1
|
Waghmare S, Xia L, Ly TP, Xu J, Farami S, Burchmore R, Blatt MR, Karnik R. SYNTAXIN OF PLANTS 132 underpins secretion of cargoes associated with salicylic acid signaling and pathogen defense. PLANT PHYSIOLOGY 2024; 197:kiae541. [PMID: 39387490 DOI: 10.1093/plphys/kiae541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Secretory trafficking in plant cells is facilitated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins that drive membrane fusion of cargo-containing vesicles. In Arabidopsis, SYNTAXIN OF PLANTS 132 (SYP132) is an evolutionarily ancient SNARE that functions with syntaxins SYP121 and SYP122 at the plasma membrane. Whereas SYP121 and SYP122 mediate overlapping secretory pathways, albeit with differences in their importance in plant-environment interactions, the SNARE SYP132 is absolutely essential for plant development and survival. SYP132 promotes endocytic traffic of the plasma membrane H+-ATPase AHA1 and aquaporin PIP2;1, and it coordinates plant growth and bacterial pathogen immunity through PATHOGENESIS-RELATED1 (PR1) secretion. Yet, little else is known about SYP132 cargoes. Here, we used advanced quantitative tandem mass tagging (TMT)-MS combined with immunoblot assays to track native secreted cargo proteins in the leaf apoplast. We found that SYP132 supports a basal level of secretion in Arabidopsis leaves, and its overexpression influences salicylic acid and jasmonic acid defense-related cargoes including PR1, PR2, and PR5 proteins. Impairing SYP132 function also suppressed defense-related secretory traffic when challenged with the bacterial pathogen Pseudomonas syringae. Thus, we conclude that, in addition to its role in hormone-related H+-ATPase cycling, SYP132 influences basal plant immunity.
Collapse
Affiliation(s)
- Sakharam Waghmare
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| | - Lingfeng Xia
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| | - Thu Phan Ly
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| | - Jing Xu
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| | - Sahar Farami
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| | - Richard Burchmore
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, Gilmorehill Campus, University Place, Glasgow G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Rucha Karnik
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
2
|
Lindeboom JJ, Gutierrez R, Kirik V, Ehrhardt DW. Cortical microtubules act as a template to organize nano-scale patterning of exocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626273. [PMID: 39677652 PMCID: PMC11642816 DOI: 10.1101/2024.12.01.626273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Targeting of exocytosis enables cellular morphogenesis, motility and polarized transport, yet relatively little is known about the targeting mechanisms in cellular systems. Here we show that the SEC/MUNC protein KEULE is a dynamic marker for individual secretory events and employ it as a live cell probe, that together with high-precision image analysis of thousands of events, reveal that cortical microtubule arrays act as two-dimensional templates that pattern exocytosis at the nano-scale in higher plant cells. This mechanism is distinct from previously described mechanisms involving motor-driven transport and defines ordered and adjacent linear domains where secretory events are higher and lower than expected, effectively redistributing exocytosis over most of the cell membrane. In addition, analysis of KEULE kinetics revealed distinct phases of assembly/disassembly that are differentially sensitive to experimental treatments that reduce exocytosis, revealing SEC/MUNC dynamics as a versatile and information rich read-out of exocytosis in vivo .
Collapse
|
3
|
Gao L, Pei Y, Wang P, Cen Y, Yan X, Hou Y. Cotton SNARE complex component GhSYP121 regulates salicylic acid signaling during defense against Verticillium dahliae. J Cell Physiol 2024; 239:e31329. [PMID: 38801215 DOI: 10.1002/jcp.31329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Syntaxin of plant (SYP) plays a crucial role in SNARE-mediated membrane trafficking during endocytic and secretory pathways, contributing to the regulation and execution of plant immunity against pathogens. Verticillium wilt is among the most destructive fungal diseases affecting cotton worldwide. However, information regarding SYP family genes in cotton is scarce. Through genome-wide identification and transcriptome profiling, we identified GhSYP121, a Qa SNARE gene in Gossypium hirsutum. GhSYP121 is notably induced by Verticillium dahliae, the causal agent of Verticillium wilt in cotton, and acts as a negative regulator of defense against V. dahliae. This is evidenced by the reduced resistance of GhSYP121-deficient cotton and the increased susceptibility of GhSYP121-overexpressing lines. Furthermore, the activation of the salicylic acid (SA) pathway by V. dahliae is inversely correlated with the expression level of GhSYP121. GhSYP121 interacts with its cognate SNARE component, GhSNAP33, which is required for the penetration resistance against V. dahliae in cotton. Collectively, GhSYP121, as a member of the cotton SNARE complex, is involved in regulating the SA pathway during plant defense against V. dahliae. This finding enhances our understanding of the potential role of GhSYP121 in these distinct pathways that contribute to plant defense against V. dahliae infection.
