1
|
Egea I, Barragán-Lozano T, Estrada Y, Jáquez-Gutiérrez M, Plasencia FA, Atarés A, Garcia-Sogo B, Capel C, Yuste-Lisbona FJ, Egea-Sánchez JM, Flores FB, Angosto T, Moreno V, Lozano R, Pineda B. Respiratory burst oxidase G (SlRBOHG): A key regulator of H 2O 2-Mediated Na + homeostasis and salt tolerance in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109683. [PMID: 40037174 DOI: 10.1016/j.plaphy.2025.109683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Regulation of sodium homeostasis is vital for plant responses to salinity. In this study, we characterized two allelic tomato mutants, sodium gatherer1-2 (sga1-2), which show extreme salt sensitivity. The mutants display early severe chlorosis, swelling of aerial parts, and eventual leaf desiccation, leading to plant death. Mapping-by-sequencing identified mutations in the SlRBOHG gene, encoding a plasma membrane NADPH oxidase, as the cause of this phenotype. To the best of our knowledge, these are the first RBOH gene family knockout mutants identified in tomato to date. Physiological analyses revealed that sga1-2 mutants exhibit significantly increased Na + transport from roots to shoots, reduced K+ uptake, and extremely high Na+/K+ ratios, particularly in the shoots, explaining their salt hypersensitivity. CRISPR/Cas9 knockouts of SlRBOHG reproduced the sga1-2 mutant phenotype and exhibited the same ion homeostasis alterations. At the molecular level, sga1-2 mutants show reduced expression of key Na + transporter genes, including SlSOS1, SlHKT1s, and SlNHXs. Additionally, while wild-type plants (WT) show an increase in H2O2 concentration in the roots following salt treatment, the mutants do not exhibit this response. The inhibition of salinity-induced H2O2 increase in WT plants, using the NADPH oxidase inhibitor DPI, also led to the suppression of SlHKT1;2 gene expression, which was associated with Na+ accumulation in the leaves. However, the treatment of WT plant with DPI did not alter K+ homeostasis. These findings demonstrate that SlRBOHG-mediated H2O2 production is critical for conferring salt tolerance in tomato plants, mainly by activating mechanisms that maintain Na+ homeostasis in the plant.
Collapse
Affiliation(s)
- Isabel Egea
- Centro de Edafología y Biología Aplicada Del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, 30100, Spain.
| | - Teresa Barragán-Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain.
| | - Yanira Estrada
- Centro de Edafología y Biología Aplicada Del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, 30100, Spain.
| | - Marybel Jáquez-Gutiérrez
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain.
| | - Félix Antonio Plasencia
- Centro de Edafología y Biología Aplicada Del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, 30100, Spain.
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain.
| | - Begoña Garcia-Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain.
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain.
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain.
| | - José María Egea-Sánchez
- Centro de Edafología y Biología Aplicada Del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, 30100, Spain.
| | - Francisco Borja Flores
- Centro de Edafología y Biología Aplicada Del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, 30100, Spain.
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain.
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain.
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain.
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain.
| |
Collapse
|
2
|
Lu S, Sun Y, Liu X, Wang F, Luan S, Wang H. The SlbHLH92 transcription factor enhances salt stress resilience by fine-tuning hydrogen sulfide biosynthesis in tomato. Int J Biol Macromol 2024; 282:137294. [PMID: 39510459 DOI: 10.1016/j.ijbiomac.2024.137294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Ongoing soil salinization severely hampers plant growth and the sustainability of global crops production. Hydrogen sulfide (H2S), acting as a critical gaseous signaling molecule, plays a vital role in plant response to various environmental cues such as salt stress. Nonetheless, it is not well understood how the transcriptional network regulates H2S production in response to salt stress in tomato. Herein, we determine that the bHLH transcription factor SlbHLH92 functions as a transcriptional activator in tomato (Solanum lycopersicum L.), upregulating the expression of the L-CYSTEINE DESULFHYDRASE 1 (SlLCD1) gene involved in H2S biosynthesis, thereby enhancing the plants' tolerance to salt stress. When exposed to salt stress, overexpression of SlbHLH92 in tomato leads to enhanced salt tolerance compared to wild-type plants. In contrast, suppression of SlbHLH92 expression with RNAi silencing results in increased sensitivity to salt stress. Subsequent molecular and biochemical investigations confirm that the salt-induced SlbHLH92 upregulates the expression of SlLCD1, leading to an increase in H₂S levels, as well as other salt-responsive genes (SlCBL10 and SlVQ16), by directly binding to specific cis-elements in their promoter regions. Furthermore, the VQ-motif containing protein SlVQ16 physically interacts with SlbHLH92, thereby promoting an increase in its transcriptional activity. Taken together, our study reveals an emerging mechanism in which the SlbHLH92-SlVQ16-H2S signaling cascade contributes to enhancing salt tolerance in tomato, presenting potential genetic targets for breeding salt-tolerant tomato cultivars.
Collapse
Affiliation(s)
- Songchong Lu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Sheng Luan
- Department of Plant and Microbial biology, University of California, Berkeley, CA 94720, USA.
| | - Hui Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
3
|
Miao C, Zhang Y, Cui J, Zhang H, Wang H, Jin H, Lu P, He L, Zhou Q, Yu J, Ding X. An Enhanced Interaction of Graft and Exogenous SA on Photosynthesis, Phytohormone, and Transcriptome Analysis in Tomato under Salinity Stress. Int J Mol Sci 2024; 25:10799. [PMID: 39409129 PMCID: PMC11477039 DOI: 10.3390/ijms251910799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Salt stress can adversely affect global agricultural productivity, necessitating innovative strategies to mitigate its adverse effects on plant growth and yield. This study investigated the effects of exogenous salicylic acid (SA), grafting (G), and their combined application (GSA) on various parameters in tomato plants subjected to salt stress. The analysis focused on growth characteristics, photosynthesis, osmotic stress substances, antioxidant enzyme activity, plant hormones, ion content, and transcriptome profiles. Salt stress severely inhibits the growth of tomato seedlings. However, SA, G, and GSA improved the plant height by 22.5%, 26.5%, and 40.2%; the stem diameter by 11.0%, 26.0%, and 23.7%; the shoot fresh weight by 76.3%, 113.2%, and 247.4%; the root fresh weight by 150.9%, 238.6%, and 286.0%; the shoot dry weight by 53.5%, 65.1%, and 162.8%; the root dry weight by 150.0%, 150.0%, and 166.7%, and photosynthesis by 4.0%, 16.3%, and 32.7%, with GSA presenting the most pronounced positive effect. Regarding the osmotic stress substances, the proline content increased significantly by more than 259.2% in all treatments, with the highest levels in GSA. Under salt stress, the tomato seedlings accumulated high Na+ levels; the SA, G, and GSA treatments enhanced the K+ and Ca2+ absorption while reducing the Na+ and Al3+ levels, thereby alleviating the ion toxicity. The transcriptome analysis indicated that SA, G, and GSA influenced tomato growth under salt stress by regulating specific signaling pathways, including the phytohormone and MAPK pathways, which were characterized by increased endogenous SA and decreased ABA content. The combined application of grafting and exogenous SA could be a promising strategy for enhancing plant tolerance to salt stress, offering potential solutions for sustainable agriculture in saline environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai 201403, China; (C.M.)
| |
Collapse
|
4
|
Qin X, Zhang X, Ma C, Yang X, Hu Y, Liu Y, Hu Y, Wang D, Xiaodong Lv, Wang C, Shou J, Li B. Rice OsCIPK17-OsCBL2/3 module enhances shoot Na + exclusion and plant salt tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109034. [PMID: 39226761 DOI: 10.1016/j.plaphy.2024.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Soil salinity is detrimental to plant growth and remains a major threat to crop productivity of the world. Plants employ various physiological and molecular mechanisms to maintain growth under salt stress. Identification of genes and genetic loci underlying plant salt tolerance holds the key to breeding salt tolerant crops. CIPK-CBL pathways regulate adaptive responses of plants (especially ion transport) to abiotic stresses via fine-tuned Ca2+ signal transduction. In this study, we showed that over-expression of OsCIPK17 in Arabidopsis enhanced primary root elongation under salt stress, which is in a Ca2+ dependent manner. Further investigation revealed that, under salt stress, OsCIPK17 transcript level was significantly induced and its protein moved from the cytosol to the tonoplast. Using both Y2H and BiFC, tonoplast-localised OsCBL2 and OsCBL3 were shown to interact with OsCIPK17. Interestingly, over-expressing salt-induced OsCBL2 or OsCBL3 in Arabidopsis led to enhanced primary root elongation under salt stress. In this process, OsCIPK17 was shown recruited to the tonoplast (similar to the effect of salt stress). Furthermore, transgenic Arabidopsis lines individually over-expressing OsCIPK17, OsCBL2 and OsCBL3 all demonstrated larger biomass and less Na + accumulation in the shoot under salt stress. All data combined suggest that OsCIPK17- OsCBL2/3 module is a major component of shoot Na+ exclusion and therefore plant salt tolerance, which is through enhanced Na + compartmentation into the vacuole in the root. OsCIPK17 and OsCBL2/3 are therefore potential genetic targets that can be used for delivering salt tolerant rice cultivars.
