1
|
Cho NH, Kim EY, Park K, Lim CJ, Seo DH, Kim WT. Cosuppression of AtGELP22 and AtGELP23, two ubiquitinated target proteins of RING E3 ligase AtAIRP5, increases tolerance to drought stress in Arabidopsis. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01368-y. [PMID: 37479835 DOI: 10.1007/s11103-023-01368-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
AtAIRP5 RING E3 ubiquitin ligase was recently identified as a positive regulator of the abscisic acid (ABA)-mediated drought stress response by stimulating the degradation of serine carboxypeptidase-like 1. Here, we identified GDSL-type esterase/lipase 22 (AtGELP22) and AtGELP23 as additional interacting partners of AtAIRP5. Yeast two-hybrid, pull-down, co-immunoprecipitation, and ubiquitination analyses verified that AtGELP22 and AtGELP23 are ubiquitinated target proteins of AtAIRP5. AtGELP22 and AtGELP23 were colocalized with AtAIRP5 to punctate-like structures in the cytosolic fraction, in which PYK10 and NAI2, two ER body marker proteins, are localized. T-DNA insertion atgelp22 and atgelp23 single knockout mutant plants showed phenotypes indistinguishable from those of wild-type plants under ABA treatment. In contrast, RNAi-mediated cosuppression of AtGELP22 and AtGELP23 resulted in hypersensitive ABA-mediated stomatal movements and higher tolerance to drought stress than that of the single mutant and wild-type plants. Taken together, our results suggest that the putative GDSL-type esterases/lipases AtGELP22 and AtGELP23 act as redundant negative regulators of the ABA-mediated drought stress response in Arabidopsis.
Collapse
Affiliation(s)
- Na Hyun Cho
- Division of Life Science, Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Eun Yu Kim
- Division of Life Science, Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, 215316, China
| | - Kiyoul Park
- Division of Life Science, Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
- Department of Biochemistry, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Cheol Jin Lim
- Division of Life Science, Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Dong Hye Seo
- Division of Life Science, Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Woo Taek Kim
- Division of Life Science, Department of Systems Biology, Yonsei University, Seoul, 03722, Korea.
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
2
|
Cho NH, Woo OG, Kim EY, Park K, Seo DH, Yu SG, Choi YA, Lee JH, Lee JH, Kim WT. E3 ligase AtAIRP5/GARU regulates drought stress response by stimulating SERINE CARBOXYPEPTIDASE-LIKE1 turnover. PLANT PHYSIOLOGY 2022; 190:898-919. [PMID: 35699505 PMCID: PMC9434184 DOI: 10.1093/plphys/kiac289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is a major mechanism of eukaryotic posttranslational protein turnover that has been implicated in abscisic acid (ABA)-mediated drought stress response. Here, we isolated T-DNA insertion mutant lines in which ABA-insensitive RING protein 5 (AtAIRP5) was suppressed, resulting in hyposensitive ABA-mediated germination compared to wild-type Arabidopsis (Arabidopsis thaliana) plants. A homology search revealed that AtAIRP5 is identical to gibberellin (GA) receptor RING E3 ubiquitin (Ub) ligase (GARU), which downregulates GA signaling by degrading the GA receptor GID1, and thus AtAIRP5 was renamed AtAIRP5/GARU. The atairp5/garu knockout progeny were impaired in ABA-dependent stomatal closure and were markedly more susceptible to drought stress than wild-type plants, indicating a positive role for AtAIRP5/GARU in the ABA-mediated drought stress response. Yeast two-hybrid, pull-down, target ubiquitination, and in vitro and in planta degradation assays identified serine carboxypeptidase-like1 (AtSCPL1), which belongs to the clade 1A AtSCPL family, as a ubiquitinated target protein of AtAIRP5/GARU. atscpl1 single and atairp5/garu-1 atscpl1-2 double mutant plants were more tolerant to drought stress than wild-type plants in an ABA-dependent manner, suggesting that AtSCPL1 is genetically downstream of AtAIRP5/GARU. After drought treatment, the endogenous ABA levels in atscpl1 and atairp5/garu-1 atscpl1-2 mutant leaves were higher than those in wild-type and atairp5/garu leaves. Overall, our results suggest that AtAIRP5/GARU RING E3 Ub ligase functions as a positive regulator of the ABA-mediated drought response by promoting the degradation of AtSCPL1.