Collapse
Affiliation(s)
- Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Yuhan Cen
- College of Science, China Agricultural University, Beijing, China
| | - Xin Yan
- College of Science, China Agricultural University, Beijing, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Karnik R, Blatt MR. Analyzing Protein-Protein Interactions Using the Split-Ubiquitin System. Methods Mol Biol 2023; 2690:23-36. [PMID: 37450134 DOI: 10.1007/978-1-0716-3327-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The split-ubiquitin technology was developed over 20 years ago as an alternative to Gal4-based, yeast-two-hybrid methods to identify interacting protein partners. With the introduction of mating-based methods for split-ubiquitin screens, the approach has gained broad popularity because of its exceptionally high transformation efficiency, utility in working with full-length membrane proteins, and positive selection with little interference from spurious interactions. Recent advances now extend these split-ubiquitin methods to the analysis of interactions between otherwise soluble proteins and tripartite protein interactions.
Collapse
Affiliation(s)
- Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, School of Molecular Biosciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
5
|
Baena G, Xia L, Waghmare S, Karnik R. SNARE SYP132 mediates divergent traffic of plasma membrane H+-ATPase AHA1 and antimicrobial PR1 during bacterial pathogenesis. PLANT PHYSIOLOGY 2022; 189:1639-1661. [PMID: 35348763 PMCID: PMC9237740 DOI: 10.1093/plphys/kiac149] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 05/15/2023]
Abstract
The vesicle trafficking SYNTAXIN OF PLANTS132 (SYP132) drives hormone-regulated endocytic traffic to suppress the density and function of plasma membrane (PM) H+-ATPases. In response to bacterial pathogens, it also promotes secretory traffic of antimicrobial pathogenesis-related (PR) proteins. These seemingly opposite actions of SYP132 raise questions about the mechanistic connections between the two, likely independent, membrane trafficking pathways intersecting plant growth and immunity. To study SYP132 and associated trafficking of PM H+-ATPase 1 (AHA1) and PATHOGENESIS-RELATED PROTEIN1 (PR1) during pathogenesis, we used the virulent Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) bacteria for infection of Arabidopsis (Arabidopsis thaliana) plants. SYP132 overexpression suppressed bacterial infection in plants through the stomatal route. However, bacterial infection was enhanced when bacteria were infiltrated into leaf tissue to bypass stomatal defenses. Tracking time-dependent changes in native AHA1 and SYP132 abundance, cellular distribution, and function, we discovered that bacterial pathogen infection triggers AHA1 and SYP132 internalization from the plasma membrane. AHA1 bound to SYP132 through its regulatory SNARE Habc domain, and these interactions affected PM H+-ATPase traffic. Remarkably, using the Arabidopsis aha1 mutant, we discovered that AHA1 is essential for moderating SYP132 abundance and associated secretion of PR1 at the plasma membrane for pathogen defense. Thus, we show that during pathogenesis SYP132 coordinates AHA1 with opposing effects on the traffic of AHA1 and PR1.