Collapse
Affiliation(s)
- Xin Qin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, Gansu Province, Lanzhou 730000, China
| | - Xiaohua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, Gansu Province, Lanzhou 730000, China
| | - Chenyujie Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, Gansu Province, Lanzhou 730000, China
| | - Xue Yang
- Jiayuguan Ecological and Environmental Monitoring Center, Jiayuguan 735100, China
| | - Yibo Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, Gansu Province, Lanzhou 730000, China
| | - Yuan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, Gansu Province, Lanzhou 730000, China
| | - Yunfei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, Gansu Province, Lanzhou 730000, China
| | - Dan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, Gansu Province, Lanzhou 730000, China
| | - Xiaodong Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, Gansu Province, Lanzhou 730000, China
| | - Chao Wang
- College of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Jianxin Shou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; College of Life Sciences, Shaoxing University, Shaoxing 312000, China.
| | - Bo Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
5
|
Song W, Gao X, Li H, Li S, Wang J, Wang X, Wang T, Ye Y, Hu P, Li X, Fu B. Transcriptome analysis and physiological changes in the leaves of two Bromus inermis L. genotypes in response to salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1313113. [PMID: 38162311 PMCID: PMC10755925 DOI: 10.3389/fpls.2023.1313113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Soil salinity is a major factor threatening the production of crops around the world. Smooth bromegrass (Bromus inermis L.) is a high-quality grass in northern and northwestern China. Currently, selecting and utilizing salt-tolerant genotypes is an important way to mitigate the detrimental effects of salinity on crop productivity. In our research, salt-tolerant and salt-sensitive varieties were selected from 57 accessions based on a comprehensive evaluation of 22 relevant indexes, and their salt-tolerance physiological and molecular mechanisms were further analyzed. Results showed significant differences in salt tolerance between 57 genotypes, with Q25 and Q46 considered to be the most salt-tolerant and salt-sensitive accessions, respectively, compared to other varieties. Under saline conditions, the salt-tolerant genotype Q25 not only maintained significantly higher photosynthetic performance, leaf relative water content (RWC), and proline content but also exhibited obviously lower relative conductivity and malondialdehyde (MDA) content than the salt-sensitive Q46 (p < 0.05). The transcriptome sequencing indicated 15,128 differentially expressed genes (DEGs) in Q46, of which 7,885 were upregulated and 7,243 downregulated, and 12,658 DEGs in Q25, of which 6,059 were upregulated and 6,599 downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the salt response differences between Q25 and Q46 were attributed to the variable expression of genes associated with plant hormone signal transduction and MAPK signaling pathways. Furthermore, a large number of candidate genes, related to salt tolerance, were detected, which involved transcription factors (zinc finger proteins) and accumulation of compatible osmolytes (glutathione S-transferases and pyrroline-5-carboxylate reductases), etc. This study offers an important view of the physiological and molecular regulatory mechanisms of salt tolerance in two smooth bromegrass genotypes and lays the foundation for further identification of key genes linked to salt tolerance.
Collapse
Affiliation(s)
- Wenxue Song
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xueqin Gao
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
| | - Huiping Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Shuxia Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
| | - Jing Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xing Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Tongrui Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yunong Ye
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Pengfei Hu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaohong Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| |
Collapse
|
6
|
Li J, Zhou X, Wang Y, Song S, Ma L, He Q, Lu M, Zhang K, Yang Y, Zhao Q, Jin W, Jiang C, Guo Y. Inhibition of the maize salt overly sensitive pathway by ZmSK3 and ZmSK4. J Genet Genomics 2023; 50:960-970. [PMID: 37127254 DOI: 10.1016/j.jgg.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Soil salinity is a worldwide problem that adversely affects plant growth and crop productivity. The salt overly sensitive (SOS) pathway is evolutionarily conserved and essential for plant salt tolerance. In this study, we reveal how the maize shaggy/glycogen synthase kinase 3-like kinases ZmSK3 and ZmSK4, orthologs of brassinosteroid insensitive 2 in Arabidopsis thaliana, regulate the maize SOS pathway. ZmSK3 and ZmSK4 interact with and phosphorylate ZmSOS2, a core member of the maize SOS pathway. The mutants defective in ZmSK3 or ZmSK4 are hyposensitive to salt stress, with higher salt-induced activity of ZmSOS2 than that in the wild type. Furthermore, the Ca2+ sensors ZmSOS3 and ZmSOS3-like calcium binding protein 8 (ZmSCaBP8) activate ZmSOS2 to maintain Na+/K+ homeostasis under salt stress and may participate in the regulation of ZmSOS2 by ZmSK3 and ZmSK4. These findings discover the regulation of the maize SOS pathway and provide important gene targets for breeding salt-tolerant maize.
Collapse
Affiliation(s)
- Jianfang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xueyan Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shu Song
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian He
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minhui Lu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China
| | - Kaina Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China; National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China.
| |
Collapse
|
7
|
Hunpatin OS, Yuan G, Nong T, Shi C, Wu X, Liu H, Ning Y, Wang Q. The Roles of Calcineurin B-like Proteins in Plants under Salt Stress. Int J Mol Sci 2023; 24:16958. [PMID: 38069281 PMCID: PMC10707636 DOI: 10.3390/ijms242316958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Salinity stands as a significant environmental stressor, severely impacting crop productivity. Plants exposed to salt stress undergo physiological alterations that influence their growth and development. Meanwhile, plants have also evolved mechanisms to endure the detrimental effects of salinity-induced salt stress. Within plants, Calcineurin B-like (CBL) proteins act as vital Ca2+ sensors, binding to Ca2+ and subsequently transmitting signals to downstream response pathways. CBLs engage with CBL-interacting protein kinases (CIPKs), forming complexes that regulate a multitude of plant growth and developmental processes, notably ion homeostasis in response to salinity conditions. This review introduces the repercussions of salt stress, including osmotic stress, diminished photosynthesis, and oxidative damage. It also explores how CBLs modulate the response to salt stress in plants, outlining the functions of the CBL-CIPK modules involved. Comprehending the mechanisms through which CBL proteins mediate salt tolerance can accelerate the development of cultivars resistant to salinity.
Collapse
Affiliation(s)
- Oluwaseyi Setonji Hunpatin
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guang Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tongjia Nong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuhan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
| | - Yang Ning
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
| |
Collapse
|
8
|
Estrada Y, Plasencia F, Ortíz-Atienza A, Faura C, Flores FB, Lozano R, Egea I. A novel function of the tomato CALCINEURIN-B LIKE 10 gene as a root-located negative regulator of salt stress. PLANT, CELL & ENVIRONMENT 2023; 46:3433-3444. [PMID: 37555654 DOI: 10.1111/pce.14679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Climate change exacerbates abiotic stresses like salinization, negatively impacting crop yield, so development of strategies, like using salt-tolerant rootstocks, is crucial. The CALCINEURIN B-LIKE 10 (SlCBL10) gene has been previously identified as a positive regulator of salt tolerance in the tomato shoot. Here, we report a different function of SlCBL10 in tomato shoot and root, as disruption of SlCBL10 only induced salt sensitivity when it was used in the scion but not in the rootstock. The use of SlCBL10 silencing rootstocks (Slcbl10 mutant and RNAi line) improved salt tolerance on the basis of fruit yield. These changes were associated with improved Na+ and K+ homoeostasis, as SlCBL10 silencing reduced the Na+ content and increased the K+ content under salinity, not only in the rootstock but also in the shoot. Improvement of Na+ homoeostasis in Slcbl10 rootstock seems to be mainly due to induction of SlSOS1 expression, while the higher K+ accumulation in roots seems to be mainly determined by expression of LKT1 transporter and SlSKOR channel. These findings demonstrate that SlCBL10 is a negative regulator of salt tolerance in the root, so the use of downregulated SlCBL10 rootstocks may provide a suitable strategy to increase tomato fruit production under salinity.
Collapse
Affiliation(s)
- Yanira Estrada
- Dpto. Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, Spain
| | - Félix Plasencia
- Dpto. Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, Spain
| | - Ana Ortíz-Atienza
- Dpto. de Biología y Geología, Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, Almería, Spain
| | - Celia Faura
- Dpto. Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, Spain
| | - Francisco B Flores
- Dpto. Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, Spain
| | - Rafael Lozano
- Dpto. de Biología y Geología, Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, Almería, Spain
| | - Isabel Egea
- Dpto. Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, Spain
| |
Collapse
|
9
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
10
|
Egea I, Estrada Y, Faura C, Egea-Fernández JM, Bolarin MC, Flores FB. Salt-tolerant alternative crops as sources of quality food to mitigate the negative impact of salinity on agricultural production. FRONTIERS IN PLANT SCIENCE 2023; 14:1092885. [PMID: 36818835 PMCID: PMC9935836 DOI: 10.3389/fpls.2023.1092885] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
An increase of abiotic stress tolerance and nutritive value of foods is currently a priority because of climate change and rising world population. Among abiotic stresses, salt stress is one of the main problems in agriculture. Mounting urbanization and industrialization, and increasing global food demand, are pressing farmers to make use of marginal lands affected by salinity and low-quality saline water. In that situation, one of the most promising approaches is searching for new sources of genetic variation like salt-tolerant alternative crops or underexploited crops. They are generally less efficient than cultivated crops in optimal conditions due to lower yield but represent an alternative in stressful growth conditions. In this review, we summarize the advances achieved in research on underexploited species differing in their genetic nature. First, we highlight advances in research on salt tolerance of traditional varieties of tomato or landraces; varieties selected and developed by smallholder farmers for adaptation to their local environments showing specific attractive fruit quality traits. We remark advances attained in screening a collection of tomato traditional varieties gathered in Spanish Southeast, a very productive region which environment is extremely stressing. Second, we explore the opportunities of exploiting the natural variation of halophytes, in particular quinoa and amaranth. The adaptation of both species in stressful growth conditions is becoming an increasingly important issue, especially for their cultivation in arid and semiarid areas prone to be affected by salinity. Here we present a project developed in Spanish Southeast, where quinoa and amaranth varieties are being adapted for their culture under abiotic stress targeting high quality grain.
