However, whether and how UF3GT paralogous genes function diversely at the biochemical and transcriptional levels are largely unknown. Recently, Fh3GT1 was identified to be a member of UF3GTs in Freesia hybrida. However, its expression patterns and enzymatic characteristics could not coincide well with flavonol accumulation. In an attempt to characterize other flavonoids, especially flavonol glycosyltransferase genes in Freesia, three closest candidate UFGT genes-Fh3GT2, Fh3GT3, and Fh3GT4-were mined from the Freesia transcriptomic database and isolated from the flowers of the widely distributed Freesia cultivar, Red River®. Based on bioinformatic analysis and enzymatic assays, Fh3GT2 turned out to be another bona fide glycosyltransferase gene. Biochemical analysis further proved that Fh3GT2 preferentially glucosylated kaempferol while Fh3GT1 controlled the glucosylation of quercetin and anthocyanidins. In addition, transfection assays demonstrated that Fh3GT2 could be mainly activated by the flavonol regulator FhMYBF1 or the anthocyanin regulator FhPAP1, whereas Fh3GT1 could only be activated by FhPAP1. These findings suggested that Fh3GTs might have functionally diverged in flavonoid biosynthesis at both the biochemical and transcriptional levels.
Collapse
Affiliation(s)
- Xiangyu Meng
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Tongtong Zhou
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Wei Sun
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, China
- *Correspondence: Xiang Gao, ; Li Wang,
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- *Correspondence: Xiang Gao, ; Li Wang,
| |
Collapse
|
14
|
Lamara M, Parent GJ, Giguère I, Beaulieu J, Bousquet J, MacKay JJ. Association genetics of acetophenone defence against spruce budworm in mature white spruce. BMC PLANT BIOLOGY 2018; 18:231. [PMID: 30309315 PMCID: PMC6182838 DOI: 10.1186/s12870-018-1434-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Outbreaks of spruce budworm (SBW, Choristoneura fumiferana Clem.) cause major recurrent damage in boreal conifers such as white spruce (Picea glauca [Moench] Voss) and large losses of forest biomass in North America. Although defensive phenolic compounds have recently been linked to chemical resistance against SBW, their genetic basis remains poorly understood in forest trees, especially in conifers. Here, we used diverse association genetics approaches to discover genes and their variants that may control the accumulation of acetophenones, and dissect the genetic architecture of these defence compounds against SBW in white spruce mature trees. RESULTS Out of 4747 single nucleotide polymorphisms (SNPs) from 2312 genes genotyped in a population of 211 unrelated individuals, genetic association analyses identified 35 SNPs in 33 different genes that were significantly associated with the defence traits by using single-locus, multi-locus and multi-trait approaches. The multi-locus approach was particularly effective at detecting SNP-trait associations that explained a large fraction of the phenotypic variance (from 20 to 43%). Significant genes were regulatory including the NAC transcription factor, or they were involved in carbohydrate metabolism, falling into the binding, catalytic or transporter activity functional classes. Most of them were highly expressed in foliage. Weak positive phenotypic correlations were observed between defence and growth traits, indicating little or no evidence of defence-growth trade-offs. CONCLUSIONS This study provides new insights on the genetic architecture of tree defence traits, contributing to our understanding of the physiology of resistance mechanisms to biotic factors and providing a basis for the genetic improvement of the constitutive defence of white spruce against SBW.
Collapse
Affiliation(s)
- Mebarek Lamara
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| | | | - Isabelle Giguère
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
| | - Jean Beaulieu
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| | - Jean Bousquet
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| | - John J. MacKay
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB UK
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| |
Collapse
|
15
|
Parent GJ, Giguère I, Mageroy M, Bohlmann J, MacKay JJ. Evolution of the biosynthesis of two hydroxyacetophenones in plants. PLANT, CELL & ENVIRONMENT 2018; 41:620-629. [PMID: 29314043 DOI: 10.1111/pce.13134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
Acetophenones are phenolic metabolites of plant species. A metabolic route for the biosynthesis and release of 2 defence-related hydroxyacetophenones in white spruce (Picea glauca) was recently proposed to involve 3 phases: (a) biosynthesis of the acetophenone aglycons catalysed by a currently unknown set of enzymes, (b) formation and accumulation of the corresponding glycosides catalysed by a glucosyltransferase, and (c) release of the aglycons catalysed by a glucosylhydrolase (PgβGLU-1). We tested if this biosynthetic model is conserved across Pinaceae and land plant species. We assayed and surveyed the literature and sequence databases for possible patterns of the presence of the acetophenone aglycons piceol and pungenol and their glucosides, as well as sequences and expression of Pgβglu-1 orthologues. In the Pinaceae, the 3 phases of the biosynthetic model are present and differences in expression of Pgβglu-1 gene orthologues explain some of the interspecific variation in hydroxyacetophenones. The phylogenetic signal in the metabolite phenotypes was low across species of 6 plant divisions. Putative orthologues of PgβGLU-1 do not form a monophyletic group in species producing hydroxyacetophenones. The biosynthetic model for acetophenones appears to be conserved across Pinaceae, whereas convergent evolution has led to the production of acetophenone glucosides across land plants.
Collapse
Affiliation(s)
- Geneviève J Parent
- Centre d'étude de la forêt, Département des sciences du bois et de la forêt, Université Laval, Québec City, Québec, G1V 0A6, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec City, Québec, G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Isabelle Giguère
- Centre d'étude de la forêt, Département des sciences du bois et de la forêt, Université Laval, Québec City, Québec, G1V 0A6, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Melissa Mageroy
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Norwegian Institute for Bioeconomy Research, Ås, 1433, Norway
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - John J MacKay
- Centre d'étude de la forêt, Département des sciences du bois et de la forêt, Université Laval, Québec City, Québec, G1V 0A6, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec City, Québec, G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| |
Collapse
|