Collapse
Affiliation(s)
- Guillermo Baena
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Lingfeng Xia
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Sakharam Waghmare
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Rucha Karnik
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
6
|
Zhang B, Guo Y, Wang H, Wang X, Lv M, Yang P, Zhang L. Identification and Characterization of Shaker K + Channel Gene Family in Foxtail Millet ( Setaria italica) and Their Role in Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:907635. [PMID: 35755660 PMCID: PMC9218596 DOI: 10.3389/fpls.2022.907635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Potassium (K+) is one of the indispensable elements in plant growth and development. The Shaker K+ channel protein family is involved in plant K+ uptake and distribution. Foxtail millet (Setaria italica), as an important crop, has strong tolerance and adaptability to abiotic stresses. However, no systematic study focused on the Shaker K+ channel family in foxtail millet. Here, ten Shaker K+ channel genes in foxtail millet were identified and divided into five groups through phylogenetic analysis. Gene structures, chromosome locations, cis-acting regulatory elements in promoter, and post-translation modification sites of Shaker K+ channels were analyzed. In silico analysis of transcript level demonstrated that the expression of Shaker K+ channel genes was tissue or developmental stage specific. The transcription levels of Shaker K+ channel genes in foxtail millet under different abiotic stresses (cold, heat, NaCl, and PEG) and phytohormones (6-BA, BR, MJ, IAA, NAA, GA3, SA, and ABA) treatments at 0, 12, and 24 h were detected by qRT-PCR. The results showed that SiAKT1, SiKAT3, SiGORK, and SiSKOR were worth further research due to their significant responses after most treatments. The yeast complementation assay verified the inward K+ transport activities of detectable Shaker K+ channels. Finally, we found interactions between SiKAT2 and SiSNARE proteins. Compared to research in Arabidopsis, our results showed a difference in SYP121 related Shaker K+ channel regulation mechanism in foxtail millet. Our results indicate that Shaker K+ channels play important roles in foxtail millet and provide theoretical support for further exploring the K+ absorption mechanism of foxtail millet under abiotic stress.
Collapse
Affiliation(s)
- Ben Zhang
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Yue Guo
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Hui Wang
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Xiaoxia Wang
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Mengtao Lv
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Pu Yang
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Lizhen Zhang
- School of Life Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
7
|
Cui X, Wang S, Huang Y, Ding X, Wang Z, Zheng L, Bi Y, Ge F, Zhu L, Yuan M, Yalovsky S, Fu Y. Arabidopsis SYP121 acts as an ROP2 effector in the regulation of root hair tip growth. MOLECULAR PLANT 2022; 15:1008-1023. [PMID: 35488430 DOI: 10.1016/j.molp.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Tip growth is an extreme form of polarized cell expansion that occurs in all eukaryotic kingdoms to generate highly elongated tubular cells with specialized functions, including fungal hyphae, animal neurons, plant pollen tubes, and root hairs (RHs). RHs are tubular structures that protrude from the root epidermis to facilitate water and nutrient uptake, microbial interactions, and plant anchorage. RH tip growth requires polarized vesicle targeting and active exocytosis at apical growth sites. However, how apical exocytosis is spatially and temporally controlled during tip growth remains elusive. Here, we report that the Qa-Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) SYP121 acts as an effector of Rho of Plants 2 (ROP2), mediating the regulation of RH tip growth. We show that active ROP2 promotes SYP121 targeting to the apical plasma membrane. Moreover, ROP2 directly interacts with SYP121 and promotes the interaction between SYP121 and the R-SNARE VAMP722 to form a SNARE complex, probably by facilitating the release of the Sec1/Munc18 protein SEC11, which suppresses the function of SYP121. Thus, the ROP2-SYP121 pathway facilitates exocytic trafficking during RH tip growth. Our study uncovers a direct link between an ROP GTPase and vesicular trafficking and a new mechanism for the control of apical exocytosis, whereby ROP GTPase signaling spatially regulates SNARE complex assembly and the polar distribution of a Q-SNARE.