Collapse
Affiliation(s)
- Isabel Egea
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | - Yanira Estrada
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | - Celia Faura
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | | | - Maria C. Bolarin
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | - Francisco B. Flores
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| |
Collapse
|
11
|
Morgan SH, Kader MA, Lindberg S. Cytosolic Sodium Influx in Mesophyll Protoplasts of Arabidopsis thaliana, wt, sos1:1 and nhx1 Differs and Induces Different Calcium Changes. PLANTS (BASEL, SWITZERLAND) 2022; 11:3439. [PMID: 36559553 PMCID: PMC9780823 DOI: 10.3390/plants11243439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The sodium influx into the cytosol of mesophyll protoplasts from Arabidopsis thaliana cv. Columbia, wild type, was compared with the influx into sos1-1 and nhx1 genotypes, which lack the Na+/H+ antiporter in the plasma membrane and tonoplast, respectively. Changes in cytosolic sodium and calcium concentrations upon a 100 mM NaCl addition were detected by use of epifluorescence microscopy and the sodium-specific fluorescent dye SBFI, AM, and calcium sensitive Fura 2, AM, respectively. There was a smaller and mainly transient influx of Na+ in the cytosol of the wild type compared with the sos1-1 and nhx1 genotypes, in which the influx lasted for a longer time. Sodium chloride addition to the protoplasts' medium induced a significant increase in cytosolic calcium concentration in the wild type at 1.0 mM external calcium, and to a lesser extent in nhx1, however, it was negligible in the sos1-1 genotype. LiCl inhibited the cytosolic calcium elevation in the wild type. The results suggest that the salt-induced calcium elevation in the cytosol of mesophyll cells depends on an influx from both internal and external stores and occurs in the presence of an intact Na+/H+ antiporter at the plasma membrane. The Arabidopsis SOS1 more effectively regulates sodium homeostasis than NHX1.
Collapse
Affiliation(s)
- Sherif H. Morgan
- Plant Botany Department, Faculty of Agriculture, Cairo University, Cairo 12613, Egypt
| | - Md Abdul Kader
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
12
|
Guo M, Wang XS, Guo HD, Bai SY, Khan A, Wang XM, Gao YM, Li JS. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:949541. [PMID: 36186008 PMCID: PMC9515470 DOI: 10.3389/fpls.2022.949541] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/17/2022] [Indexed: 06/01/2023]
Abstract
One of the most significant environmental factors affecting plant growth, development and productivity is salt stress. The damage caused by salt to plants mainly includes ionic, osmotic and secondary stresses, while the plants adapt to salt stress through multiple biochemical and molecular pathways. Tomato (Solanum lycopersicum L.) is one of the most widely cultivated vegetable crops and a model dicot plant. It is moderately sensitive to salinity throughout the period of growth and development. Biotechnological efforts to improve tomato salt tolerance hinge on a synthesized understanding of the mechanisms underlying salinity tolerance. This review provides a comprehensive review of major advances on the mechanisms controlling salt tolerance of tomato in terms of sensing and signaling, adaptive responses, and epigenetic regulation. Additionally, we discussed the potential application of these mechanisms in improving salt tolerance of tomato, including genetic engineering, marker-assisted selection, and eco-sustainable approaches.
Collapse
Affiliation(s)
- Meng Guo
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| | - Xin-Sheng Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Hui-Dan Guo
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
| | - Sheng-Yi Bai
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, Pakistan
| | - Xiao-Min Wang
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| | - Yan-Ming Gao
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| | - Jian-She Li
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| |
Collapse
|
13
|
Bonarota MS, Kosma DK, Barrios-Masias FH. Salt tolerance mechanisms in the Lycopersicon clade and their trade-offs. AOB PLANTS 2022; 14:plab072. [PMID: 35079327 PMCID: PMC8782609 DOI: 10.1093/aobpla/plab072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Salt stress impairs growth and yield in tomato, which is mostly cultivated in arid and semi-arid areas of the world. A number of wild tomato relatives (Solanum pimpinellifolium, S. pennellii, S. cheesmaniae and S. peruvianum) are endemic to arid coastal areas and able to withstand higher concentration of soil salt concentrations, making them a good genetic resource for breeding efforts aimed at improving salt tolerance and overall crop improvement. However, the complexity of salt stress response makes it difficult to introgress tolerance traits from wild relatives that could effectively increase tomato productivity under high soil salt concentrations. Under commercial production, biomass accumulation is key for high fruit yields, and salt tolerance management strategies should aim to maintain a favourable plant water and nutrient status. In this review, we first compare the effects of salt stress on the physiology of the domesticated tomato and its wild relatives. We then discuss physiological and energetic trade-offs for the different salt tolerance mechanisms found within the Lycopersicon clade, with a focus on the importance of root traits to sustain crop productivity.
Collapse
Affiliation(s)
- Maria-Sole Bonarota
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Felipe H Barrios-Masias
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
- Corresponding author’s e-mail address:
| |
Collapse
|
14
|
Romero-Aranda MR, Espinosa J, González-Fernández P, Jaime-Fernández E, Traverso JÁ, Asins MJ, Belver A. Role of Na + transporters HKT1;1 and HKT1;2 in tomato salt tolerance. I. Function loss of cheesmaniae alleles in roots and aerial parts. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:282-293. [PMID: 34673319 DOI: 10.1016/j.plaphy.2021.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
We analyzed the physiological impact of function loss on cheesmaniae alleles at the HKT1;1 and HKT1;2 loci in the roots and aerial parts of tomato plants in order to determine the relative contributions of each locus in the different tissues to plant Na+/K+ homeostasis and subsequently to tomato salt tolerance. We generated different reciprocal rootstock/scion combinations with non-silenced, single RNAi-silenced lines for ScHKT1;1 and ScHKT1;2, as well as a silenced line at both loci from a near isogenic line (NIL14), homozygous for the Solanum cheesmaniae haplotype containing both HKT1 loci and subjected to salinity under natural greenhouse conditions. Our results show that salt treatment reduced vegetative growth and altered the Na+/K+ ratio in leaves and flowers; negatively affecting fruit production, particularly in graft combinations containing single silenced ScHKT1;2- and double silenced ScHKT1;1/ScHKT1;2 lines when used as scion. We concluded that the removal of Na+ from the xylem by ScHKT1;2 in the aerial part of the plant can have an even greater impact than that on Na+ homeostasis at the root level under saline conditions. Also, ScHKT1;1 function loss in rootstock greatly reduced the Na+/K+ ratio in leaf and flower tissues, minimized yield loss under salinity. Our results suggest that, in addition to xylem Na+ unloading, ScHKT1;2 could also be involved in Na+ uploading into the phloem, thus promoting Na+ recirculation from aerial parts to the roots. This recirculation of Na+ to the roots through the phloem could be further favoured by ScHKT1;1 silencing at these roots.
Collapse
Affiliation(s)
- María Remedios Romero-Aranda
- Department of Plant Breeding and Biotechnology, La Mayora Institute for Mediterranean and Subtropical Horticulture, UMA/CSIC, Malaga, Spain
| | - Jesús Espinosa
- Department of Biochemistry, Molecular and Cellular Biology of Plants,Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/ Prof. Albareda 1, 18008, Granada, Spain
| | - Paloma González-Fernández
- Department of Biochemistry, Molecular and Cellular Biology of Plants,Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/ Prof. Albareda 1, 18008, Granada, Spain
| | - Emilio Jaime-Fernández
- Department of Plant Breeding and Biotechnology, La Mayora Institute for Mediterranean and Subtropical Horticulture, UMA/CSIC, Malaga, Spain
| | - José Ángel Traverso
- Department of Cellular Biology, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - María José Asins
- Plant Protection and Biotechnology Center, Valencian Institute of Agrarian Research (IVIA), 46113, Moncada, Valencia, Spain
| | - Andrés Belver
- Department of Biochemistry, Molecular and Cellular Biology of Plants,Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/ Prof. Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
15
|
Calcium Sensor SlCBL4 Associates with SlCIPK24 Protein Kinase and Mediates Salt Tolerance in Solanum lycopersicum. PLANTS 2021; 10:plants10102173. [PMID: 34685982 PMCID: PMC8541381 DOI: 10.3390/plants10102173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Soil salinity is one of the major environmental stresses that restrict the growth and development of tomato (Solanum lycopersicum L.) worldwide. In Arabidopsis, the calcium signaling pathway mediated by calcineurin B-like protein 4 (CBL4) and CBL-interacting protein kinase 24 (CIPK24) plays a critical role in salt stress response. In this study, we identified and isolated two tomato genes similar to the Arabidopsis genes, designated as SlCBL4 and SlCIPK24, respectively. Bimolecular fluorescence complementation (BiFC) and pull-down assays indicated that SlCBL4 can physically interact with SlCIPK24 at the plasma membrane of plant cells in a Ca2+-dependent manner. Overexpression of SlCBL4 or superactive SlCIPK24 mutant (SlCIPK24M) conferred salt tolerance to transgenic tomato (cv. Moneymaker) plants. In particular, the SlCIPK24M-overexpression lines displayed dramatically enhanced tolerance to high salinity. It is notable that the transgenic plants retained higher contents of Na+ and K+ in the roots compared to the wild-type tomato under salt stress. Taken together, our findings clearly suggest that SlCBL4 and SlCIPK24 are functional orthologs of the Arabidopsis counterpart genes, which can be used or engineered to produce salt-tolerant tomato plants.