Collapse
Affiliation(s)
| | | | | | | | - Dong Hye Seo
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Seong Gwan Yu
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | | | - Ji Hee Lee
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | | | | |
Collapse
|
3
|
Ahn MY, Seo DH, Kim WT. PUB22 and PUB23 U-box E3 ubiquitin ligases negatively regulate 26S proteasome activity under proteotoxic stress conditions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:625-631. [PMID: 34964269 DOI: 10.1111/jipb.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
The mechanism regulating proteasomal activity under proteotoxic stress conditions remains unclear. Here, we showed that arsenite-induced proteotoxic stress resulted in upregulation of Arabidopsis homologous PUB22 and PUB23 U-box E3 ubiquitin ligases and that pub22pub23 double mutants displayed arsenite-insensitive seed germination and root growth phenotypes. PUB22/PUB23 downregulated 26S proteasome activity by promoting the dissociation of the 19S regulatory particle from the holo-proteasome complex, resulting in intracellular accumulation of UbG76V -GFP, an artificial substrate of the proteasome complex, and insoluble poly-ubiquitinated proteins. These results suggest that PUB22/PUB23 play a critical role in arsenite-induced proteotoxic stress response via negative regulation of 26S proteasome integrity.
Collapse
Affiliation(s)
- Min Yong Ahn
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Dong Hye Seo
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Woo Taek Kim
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
4
|
Yu SG, Cho NH, Kim JH, Oh TR, Kim WT. Suppression of DRR1 results in the accumulation of insoluble ubiquitinated proteins, which impairs drought stress tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:431-437. [PMID: 32910530 DOI: 10.1111/jipb.13014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Drought stress has detrimental effects on plants. Although the abscisic acid (ABA)-mediated drought response is well established, defensive mechanisms to cope with dehydration-induced proteotoxicity have been rarely studied. DRR1 was identified as an Arabidopsis drought-induced gene encoding an ER-localized RING-type E3 Ub ligase. Suppression of DRR1 markedly reduced tolerance to drought and proteotoxic stress without altering ABA-mediated germination and stomatal movement. Proteotoxicity- and dehydration-induced insoluble ubiquitinated protein accumulation was more obvious in DRR1 loss-of-function plants than in wild-type plants. These results suggest that DRR1 is involved in an ABA-independent drought stress response possibly through the mitigation of dehydration-induced proteotoxic stress.
Collapse
Affiliation(s)
- Seong Gwan Yu
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Na Hyun Cho
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jong Hum Kim
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Tae Rin Oh
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Woo Taek Kim
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
5
|
Zhang Y, Lai X, Yang S, Ren H, Yuan J, Jin H, Shi C, Lai Z, Xia G. Functional analysis of tomato CHIP ubiquitin E3 ligase in heat tolerance. Sci Rep 2021; 11:1713. [PMID: 33462308 PMCID: PMC7814054 DOI: 10.1038/s41598-021-81372-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/04/2021] [Indexed: 01/25/2023] Open
Abstract
Plants have evolved genetic and physiological mechanisms to mitigate the adverse effects of high temperature. CARBOXYL TERMINUS OF THE HSC70-INTERACTING PROTEINS (CHIP) is a conserved chaperone-dependent ubiquitin E3 ligase that targets misfolded proteins. Here, we report functional analysis of the SlCHIP gene from tomato (Solanum lycopersicum) in heat tolerance. SlCHIP encodes a CHIP protein with three tandem tetracopeptide repeat (TPR) motifs and a C-terminal U box domain. Phylogenetic analysis of CHIP homologs from animals, spore-bearing and seed plants revealed a tree topology similar to the evolutionary tree of the organisms. Expression of SlCHIP was induced under high temperature and was also responsive to plant stress hormones. Silencing of SlCHIP in tomato reduced heat tolerance based on increased heat stress symptoms, reduced photosynthetic activity, elevated electrolyte leakage and accumulation of insoluble protein aggregates. The accumulated protein aggregates in SlCHIP-silenced plants were still highly ubiquitinated, suggesting involvement of other E3 ligases in ubiquitination. SlCHIP restored the heat tolerance of Arabidopsis chip mutant to the wild type levels. These results indicate that tomato SlCHIP plays a critical role in heat stress responses most likely by targeting degradation of misfolded proteins that are generated during heat stress.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China.