Collapse
Affiliation(s)
- Xiankui Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuwei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaohui Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuening Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zirong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lidan Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yujing Bi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fanghui Ge
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaul Yalovsky
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Luo C, Shi Y, Xiang Y. SNAREs Regulate Vesicle Trafficking During Root Growth and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:853251. [PMID: 35360325 PMCID: PMC8964185 DOI: 10.3389/fpls.2022.853251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 05/13/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins assemble to drive the final membrane fusion step of membrane trafficking. Thus, SNAREs are essential for membrane fusion and vesicular trafficking, which are fundamental mechanisms for maintaining cellular homeostasis. In plants, SNAREs have been demonstrated to be located in different subcellular compartments and involved in a variety of fundamental processes, such as cytokinesis, cytoskeleton organization, symbiosis, and biotic and abiotic stress responses. In addition, SNAREs can also contribute to the normal growth and development of Arabidopsis. Here, we review recent progress in understanding the biological functions and signaling network of SNAREs in vesicle trafficking and the regulation of root growth and development in Arabidopsis.
Collapse
|
9
|
Wang T, Zhang X. Genome-wide dynamic network analysis reveals the potential genes for MeJA-induced growth-to-defense transition. BMC PLANT BIOLOGY 2021; 21:450. [PMID: 34615468 PMCID: PMC8493714 DOI: 10.1186/s12870-021-03185-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/23/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Methyl jasmonate (MeJA), which has been identified as a lipid-derived stress hormone, mediates plant resistance to biotic/abiotic stress. Understanding MeJA-induced plant defense provides insight into how they responding to environmental stimuli. RESULT In this work, the dynamic network analysis method was used to quantitatively identify the tipping point of growth-to-defense transition and detect the associated genes. As a result, 146 genes were detected as dynamic network biomarker (DNB) members and the critical defense transition was identified based on dense time-series RNA-seq data of MeJA-treated Arabidopsis thaliana. The GO functional analysis showed that these DNB genes were significantly enriched in defense terms. The network analysis between DNB genes and differentially expressed genes showed that the hub genes including SYP121, SYP122, WRKY33 and MPK11 play a vital role in plant growth-to-defense transition. CONCLUSIONS Based on the dynamic network analysis of MeJA-induced plant resistance, we provide an important guideline for understanding the growth-to-defense transition of plants' response to environment stimuli. This study also provides a database with the key genes of plant defense induced by MeJA.
Collapse
Affiliation(s)
- Tengfei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, 430074, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiujun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, 430074, Wuhan, China.
| |
Collapse
|
10
|
Kim S, Kim H, Park K, Cho DJ, Kim MK, Kwon C, Yun HS. Synaptotagmin 5 Controls SYP132-VAMP721/722 Interaction for Arabidopsis Immunity to Pseudomonas syringae pv tomato DC3000. Mol Cells 2021; 44:670-679. [PMID: 34504049 PMCID: PMC8490205 DOI: 10.14348/molcells.2021.0100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/11/2021] [Accepted: 08/08/2021] [Indexed: 01/18/2023] Open
Abstract
Vesicle-associated membrane proteins 721 and 722 (VAMP721/722) are secretory vesicle-localized arginine-conserved soluble N-ethylmaleimide-sensitive factor attachment protein receptors (R-SNAREs) to drive exocytosis in plants. They are involved in diverse physiological processes in plants by interacting with distinct plasma membrane (PM) syntaxins. Here, we show that synaptotagmin 5 (SYT5) is involved in plant defense against Pseudomonas syringae pv tomato (Pst) DC3000 by regulating SYP132-VAMP721/722 interactions. Calcium-dependent stimulation of in vitro SYP132-VAMP722 interaction by SYT5 and reduced in vivo SYP132-VAMP721/722 interaction in syt5 plants suggest that SYT5 regulates the interaction between SYP132 and VAMP721/722. We interestingly found that disease resistance to Pst DC3000 bacterium but not to Erysiphe pisi fungus is compromised in syt5 plants. Since SYP132 plays an immune function to bacteria, elevated growth of surface-inoculated Pst DC3000 in VAMP721/722-deficient plants suggests that SYT5 contributes to plant immunity to Pst DC3000 by promoting the SYP132-VAMP721/722 immune secretory pathway.