Collapse
|
16
|
Mao J, Yuan J, Mo Z, An L, Shi S, Visser RGF, Bai Y, Sun Y, Liu G, Liu H, Wang Q, van der Linden CG. Overexpression of NtCBL5A Leads to Necrotic Lesions by Enhancing Na + Sensitivity of Tobacco Leaves Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:740976. [PMID: 34603362 PMCID: PMC8484801 DOI: 10.3389/fpls.2021.740976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Many tobacco (Nicotiana tabacum) cultivars are salt-tolerant and thus are potential model plants to study the mechanisms of salt stress tolerance. The CALCINEURIN B-LIKE PROTEIN (CBL) is a vital family of plant calcium sensor proteins that can transmit Ca2+ signals triggered by environmental stimuli including salt stress. Therefore, assessing the potential of NtCBL for genetic improvement of salt stress is valuable. In our studies on NtCBL members, constitutive overexpression of NtCBL5A was found to cause salt supersensitivity with necrotic lesions on leaves. NtCBL5A-overexpressing (OE) leaves tended to curl and accumulated high levels of reactive oxygen species (ROS) under salt stress. The supersensitivity of NtCBL5A-OE leaves was specifically induced by Na+, but not by Cl-, osmotic stress, or drought stress. Ion content measurements indicated that NtCBL5A-OE leaves showed sensitivity to the Na+ accumulation levels that wild-type leaves could tolerate. Furthermore, transcriptome profiling showed that many immune response-related genes are significantly upregulated and photosynthetic machinery-related genes are significantly downregulated in salt-stressed NtCBL5A-OE leaves. In addition, the expression of several cation homeostasis-related genes was also affected in salt-stressed NtCBL5A-OE leaves. In conclusion, the constitutive overexpression of NtCBL5A interferes with the normal salt stress response of tobacco plants and leads to Na+-dependent leaf necrosis by enhancing the sensitivity of transgenic leaves to Na+. This Na+ sensitivity of NtCBL5A-OE leaves might result from the abnormal Na+ compartmentalization, plant photosynthesis, and plant immune response triggered by the constitutive overexpression of NtCBL5A. Identifying genes and pathways involved in this unusual salt stress response can provide new insights into the salt stress response of tobacco plants.
Collapse
Affiliation(s)
- Jingjing Mao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
- Department of Plant Breeding, Wageningen University & Research (WUR), Wageningen, Netherlands
- Graduate School of Experimental Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Jiaping Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Zhijie Mo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
| | - Lulu An
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
| | - Sujuan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
| | - Richard G. F. Visser
- Department of Plant Breeding, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Yuling Bai
- Department of Plant Breeding, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | | |
Collapse
|
17
|
Comparative ribosome profiling reveals distinct translational landscapes of salt-sensitive and -tolerant rice. BMC Genomics 2021; 22:612. [PMID: 34384368 PMCID: PMC8359061 DOI: 10.1186/s12864-021-07922-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 08/03/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Soil salinization represents a serious threat to global rice production. Although significant research has been conducted to understand salt stress at the genomic, transcriptomic and proteomic levels, few studies have focused on the translatomic responses to this stress. Recent studies have suggested that transcriptional and translational responses to salt stress can often operate independently. RESULTS We sequenced RNA and ribosome-protected fragments (RPFs) from the salt-sensitive rice (O. sativa L.) cultivar 'Nipponbare' (NB) and the salt-tolerant cultivar 'Sea Rice 86' (SR86) under normal and salt stress conditions. A large discordance between salt-induced transcriptomic and translatomic alterations was found in both cultivars, with more translationally regulated genes being observed in SR86 in comparison to NB. A biased ribosome occupancy, wherein RPF depth gradually increased from the 5' ends to the 3' ends of coding regions, was revealed in NB and SR86. This pattern was strengthened by salt stress, particularly in SR86. On the contrary, the strength of ribosome stalling was accelerated in salt-stressed NB but decreased in SR86. CONCLUSIONS This study revealed that translational reprogramming represents an important layer of salt stress responses in rice, and the salt-tolerant cultivar SR86 adopts a more flexible translationally adaptive strategy to cope with salt stress compared to the salt susceptible cultivar NB. The differences in translational dynamics between NB and SR86 may derive from their differing levels of ribosome stalling under salt stress.
Collapse
|
18
|
Hosseini Tafreshi SA, Aghaie P, Ebrahimi MA, Haerinasab M. Regulation of drought-related responses in tomato plants by two classes of calcineurin B-like (SlCBL1/2) proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:431-446. [PMID: 33740682 DOI: 10.1016/j.plaphy.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Calcineurin-B-like proteins (CBLs) are essential components of the calcium signaling network and act during plant's response to stress and normal conditions. A combined research strategy of in-silico analysis and gene silencing experiment was employed to investigate the role of different classes of CBLs in tomato (Solanum lycopersicum L.) during the response to drought stress. Two different classes of CBL genes, including SlCBL3-1, and SlCBL3-2, with the minimum and a maximum number of drought-responsive cis-elements, were selected and were targeted for transient gene silencing in tomato followed by the drought treatment. The effect of silencing events was evaluated by determining of further growth and physiological traits in plants under both control and drought stress conditions. The results showed that silencing of SlCBL3-1 significantly reduced shoot and root growth, relative water content (RWC), and the concentration of pigments while increased free radical accumulation, lipid peroxidation, and leakage from the cells. On the other hand, no antioxidant enzyme activity or proline induction was triggered in plants after SlCBL3-1 silencing. Some of these adverse events were more significantly enhanced when the silenced plants were exposed to drought stress. Overall, a significant role for SlCBL3-1 in the life cycle of plant suggested under both normal and stress conditions. The SlCBL3-2 silencing showed more efficient plants recovery from silencing or drought stress conditions. Therefore, SlCBL3-2 gene may act as a negative regulator under stress conditions. The results might provide new theoretical insight and genetic resources for developing resistant crops against environmental stresses.
Collapse
Affiliation(s)
- Seyed Ali Hosseini Tafreshi
- Biotechnology Division, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Peyman Aghaie
- Department of Biology, Faculty of Science, Payame Noor University, PO BOX 19395-3697, Tehran, Iran.
| | - Mohammad Ali Ebrahimi
- Department of Agricultural Biotechnology, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
| | - Maryam Haerinasab
- Department of Biology, Faculty of Science, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
| |
Collapse
|
19
|
Estrada Y, Fernández-Ojeda A, Morales B, Egea-Fernández JM, Flores FB, Bolarín MC, Egea I. Unraveling the Strategies Used by the Underexploited Amaranth Species to Confront Salt Stress: Similarities and Differences With Quinoa Species. FRONTIERS IN PLANT SCIENCE 2021; 12:604481. [PMID: 33643343 PMCID: PMC7902779 DOI: 10.3389/fpls.2021.604481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Yield losses due to cultivation in saline soils is a common problem all over the world as most crop plants are glycophytes and, hence, susceptible to salt stress. The use of halophytic crops could be an interesting alternative to cope with this issue. The Amaranthaceae family comprises by far the highest proportion of salt-tolerant halophytic species. Amaranth and quinoa belong to this family, and their seeds used as pseudo-cereal grains have received much attention in recent years because of their exceptional nutritional value. While advances in the knowledge of salt tolerance mechanisms of quinoa have been remarkable in recent years, much less attention was received by amaranth, despite evidences pointing to amaranth as a promising species to be grown under salinity. In order to advance in the understanding of strategies used by amaranth to confront salt stress, we studied the comparative responses of amaranth and quinoa to salinity (100 mM NaCl) at the physiological, anatomical, and molecular levels. Amaranth was able to exhibit salt tolerance throughout its life cycle, since grain production was not affected by the saline conditions applied. The high salt tolerance of amaranth is associated with a low basal stomatal conductance due to a low number of stomata (stomatal density) and degree of stomata aperture (in adaxial surface) of leaves, which contributes to avoid leaf water loss under salt stress in a more efficient way than in quinoa. With respect to Na+ homeostasis, amaranth showed a pattern of Na+ distribution throughout the plant similar to glycophytes, with the highest accumulation found in the roots, followed by the stem and the lowest one detected in the leaves. Contrarily, quinoa exhibited a Na+ includer character with the highest accumulation detected in the shoots. Expression levels of main genes involved in Na+ homeostasis (SOS1, HKT1s, and NHX1) showed different patterns between amaranth and quinoa, with a marked higher basal expression in amaranth roots. These results highlight the important differences in the physiological and molecular responses of amaranth and quinoa when confronted with salinity.