| | - Xiaodong Lai
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China
| | - Siqing Yang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China
| | - Huan Ren
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China
| | - Jingya Yuan
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China
| | - Huanchun Jin
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China
| | - Chengchen Shi
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gengshou Xia
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, 323000, Zhejiang, China
| |
Collapse
|
6
|
Oh TR, Yu SG, Yang HW, Kim JH, Kim WT. AtKPNB1, an Arabidopsis importin-β protein, is downstream of the RING E3 ubiquitin ligase AtAIRP1 in the ABA-mediated drought stress response. PLANTA 2020; 252:93. [PMID: 33106936 DOI: 10.1007/s00425-020-03500-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/15/2020] [Indexed: 05/20/2023]
Abstract
AtKPNB1, an Arabidopsis importin-β protein, was regulated by AtAIRP1 E3 ubiquitin ligase, which intensified the ABA-mediated drought stress response. As an early step in the abscisic acid (ABA)-mediated drought response, the ABA signal is transduced into the nucleus, and thus the nuclear transport system is crucially involved in the drought stress response. AtKPNB1, an importin-β protein, which is a core component of nuclear transport, was previously reported to be a negative factor in the ABA-mediated drought stress response (Luo et al. Luo et al., Plant J 75:377-389, 2013). Here, we report that AtAIPR1, an Arabidopsis RING-type E3 ubiquitin (Ub) ligase, interacted with and ubiquitinated AtKPNB1. A null mutation of AtKPNB1 suppressed the ABA-insensitive germination phenotype of atairp1 mutant seedlings as compared to that of the wild-type plants. Furthermore, the ABA-insensitive stomatal closure and drought-susceptible phenotypes of atairp1 were rescued in atairp1atkpnb1 double mutant progeny, indicating that AtKPNB1 functions downstream of AtAIRP1. These data suggest that AtAIRP1 regulates the ABA-mediated drought response in Arabidopsis via ubiquitination of AtKPNB1.
Collapse
Affiliation(s)
- Tae Rin Oh
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Seong Gwan Yu
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hee Woong Yang
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jong Hum Kim
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
- Present address: Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Woo Taek Kim
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea.
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
7
|
Wu Z, Tong M, Tian L, Zhu C, Liu X, Zhang Y, Li X. Plant E3 ligases SNIPER1 and SNIPER2 broadly regulate the homeostasis of sensor NLR immune receptors. EMBO J 2020; 39:e104915. [PMID: 32557679 PMCID: PMC7396873 DOI: 10.15252/embj.2020104915] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
In both plants and animals, nucleotide-binding leucine-rich repeat (NLR) immune receptors perceive pathogen-derived molecules to trigger immunity. Global NLR homeostasis must be tightly controlled to ensure sufficient and timely immune output while avoiding aberrant activation, the mechanisms of which are largely unclear. In a previous reverse genetic screen, we identified two novel E3 ligases, SNIPER1 and its homolog SNIPER2, both of which broadly control the levels of NLR immune receptors in Arabidopsis. Protein levels of sensor NLRs (sNLRs) are inversely correlated with SNIPER1 amount and the interactions between SNIPER1 and sNLRs seem to be through the common nucleotide-binding (NB) domains of sNLRs. In support, SNIPER1 can ubiquitinate the NB domains of multiple sNLRs in vitro. Our study thus reveals a novel process of global turnover of sNLRs by two master E3 ligases for immediate attenuation of immune output to effectively avoid autoimmunity. Such unique mechanism can be utilized in the future for engineering broad-spectrum resistance in crops to fend off pathogens that damage our food supply.
Collapse
Affiliation(s)
- Zhongshou Wu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Meixuezi Tong
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Lei Tian
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Chipan Zhu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Xueru Liu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Yuelin Zhang
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Xin Li
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
8
|
Yu SG, Kim JH, Cho NH, Oh TR, Kim WT. Arabidopsis RING E3 ubiquitin ligase JUL1 participates in ABA-mediated microtubule depolymerization, stomatal closure, and tolerance response to drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:824-842. [PMID: 32314432 DOI: 10.1111/tpj.14775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 05/20/2023]
Abstract
Ubiquitination is a critical post-translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T-DNA insertion mutant in the At5g10650 locus. Compared to wild-type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C-terminal C3HC4-type Really Interesting New Gene (RING) motif, which was essential for ABA-mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule-associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1-ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA-promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild-type levels of H2 O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2 O2 and calcium in the ABA-mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2 O2 , and calcium, which in turn resulted in ABA-hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild-type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA-mediated microtubule disorganization, stomatal closure, and tolerance to drought stress.
Collapse
Affiliation(s)
- Seong Gwan Yu
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jong Hum Kim
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Na Hyun Cho
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Tae Rin Oh
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Woo Taek Kim
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|