Collapse
Affiliation(s)
- Soohong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Hyeran Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Keunchun Park
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Da Jeong Cho
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Mi Kyung Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
11
|
Gu X, Brennan A, Wei W, Guo G, Lindsey K. Vesicle Transport in Plants: A Revised Phylogeny of SNARE Proteins. Evol Bioinform Online 2020; 16:1176934320956575. [PMID: 33116351 PMCID: PMC7573729 DOI: 10.1177/1176934320956575] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Communication systems within and between plant cells involve the transfer of ions and molecules between compartments, and are essential for development and responses to biotic and abiotic stresses. This in turn requires the regulated movement and fusion of membrane systems with their associated cargo. Recent advances in genomics has provided new resources with which to investigate the evolutionary relationships between membrane proteins across plant species. Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are known to play important roles in vesicle trafficking across plant, animal and microbial species. Using recent public expression and transcriptomic data from 9 representative green plants, we investigated the evolution of the SNARE classes and linked protein changes to functional specialization (expression patterns). We identified an additional 3 putative SNARE genes in the model plant Arabidopsis. We found that all SNARE classes have expanded in number to a greater or lesser degree alongside the evolution of multicellularity, and that within-species expansions are also common. These gene expansions appear to be associated with the accumulation of amino acid changes and with sub-functionalization of SNARE family members to different tissues. These results provide an insight into SNARE protein evolution and functional specialization. The work provides a platform for hypothesis-building and future research into the precise functions of these proteins in plant development and responses to the environment.
Collapse
Affiliation(s)
- Xiaoyan Gu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Department of Biosciences, Durham University, Durham, UK
| | - Adrian Brennan
- Department of Biosciences, Durham University, Durham, UK
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham, UK
| | - Guangqin Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
12
|
Larson ER, Ortmannová J, Donald NA, Alvim J, Blatt MR, Žárský V. Synergy among Exocyst and SNARE Interactions Identifies a Functional Hierarchy in Secretion during Vegetative Growth. THE PLANT CELL 2020; 32:2951-2963. [PMID: 32699172 PMCID: PMC7474273 DOI: 10.1105/tpc.20.00280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/23/2020] [Accepted: 07/20/2020] [Indexed: 05/28/2023]
Abstract
Vesicle exocytosis underpins signaling and development in plants and is vital for cell expansion. Vesicle tethering and fusion are thought to occur sequentially, with tethering mediated by the exocyst and fusion driven by assembly of soluble NSF attachment protein receptor (SNARE) proteins from the vesicle membrane (R-SNAREs or vesicle-associated membrane proteins [VAMPs]) and the target membrane (Q-SNAREs). Interactions between exocyst and SNARE protein complexes are known, but their functional consequences remain largely unexplored. We now identify a hierarchy of interactions leading to secretion in Arabidopsis (Arabidopsis thaliana). Mating-based split-ubiquitin screens and in vivo Förster resonance energy transfer analyses showed that exocyst EXO70 subunits bind preferentially to cognate plasma membrane SNAREs, notably SYP121 and VAMP721. The exo70A1 mutant affected SNARE distribution and suppressed vesicle traffic similarly to the dominant-negative truncated protein SYP121ΔC, which blocks secretion at the plasma membrane. These phenotypes are consistent with the epistasis of exo70A1 in the exo70A1 syp121 double mutant, which shows decreased growth similar to exo70A1 single mutants. However, the exo70A1 vamp721 mutant showed a strong, synergy, suppressing growth and cell expansion beyond the phenotypic sum of the two single mutants. These data are best explained by a hierarchy of SNARE recruitment to the exocyst at the plasma membrane, dominated by the R-SNARE and plausibly with the VAMP721 longin domain as a nexus for binding.