Collapse
Affiliation(s)
- Yanira Estrada
- Department of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus Universitario de Espinardo, Murcia, Spain
| | - Amanda Fernández-Ojeda
- Department of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus Universitario de Espinardo, Murcia, Spain
| | - Belén Morales
- Department of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus Universitario de Espinardo, Murcia, Spain
| | | | - Francisco B. Flores
- Department of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus Universitario de Espinardo, Murcia, Spain
| | - María C. Bolarín
- Department of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus Universitario de Espinardo, Murcia, Spain
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
20
|
Gandullo J, Ahmad S, Darwish E, Karlova R, Testerink C. Phenotyping Tomato Root Developmental Plasticity in Response to Salinity in Soil Rhizotrons. PLANT PHENOMICS (WASHINGTON, D.C.) 2021; 2021:2760532. [PMID: 33575670 PMCID: PMC7869940 DOI: 10.34133/2021/2760532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/25/2020] [Indexed: 05/23/2023]
Abstract
Plants have developed multiple strategies to respond to salt stress. In order to identify new traits related to salt tolerance, with potential breeding application, the research focus has recently been shifted to include root system architecture (RSA) and root plasticity. Using a simple but effective root phenotyping system containing soil (rhizotrons), RSA of several tomato cultivars and their response to salinity was investigated. We observed a high level of root plasticity of tomato seedlings under salt stress. The general root architecture was substantially modified in response to salt, especially with respect to position of the lateral roots in the soil. At the soil surface, where salt accumulates, lateral root emergence was most strongly inhibited. Within the set of tomato cultivars, H1015 was the most tolerant to salinity in both developmental stages studied. A significant correlation between several root traits and aboveground growth parameters was observed, highlighting a possible role for regulation of both ion content and root architecture in salt stress resilience.
Collapse
Affiliation(s)
- Jacinto Gandullo
- Section of Plant Physiology and Plant Cell Biology, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Departamento de Biología Vegetal y Ecología, Área de Fisiología Vegetal, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Safarina Ahmad
- Section of Plant Physiology and Plant Cell Biology, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Essam Darwish
- Section of Plant Physiology and Plant Cell Biology, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Plant Physiology Section, Agricultural Botany Department, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Rumyana Karlova
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, Netherlands
| | - Christa Testerink
- Section of Plant Physiology and Plant Cell Biology, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, Netherlands
| |
Collapse
|
21
|
Shi P, Gu M. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. BMC PLANT BIOLOGY 2020; 20:568. [PMID: 33380327 PMCID: PMC7774241 DOI: 10.1186/s12870-020-02753-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Soil salinity is one of the major abiotic stress factors that affect crop growth and yield, which seriously restricts the sustainable development of agriculture. Quinoa is considered as one of the most promising crops in the future for its high nutrition value and strong adaptability to extreme weather and soil conditions. However, the molecular mechanisms underlying the adaptive response to salinity stress of quinoa remain poorly understood. To identify candidate genes related to salt tolerance, we performed reference-guided assembly and compared the gene expression in roots treated with 300 mM NaCl for 0, 0.5, 2, and 24 h of two contrasting quinoa genotypes differing in salt tolerance. RESULTS The salt-tolerant (ST) genotype displayed higher seed germination rate and plant survival rate, and stronger seedling growth potential as well than the salt-sensitive (SS) genotype under salt stress. An average of 38,510,203 high-quality clean reads were generated. Significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified to deeper understand the differential response. Transcriptome analysis indicated that salt-responsive genes in quinoa were mainly related to biosynthesis of secondary metabolites, alpha-Linolenic acid metabolism, plant hormone signal transduction, and metabolic pathways. Moreover, several pathways were significantly enriched amongst the differentially expressed genes (DEGs) in ST genotypes, such as phenylpropanoid biosynthesis, plant-pathogen interaction, isoquinoline alkaloid biosynthesis, and tyrosine metabolism. One hundred seventeen DEGs were common to various stages of both genotypes, identified as core salt-responsive genes, including some transcription factor members, like MYB, WRKY and NAC, and some plant hormone signal transduction related genes, like PYL, PP2C and TIFY10A, which play an important role in the adaptation to salt conditions of this species. The expression patterns of 21 DEGs were detected by quantitative real-time PCR (qRT-PCR) and confirmed the reliability of the RNA-Seq results. CONCLUSIONS We identified candidate genes involved in salt tolerance in quinoa, as well as some DEGs exclusively expressed in ST genotype. The DEGs common to both genotypes under salt stress may be the key genes for quinoa to adapt to salinity environment. These candidate genes regulate salt tolerance primarily by participating in reactive oxygen species (ROS) scavenging system, protein kinases biosynthesis, plant hormone signal transduction and other important biological processes. These findings provide theoretical basis for further understanding the regulation mechanism underlying salt tolerance network of quinoa, as well establish foundation for improving its tolerance to salinity in future breeding programs.
Collapse
Affiliation(s)
- Pibiao Shi
- Xinyang Agricultural Experiment Station of Yancheng City, Yancheng, 224049, Jiangsu, China
| | - Minfeng Gu
- Xinyang Agricultural Experiment Station of Yancheng City, Yancheng, 224049, Jiangsu, China.
| |
Collapse
|
22
|
Meco V, Egea I, Ortíz-Atienza A, Drevensek S, Esch E, Yuste-Lisbona FJ, Barneche F, Vriezen W, Bolarin MC, Lozano R, Flores FB. The Salt Sensitivity Induced by Disruption of Cell Wall-Associated Kinase 1 ( SlWAK1) Tomato Gene Is Linked to Altered Osmotic and Metabolic Homeostasis. Int J Mol Sci 2020; 21:E6308. [PMID: 32878190 PMCID: PMC7503591 DOI: 10.3390/ijms21176308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Tomato cell wall-associated kinase 1 (SlWAK1) has only been studied in biotic stress response and hence its function in abiotic stress remains unknown. In a screening under salinity of an insertional mutant collection of tomato (Solanum lycopersicum L.), a mutant exhibiting lower degree of leaf chlorosis than wild type (WT) together with reduced leaf Na+ accumulation was selected. Genetic analysis of the mutation revealed that a single T-DNA insertion in the SlWAK1 gene was responsible of the mutant phenotype. Slwak1 null mutant reduced its shoot growth compared with WT, despite its improved Na+ homeostasis. SlWAK1 disruption affected osmotic homeostasis, as leaf water content was lower in mutant than in WT under salt stress. In addition, Slwak1 altered the source-sink balance under salinity, by increasing sucrose content in roots. Finally, a significant fruit yield reduction was found in Slwak1 vs. WT under long-term salt stress, mainly due to lower fruit weight. Our results show that disruption of SlWAK1 induces a higher sucrose transport from source leaf to sink root, negatively affecting fruit, the main sink at adult stage.
Collapse
Affiliation(s)
- Victoriano Meco
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (I.E.); (M.C.B.); (F.B.F.)
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (I.E.); (M.C.B.); (F.B.F.)
| | - Ana Ortíz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120 Almería, Spain; (A.O.-A.); (F.J.Y.-L.); (R.L.)
| | - Stéphanie Drevensek
- Institut de Biologie de l’École Normale Supérieure (IBENS), Paris Sciences et Lettres Research University, F-75005 Paris, France; (S.D.); (F.B.)
| | - Elisabeth Esch
- BASF Vegetable Seeds, Napoleonsweg 152, 6083AB Nunhem, The Netherlands; (E.E.); (W.V.)
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120 Almería, Spain; (A.O.-A.); (F.J.Y.-L.); (R.L.)
| | - Fredy Barneche
- Institut de Biologie de l’École Normale Supérieure (IBENS), Paris Sciences et Lettres Research University, F-75005 Paris, France; (S.D.); (F.B.)
| | - Wim Vriezen
- BASF Vegetable Seeds, Napoleonsweg 152, 6083AB Nunhem, The Netherlands; (E.E.); (W.V.)
| | - María C. Bolarin
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (I.E.); (M.C.B.); (F.B.F.)
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120 Almería, Spain; (A.O.-A.); (F.J.Y.-L.); (R.L.)
| | - Francisco B. Flores
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (I.E.); (M.C.B.); (F.B.F.)
| |
Collapse
|
23
|
Al-Khateeb SA, Al-Khateeb AA, Sattar MN, Mohmand AS. Induced in vitro adaptation for salt tolerance in date palm (Phoenix dactylifera L.) cultivar Khalas. Biol Res 2020; 53:37. [PMID: 32847618 PMCID: PMC7450699 DOI: 10.1186/s40659-020-00305-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soil salinity causes huge economic losses to agriculture productivity in arid and semiarid areas worldwide. The affected plants face disturbances in osmotic adjustment, nutrient transport, ionic toxicity and reduced photosynthesis. Conventional breeding approaches produce little success in combating various stresses in plants. However, non-conventional approaches, such as in vitro tissue culturing, produce genetic variability in the development of salt-tolerant plants, particularly in woody trees. RESULTS Embryogenic callus cultures of the date palm cultivar Khalas were subjected to various salt levels ranging from 0 to 300 mM in eight subcultures. The regenerants obtained from the salt-treated cultures were regenerated and evaluated using the same concentration of NaCl with which the calli were treated. All the salt-adapted (SA) regenerants showed improved growth characteristics, physiological performance, ion concentrations and K+/Na+ ratios than the salt non-adapted (SNA) regenerants and the control. Regression between the leaf Na+ concentration and net photosynthesis revealed an inverse nonlinear correlation in the SNA regenerants. Leaf K+ contents and stomatal conductance showed a strong linear relationship in SA regenerants compared with the inverse linear correlation, and a very poor coefficient of determination in SNA regenerants. The genetic fidelity of the selected SA regenerants was also tested using 36 random amplified polymorphic DNA (RAPD) primers, of which 26 produced scorable bands. The primers generated 1-10 bands, with an average of 5.4 bands per RAPD primer; there was no variation between SA regenerants and the negative control. CONCLUSION This is the first report of the variants generated from salt-stressed cultures and their potential adaptation to salinity in date palm cv. Khalas. The massive production of salt stress-adapted date palm plants may be much easier using the salt adaptation approach. Such plants can perform better during exposure to salt stress compared to the non-treated date palm plants.
Collapse
Affiliation(s)
- Suliman A Al-Khateeb
- Department of Environment Natural Resources, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Kingdom of Saudi Arabia.
| | - Abdullatif A Al-Khateeb
- Department of Agriculture Biotechnology, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Muhammad N Sattar
- Central Laboratories, King Faisal University, Box 420, Al-Ahsa, 31982, Saudi Arabia
| | - Akbar S Mohmand
- Research, Innovation and Commercialization (ORIC), Bacha Khan University Charsadda, Charsadda, Khyber Pakhtunkhawa, Pakistan
| |
Collapse
|
24
|
Capel C, Albaladejo I, Egea I, Massaretto IL, Yuste‐Lisbona FJ, Pineda B, García‐Sogo B, Angosto T, Flores FB, Moreno V, Lozano R, Bolarín MC, Capel J. The res (restored cell structure by salinity) tomato mutant reveals the role of the DEAD-box RNA helicase SlDEAD39 in plant development and salt response. PLANT, CELL & ENVIRONMENT 2020; 43:1722-1739. [PMID: 32329086 PMCID: PMC7384196 DOI: 10.1111/pce.13776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 05/29/2023]
Abstract
Increasing evidences highlight the importance of DEAD-box RNA helicases in plant development and stress responses. In a previous study, we characterized the tomato res mutant (restored cell structure by salinity), showing chlorosis and development alterations that reverted under salt-stress conditions. Map-based cloning demonstrates that RES gene encodes SlDEAD39, a chloroplast-targeted DEAD-box RNA helicase. Constitutive expression of SlDEAD39 complements the res mutation, while the silencing lines had a similar phenotype than res mutant, which is also reverted under salinity. Functional analysis of res mutant proved SlDEAD39 is involved in the in vivo processing of the chloroplast, 23S rRNA, at the hidden break-B site, a feature also supported by in vitro binding experiments of the protein. In addition, our results show that other genes coding for chloroplast-targeted DEAD-box proteins are induced by salt-stress, which might explain the rescue of the res mutant phenotype. Interestingly, salinity restored the phenotype of res adult plants by increasing their sugar content and fruit yield. Together, these results propose an unprecedented role of a DEAD-box RNA helicase in regulating plant development and stress response through the proper ribosome and chloroplast functioning, which, in turn, represents a potential target to improve salt tolerance in tomato crops.
Collapse
Affiliation(s)
- Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Irene Albaladejo
- Centro de Edafología y Biología Aplicada del Segura (CEBAS‐CSIC)Campus Universitario de EspinardoEspinardo‐MurciaSpain
- Ctra Viator‐PJ. Mami S/NAlmeríaSpain
| | - Isabel Egea
- Centro de Edafología y Biología Aplicada del Segura (CEBAS‐CSIC)Campus Universitario de EspinardoEspinardo‐MurciaSpain
| | - Isabel L. Massaretto
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, Food Research Center (FoRC‐CEPID)University of São PauloSão PauloBrazil
| | | | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (IBMCP‐UPV/CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Begoña García‐Sogo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP‐UPV/CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Francisco B. Flores
- Centro de Edafología y Biología Aplicada del Segura (CEBAS‐CSIC)Campus Universitario de EspinardoEspinardo‐MurciaSpain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP‐UPV/CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - María C. Bolarín
- Centro de Edafología y Biología Aplicada del Segura (CEBAS‐CSIC)Campus Universitario de EspinardoEspinardo‐MurciaSpain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| |
Collapse
|
25
|
Tang RJ, Wang C, Li K, Luan S. The CBL-CIPK Calcium Signaling Network: Unified Paradigm from 20 Years of Discoveries. TRENDS IN PLANT SCIENCE 2020; 25:604-617. [PMID: 32407699 DOI: 10.1016/j.tplants.2020.01.009] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 05/18/2023]
Abstract
Calcium (Ca2+) serves as an essential nutrient as well as a signaling agent in all eukaryotes. In plants, calcineurin B-like proteins (CBLs) are a unique group of Ca2+ sensors that decode Ca2+ signals by activating a family of plant-specific protein kinases known as CBL-interacting protein kinases (CIPKs). Interactions between CBLs and CIPKs constitute a signaling network that enables information integration and physiological coordination in response to a variety of extracellular cues such as nutrient deprivation and abiotic stresses. Studies in the past two decades have established a unified paradigm that illustrates the functions of CBL-CIPK complexes in controlling membrane transport through targeting transporters and channels in the plasma membrane and tonoplast.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Kunlun Li
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
26
|
Ismail A, El-Sharkawy I, Sherif S. Salt Stress Signals on Demand: Cellular Events in the Right Context. Int J Mol Sci 2020; 21:ijms21113918. [PMID: 32486204 PMCID: PMC7313037 DOI: 10.3390/ijms21113918] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Plant stress is a real dilemma; it puzzles plant biologists and is a global problem that negatively affects people’s daily lives. Of particular interest is salinity, because it represents one of the major water-related stress types. We aimed to determine the signals that guide the cellular-related events where various adaptation mechanisms cross-talk to cope with salinity-related water stress in plants. In an attempt to unravel these mechanisms and introduce cellular events in the right context, we expansively discussed how salt-related signals are sensed, with particular emphasis on aquaporins, nonselective cation channels (NSCCs), and glycosyl inositol phosphorylceramide (GIPC). We also elaborated on the critical role Ca2+, H+, and ROS in mediating signal transduction pathways associated with the response and tolerance to salt stress. In addition, the fragmentary results from the literature were compiled to develop a harmonized, informational, and contemplative model that is intended to improve our perception of these adaptative mechanisms and set a common platform for plant biologists to identify intriguing research questions in this area.
Collapse
Affiliation(s)
- Ahmed Ismail
- Department of Horticulture, Faculty of Agriculture, Damanhour University, P.O. Box 22516, Damanhour, Egypt;
| | - Islam El-Sharkawy
- Florida A&M University, Center for Viticulture and Small Fruit Research. 6361 Mahan Drive, Tallahassee, FL 32308, USA;
| | - Sherif Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22062, USA
- Correspondence: ; Tel.: +1-540-232-6035
| |
Collapse
|
27
|
Monihan SM, Magness CA, Ryu CH, McMahon MM, Beilstein MA, Schumaker KS. Duplication and functional divergence of a calcium sensor in the Brassicaceae. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2782-2795. [PMID: 31989164 PMCID: PMC7210777 DOI: 10.1093/jxb/eraa031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/27/2020] [Indexed: 05/09/2023]
Abstract
The presence of varied numbers of CALCINEURIN B-LIKE10 (CBL10) calcium sensor genes in species across the Brassicaceae and the demonstrated role of CBL10 in salt tolerance in Arabidopsis thaliana and Eutrema salsugineum provided a unique opportunity to determine if CBL10 function is modified in different species and linked to salt tolerance. Salinity effects on species growth and cross-species complementation were used to determine the extent of conservation and divergence of CBL10 function in four species representing major lineages within the core Brassicaceae (A. thaliana, E. salsugineum, Schrenkiella parvula, and Sisymbrium irio) as well as the first diverging lineage (Aethionema arabicum). Evolutionary and functional analyses indicate that CBL10 duplicated within expanded lineage II of the Brassicaceae and that, while portions of CBL10 function are conserved across the family, there are species-specific variations in CBL10 function. Paralogous CBL10 genes within a species diverged in expression and function probably contributing to the maintenance of the duplicated gene pairs. Orthologous CBL10 genes diverged in function in a species-specific manner, suggesting that functions arose post-speciation. Multiple CBL10 genes and their functional divergence may have expanded calcium-mediated signaling responses and contributed to the ability of certain members of the Brassicaceae to maintain growth in salt-affected soils.