Collapse
Affiliation(s)
- Emily R Larson
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jitka Ortmannová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic
| | - Naomi A Donald
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jonas Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Viktor Žárský
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague 2, Czech Republic
| |
Collapse
|
13
|
MARTINIÈRE A, MOREAU P. Complex roles of Rabs and SNAREs in the secretory pathway and plant development: a never‐ending story. J Microsc 2020; 280:140-157. [DOI: 10.1111/jmi.12952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- A. MARTINIÈRE
- Univ Montpellier, CNRS, INRAE, Montpellier SupAgro BPMP Montpellier France
| | - P. MOREAU
- UMR 5200 Membrane Biogenesis Laboratory CNRS and University of Bordeaux, INRAE Bordeaux Villenave d'Ornon France
| |
Collapse
|
14
|
Rodriguez-Furlan C, Minina EA, Hicks GR. Remove, Recycle, Degrade: Regulating Plasma Membrane Protein Accumulation. THE PLANT CELL 2019; 31:2833-2854. [PMID: 31628169 PMCID: PMC6925004 DOI: 10.1105/tpc.19.00433] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 05/21/2023]
Abstract
Interactions between plant cells and the environment rely on modulation of protein receptors, transporters, channels, and lipids at the plasma membrane (PM) to facilitate intercellular communication, nutrient uptake, environmental sensing, and directional growth. These functions are fine-tuned by cellular pathways maintaining or reducing particular proteins at the PM. Proteins are endocytosed, and their fate is decided between recycling and degradation to modulate localization, abundance, and activity. Selective autophagy is another pathway regulating PM protein accumulation in response to specific conditions or developmental signals. The mechanisms regulating recycling, degradation, and autophagy have been studied extensively, yet we are just now addressing their regulation and coordination. Here, we (1) provide context concerning regulation of protein accumulation, recycling, or degradation by overviewing endomembrane trafficking; (2) discuss pathways regulating recycling and degradation in terms of cellular roles and cargoes; (3) review plant selective autophagy and its physiological significance; (4) focus on two decision-making mechanisms: regulation of recycling versus degradation of PM proteins and coordination between autophagy and vacuolar degradation; and (5) identify future challenges.
Collapse
Affiliation(s)
- Cecilia Rodriguez-Furlan
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506
| | - Elena A Minina
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Glenn R Hicks
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| |
Collapse
|
15
|
Waghmare S, Lefoulon C, Zhang B, Liliekyte E, Donald N, Blatt MR. K + Channel-SEC11 Binding Exchange Regulates SNARE Assembly for Secretory Traffic. PLANT PHYSIOLOGY 2019; 181:1096-1113. [PMID: 31548266 PMCID: PMC6836825 DOI: 10.1104/pp.19.00919] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/04/2019] [Indexed: 05/04/2023]
Abstract
Cell expansion requires that ion transport and secretory membrane traffic operate in concert. Evidence from Arabidopsis (Arabidopsis thaliana) indicates that such coordination is mediated by physical interactions between subsets of so-called SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which drive the final stages of vesicle fusion, and K+ channels, which facilitate uptake of the cation to maintain cell turgor pressure as the cell expands. However, the sequence of SNARE binding with the K+ channels and its interweaving within the events of SNARE complex assembly for exocytosis remains unclear. We have combined protein-protein interaction and electrophysiological analyses to resolve the binding interactions of the hetero-oligomeric associations. We find that the RYxxWE motif, located within the voltage sensor of the K+ channels, is a nexus for multiple SNARE interactions. Of these, K+ channel binding and its displacement of the regulatory protein SEC11 is critical to prime the Qa-SNARE SYP121. Our results indicate a stabilizing role for the Qbc-SNARE SNAP33 in the Qa-SNARE transition to SNARE complex assembly with the R-SNARE VAMP721. They also suggest that, on its own, the R-SNARE enters an anomalous binding mode with the channels, possibly as a fail-safe measure to ensure a correct binding sequence. Thus, we suggest that SYP121 binding to the K+ channels serves the role of a primary trigger to initiate assembly of the secretory machinery for exocytosis.
Collapse
Affiliation(s)
- Sakharam Waghmare
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Cecile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Ben Zhang
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Edita Liliekyte
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Naomi Donald
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
16
|
Richardson LGL. Two Is Better than One: Dual SEC11 Binding Sites Regulate SYP121-Mediated Vesicle Trafficking. PLANT PHYSIOLOGY 2019; 180:16-17. [PMID: 31053676 PMCID: PMC6501116 DOI: 10.1104/pp.19.00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Lynn G L Richardson
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|