Collapse
Affiliation(s)
- Shea M Monihan
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Choong-Hwan Ryu
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Mark A Beilstein
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Karen S Schumaker
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
- Correspondence:
| |
Collapse
|
28
|
Plasencia FA, Estrada Y, Flores FB, Ortíz-Atienza A, Lozano R, Egea I. The Ca 2+ Sensor Calcineurin B-Like Protein 10 in Plants: Emerging New Crucial Roles for Plant Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:599944. [PMID: 33519853 PMCID: PMC7843506 DOI: 10.3389/fpls.2020.599944] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/09/2020] [Indexed: 05/14/2023]
Abstract
Ca2+ is a second messenger that mediates plant responses to abiotic stress; Ca2+ signals need to be decoded by Ca2+ sensors that translate the signal into physiological, metabolic, and molecular responses. Recent research regarding the Ca2+ sensor CALCINEURIN B-LIKE PROTEIN 10 (CBL10) has resulted in important advances in understanding the function of this signaling component during abiotic stress tolerance. Under saline conditions, CBL10 function was initially understood to be linked to regulation of Na+ homeostasis, protecting plant shoots from salt stress. During this process, CBL10 interacts with the CBL-interacting protein kinase 24 (CIPK24, SOS2), this interaction being localized at both the plasma and vacuolar (tonoplast) membranes. Interestingly, recent studies have exposed that CBL10 is a regulator not only of Na+ homeostasis but also of Ca2+ under salt stress, regulating Ca2+ fluxes in vacuoles, and also at the plasma membrane. This review summarizes new research regarding functions of CBL10 in plant stress tolerance, predominantly salt stress, as this is the most commonly studied abiotic stress associated with the function of this regulator. Special focus has been placed on some aspects that are still unclear. We also pay particular attention on the proven versatility of CBL10 to activate (in a CIPK-dependent manner) or repress (by direct interaction) downstream targets, in different subcellular locations. These in turn appear to be the link through which CBL10 could be a key master regulator of stress signaling in plants and also a crucial participant in fruit development and quality, as disruption of CBL10 results in inadequate Ca2+ partitioning in plants and fruit. New emerging roles associated with other abiotic stresses in addition to salt stress, such as drought, flooding, and K+ deficiency, are also addressed in this review. Finally, we provide an outline of recent advances in identification of potential targets of CBL10, as CBL10/CIPKs complexes and as CBL10 direct interactions. The aim is to showcase new research regarding this master regulator of abiotic stress tolerance that may be essential to the maintenance of crop productivity under abiotic stress. This is particularly pertinent when considering the scenario of a projected increase in extreme environmental conditions due to climate change.
Collapse
Affiliation(s)
- Felix A. Plasencia
- Department of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Espinardo, Murcia, Spain
| | - Yanira Estrada
- Department of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Espinardo, Murcia, Spain
| | - Francisco B. Flores
- Department of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Espinardo, Murcia, Spain
| | - Ana Ortíz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Espinardo, Murcia, Spain
- *Correspondence: Isabel Egea,
| |
Collapse
|
29
|
Ma X, Gai WX, Qiao YM, Ali M, Wei AM, Luo DX, Li QH, Gong ZH. Identification of CBL and CIPK gene families and functional characterization of CaCIPK1 under Phytophthora capsici in pepper (Capsicum annuum L.). BMC Genomics 2019; 20:775. [PMID: 31653202 PMCID: PMC6814991 DOI: 10.1186/s12864-019-6125-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Background Calcineurin B-like proteins (CBLs) are major Ca2+ sensors that interact with CBL-interacting protein kinases (CIPKs) to regulate growth and development in plants. The CBL-CIPK network is involved in stress response, yet little is understood on how CBL-CIPK function in pepper (Capsicum annuum L.), a staple vegetable crop that is threatened by biotic and abiotic stressors. Results In the present study, nine CaCBL and 26 CaCIPK genes were identified in pepper and the genes were named based on their chromosomal order. Phylogenetic and structural analysis revealed that CaCBL and CaCIPK genes clustered in four and five groups, respectively. Quantitative real-time PCR (qRT-PCR) assays showed that CaCBL and CaCIPK genes were constitutively expressed in different tissues, and their expression patterns were altered when the plant was exposed to Phytophthora capsici, salt and osmotic stress. CaCIPK1 expression changed in response to stress, including exposure to P. capsici, NaCl, mannitol, salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), ethylene (ETH), cold and heat stress. Knocking down CaCIPK1 expression increased the susceptibility of pepper to P. capsici, reduced root activity, and altered the expression of defense related genes. Transient overexpression of CaCIPK1 enhanced H2O2 accumulation, cell death, and expression of genes involved in defense. Conclusions Nine CaCBL and 26 CaCIPK genes were identified in the pepper genome, and the expression of most CaCBL and CaCIPK genes were altered when the plant was exposed to stress. In particular, we found that CaCIPK1 is mediates the pepper plant’s defense against P. capsici. These results provide the groundwork for further functional characterization of CaCBL and CaCIPK genes in pepper.
Collapse
Affiliation(s)
- Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yi-Ming Qiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - De-Xu Luo
- Xuhuai Region Huaiyin Institute of Agricultural Sciences, Huaian, Jiangsu, 223001, People's Republic of China
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.,Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai, 810016, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China. .,State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
30
|
Fan J, Xu J, Zhang W, Amee M, Liu D, Chen L. Salt-Induced Damage is Alleviated by Short-Term Pre-Cold Treatment in Bermudagrass ( Cynodon dactylon). PLANTS 2019; 8:plants8090347. [PMID: 31540195 PMCID: PMC6784090 DOI: 10.3390/plants8090347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 11/17/2022]
Abstract
Excess salinity is a major environmental stress that limits growth and development of plants. Improving salt stress tolerance of plants is important in order to enhance land utilization and crop yield. Cold priming has been reported to trigger the protective processes in plants that increase their stress tolerance. Bermudagrass (Cynodon dactylon) is one of the most widely used turfgrass species around the world. However, the effect of cold priming on salt tolerance of bermudagrass is largely unknown. In the present study, wild bermudagrass was pre-treated with 4 °C for 6 h before 150 mM NaCl treatment for one week. The results showed that the cell membrane stability, ion homeostasis and photosynthesis process which are usually negatively affected by salt stress in bermudagrass were alleviated by short-term pre-cold treatment. Additionally, the gene expression profile also corresponded to the change of physiological indexes in bermudagrass. The results suggest that cold priming plays a positive role in improving salt stress tolerance of bermudagrass.
Collapse
Affiliation(s)
- Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Jilei Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Weihong Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Maurice Amee
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Dalin Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
31
|
Yang Y, Zhang C, Tang RJ, Xu HX, Lan WZ, Zhao F, Luan S. Calcineurin B-Like Proteins CBL4 and CBL10 Mediate Two Independent Salt Tolerance Pathways in Arabidopsis. Int J Mol Sci 2019; 20:ijms20102421. [PMID: 31100786 PMCID: PMC6566158 DOI: 10.3390/ijms20102421] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022] Open
Abstract
In Arabidopsis, the salt overly sensitive (SOS) pathway, consisting of calcineurin B-like protein 4 (CBL4/SOS3), CBL-interacting protein kinase 24 (CIPK24/SOS2) and SOS1, has been well defined as a crucial mechanism to control cellular ion homoeostasis by extruding Na+ to the extracellular space, thus conferring salt tolerance in plants. CBL10 also plays a critical role in salt tolerance possibly by the activation of Na+ compartmentation into the vacuole. However, the functional relationship of the SOS and CBL10-regulated processes remains unclear. Here, we analyzed the genetic interaction between CBL4 and CBL10 and found that the cbl4 cbl10 double mutant was dramatically more sensitive to salt as compared to the cbl4 and cbl10 single mutants, suggesting that CBL4 and CBL10 each directs a different salt-tolerance pathway. Furthermore, the cbl4 cbl10 and cipk24 cbl10 double mutants were more sensitive than the cipk24 single mutant, suggesting that CBL10 directs a process involving CIPK24 and other partners different from the SOS pathway. Although the cbl4 cbl10, cipk24 cbl10, and sos1 cbl10 double mutants showed comparable salt-sensitive phenotype to sos1 at the whole plant level, they all accumulated much lower Na+ as compared to sos1 under high salt conditions, suggesting that CBL10 regulates additional unknown transport processes that play distinct roles from the SOS1 in Na+ homeostasis.
Collapse
Affiliation(s)
- Yang Yang
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Chi Zhang
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | - Hai-Xia Xu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, China; .
| | - Wen-Zhi Lan
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Fugeng Zhao
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
32
|
Suratanee A, Chokrathok C, Chutimanukul P, Khrueasan N, Buaboocha T, Chadchawan S, Plaimas K. Two-State Co-Expression Network Analysis to Identify Genes Related to Salt Tolerance in Thai rice. Genes (Basel) 2018; 9:E594. [PMID: 30501128 PMCID: PMC6316690 DOI: 10.3390/genes9120594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Khao Dawk Mali 105 (KDML105) rice is one of the most important crops of Thailand. It is a challenging task to identify the genes responding to salinity in KDML105 rice. The analysis of the gene co-expression network has been widely performed to prioritize significant genes, in order to select the key genes in a specific condition. In this work, we analyzed the two-state co-expression networks of KDML105 rice under salt-stress and normal grown conditions. The clustering coefficient was applied to both networks and exhibited significantly different structures between the salt-stress state network and the original (normal-grown) network. With higher clustering coefficients, the genes that responded to the salt stress formed a dense cluster. To prioritize and select the genes responding to the salinity, we investigated genes with small partners under normal conditions that were highly expressed and were co-working with many more partners under salt-stress conditions. The results showed that the genes responding to the abiotic stimulus and relating to the generation of the precursor metabolites and energy were the great candidates, as salt tolerant marker genes. In conclusion, in the case of the complexity of the environmental conditions, gaining more information in order to deal with the co-expression network provides better candidates for further analysis.
Collapse
Affiliation(s)
- Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok 10800, Thailand.
| | - Chidchanok Chokrathok
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Panita Chutimanukul
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Teerapong Buaboocha
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Supachitra Chadchawan
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
33
|
Gould BA, Chen Y, Lowry DB. Gene regulatory divergence between locally adapted ecotypes in their native habitats. Mol Ecol 2018; 27:4174-4188. [PMID: 30168223 DOI: 10.1111/mec.14852] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 01/04/2023]
Abstract
Local adaptation is a key driver of ecological specialization and the formation of new species. Despite its importance, the evolution of gene regulatory divergence among locally adapted populations is poorly understood, especially how that divergence manifests in nature. Here, we evaluate gene expression divergence and allele-specific gene expression responses for locally adapted coastal perennial and inland annual accessions of the yellow monkeyflower, Mimulus guttatus, in a field reciprocal transplant experiment. Overall, 6765 (73%) of surveyed genes were differentially expressed between coastal and inland habitats, while 7213 (77%) were differentially expressed between the coastal perennial and inland annual accessions. Cis-regulatory variation was pervasive, affecting 79% (5532) of differentially expressed genes. We detected trans effects for 52% (3611) of differentially expressed genes. Expression plasticity of alleles across habitats (G × E interactions) appears to be relatively common (affecting 18% of transcripts) and could minimize fitness trade-offs at loci that contribute to local adaptation. We also found evidence that at least one chromosomal inversion may act as supergene by holding together haplotypes of differentially expressed genes, but this pattern depends on habitat context. Our results highlight multiple key patterns regarding the relationship between gene expression and the evolution of locally adapted populations.
Collapse
Affiliation(s)
- Billie A Gould
- Department of Plant Biology, Michigan State University, East Lansing, Michigan.,Myriad Women's Health, South San Francisco, California
| | - Yani Chen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan.,Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan.,Plant Resilience Institute, Michigan State University, East Lansing, Michigan
| |
Collapse
|
34
|
Cheng X, Zhang S, Tao W, Zhang X, Liu J, Sun J, Zhang H, Pu L, Huang R, Chen T. INDETERMINATE SPIKELET1 Recruits Histone Deacetylase and a Transcriptional Repression Complex to Regulate Rice Salt Tolerance. PLANT PHYSIOLOGY 2018; 178:824-837. [PMID: 30061119 PMCID: PMC6181036 DOI: 10.1104/pp.18.00324] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/15/2018] [Indexed: 05/20/2023]
Abstract
Perception and transduction of salt stress signals are critical for plant survival, growth, and propagation. Thus, identification of components of the salt stress-signaling pathway is important for rice (Oryza sativa) molecular breeding of salt stress resistance. Here, we report the identification of an apetala2/ethylene response factor transcription factor INDETERMINATE SPIKELET1 (IDS1) and its roles in the regulation of rice salt tolerance. By genetic screening and phenotype analysis, we demonstrated that IDS1 conferred transcriptional repression activity and acted as a negative regulator of salt tolerance in rice. To identify potential downstream target genes regulated by IDS1, we conducted chromatin immunoprecipitation (ChIP) sequencing and ChIP-quantitative PCR assays and found that IDS1 may directly associate with the GCC-box-containing motifs in the promoter regions of abiotic stress-responsive genes, including LEA1 (LATE EMBRYOGENESIS ABUNDANT PROTEIN1) and SOS1 (SALT OVERLY SENSITIVE1), which are key genes regulating rice salt tolerance. IDS1 physically interacted with the transcriptional corepressor topless-related 1 and the histone deacetylase HDA1, contributing to the repression of LEA1 and SOS1 expression. Analyses of histone H3 acetylation status and RNA polymerase II occupation on the promoters of LEA1 and SOS1 further defined the molecular foundation of the transcriptional repression activity of IDS1. Our findings illustrate an epigenetic mechanism by which IDS1 modulates salt stress signaling as well as salt tolerance in rice.
Collapse
Affiliation(s)
- Xiliu Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, Beijing 100081,China
| | - Shaoxuan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weichun Tao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiangxiang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, Beijing 100081,China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, Beijing 100081,China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
35
|
Manishankar P, Wang N, Köster P, Alatar AA, Kudla J. Calcium Signaling during Salt Stress and in the Regulation of Ion Homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5003005. [PMID: 29800460 DOI: 10.1093/jxb/ery201] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Indexed: 05/20/2023]
Abstract
Soil composition largely defines the living conditions of plants and represents one of their most relevant, dynamic and complex environmental cues. The effective concentrations of many either tolerated or essential ions and compounds in the soil usually differ from the optimum that would be most suitable for plants. In this regard, salinity - caused by excess of NaCl - represents a widespread adverse growth condition but also shortage of ions like K+, NO3- and Fe2+ restrains plant growth. During the past years many components and mechanisms that function in the sensing and establishment of ion homeostasis have been identified and characterized. Here, we reflect on recent insights that extended our understanding of components and mechanisms, which govern and fine-tune plant salt stress tolerance and ion homeostasis. We put special emphasis on mechanisms that allow for interconnection of the salt overly sensitivity pathway with plant development and discuss newly emerging functions of Ca2+ signaling in salinity tolerance. Moreover, we review and discuss accumulating evidence for a central and unifying role of Ca2+ signaling and Ca2+ dependent protein phosphorylation in regulating sensing, uptake, transport and storage processes of various ions. Finally, based on this cross-field inventory, we deduce emerging concepts and arising questions for future research.
Collapse
Affiliation(s)
- P Manishankar
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - N Wang
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - P Köster
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - A A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Massaretto IL, Albaladejo I, Purgatto E, Flores FB, Plasencia F, Egea-Fernández JM, Bolarin MC, Egea I. Recovering Tomato Landraces to Simultaneously Improve Fruit Yield and Nutritional Quality Against Salt Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1778. [PMID: 30555505 PMCID: PMC6284034 DOI: 10.3389/fpls.2018.01778] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/15/2018] [Indexed: 05/18/2023]
Abstract
Salt stress generally induces important negative effects on tomato (Solanum lycopersicum) productivity but it may also cause a positive effect improving fruit quality, one of the greatest challenges in nowadays agriculture. Because of the genetic erosion of this horticultural species, the recovery of locally adapted landraces could play a very important role in avoiding, at least partially, production losses and simultaneously improving fruit quality. Two tomato landraces endemic of the Spanish Southeast area, characterized by the harsh climatic conditions of the Mediterranean basin, have been selected: Negro Yeste (NY) characterized by its dark-red colored fruits and Verdal (V), which fruits did not achieve the characteristic red color at ripening. Here the agronomic, physiological, and metabolic responses of these landraces were compared with the reference tomato commercial cv. Moneymaker (MM), in plants grown without salt (control) and with salt stress (100 mM NaCl) for 70 days. The higher salt tolerance of both landraces was mainly reflected in the fruit number, as NY only reduced the fruit number in salt stress by 20% whereas in MM it was reduced till 43%, and in V the fruit number even showed an increase of 33% with salt stress. An important fruit quality parameter is soluble solids content, which increases induced by salinity were significantly higher in both landraces (60 and 78% in NY and V, respectively) compared with MM (34%). Although both landraces showed a similar response in relation to the high chlorophyll accumulation detected in their fruits, the fruit metabolic profiles were very different. Increased carotenoids levels were found in NY fruits, especially lycopene in ripe fruit, and this characteristic was observed in both control and salt stress. Contrarily, the carotenoid biosynthesis pathway was disrupted in V ripe fruits, but other metabolites, such as Ca2+, mannose, formate, and glutamate were accumulated. These results highlight the potential of tomato landraces to improve nutritional fruit quality and maintain fruit yield stability under salt stress.
Collapse
Affiliation(s)
- Isabel L. Massaretto
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Murcia, Spain
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center (FoRC-CEPID), University of São Paulo, São Paulo, Brazil
| | - Irene Albaladejo
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Murcia, Spain
| | - Eduardo Purgatto
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center (FoRC-CEPID), University of São Paulo, São Paulo, Brazil
| | - Francisco B. Flores
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Murcia, Spain
| | - Félix Plasencia
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Murcia, Spain
| | | | - Maria C. Bolarin
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Murcia, Spain
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Murcia, Spain
- *Correspondence: Isabel Egea
| |
Collapse
|