1
|
Huang F, He Y. Epigenetic control of gene expression by cellular metabolisms in plants. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102572. [PMID: 38875845 DOI: 10.1016/j.pbi.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Covalent modifications on DNA and histones can regulate eukaryotic gene expression and are often referred to as epigenetic modifications. These chemical reactions require various metabolites as donors or co-substrates, such as acetyl coenzyme A, S-adenosyl-l-methionine, and α-ketoglutarate. Metabolic processes that take place in the cytoplasm, nucleus, or other cellular compartments may impact epigenetic modifications in the nucleus. Here, we review recent advances on metabolic control of chromatin modifications and thus gene expression in plants, with a focus on the functions of nuclear compartmentalization of metabolic processes and enzymes in DNA and histone modifications. Furthermore, we discuss the functions of cellular metabolisms in fine-tuning gene expression to facilitate the responses or adaptation to environmental changes in plants.
Collapse
Affiliation(s)
- Fei Huang
- Peking-Tsinghua Center for Life Sciences & National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- Peking-Tsinghua Center for Life Sciences & National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| |
Collapse
|
2
|
Qiu J, Chen M, Lu F, Chen X, Cai Z, Huang T. Methionine Synthase 2 Represses Stem Cell Maintenance of Arabidopsis thaliana in Response to Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2224. [PMID: 39204660 PMCID: PMC11359516 DOI: 10.3390/plants13162224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Salt stress represses the growth and development of plants that mainly depend on the continual propagation and differentiation of stem cells. WUSCHEL (WUS)/WUSCHEL-RELATED HOMEOBOX (WOX) family proteins determine stem cell fate in plants under ever-changing environments. It is not yet known how plant stem cell homeostasis is regulated under salt stress. Methionine synthase catalyzes the formation of methionine by methylating homocysteine in the one-carbon metabolism pathway. In this work, we investigated the role of Arabidopsis METHIONINE SYNTHASE 2 (AtMS2) in stem cell homeostasis under salt stress. The results showed that AtMS2 represses the stem cell maintenance of Arabidopsis in response to salt stress. Under normal growth conditions, AtMS2 is mainly localized in the cytoplasm. However, under salt stress, it exhibits significant accumulation in the nucleus. AtMS2 interacts with the WUS/WOX protein, and, together, they repress WUS/WOX expression by binding to its promoter. The mutation in AtMS2 resulted in enhanced salt tolerance. Therefore, AtMS2 might act as a key negative regulator to repress the stem cell maintenance and growth of Arabidopsis under salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Huang
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen 361102, China; (J.Q.); (M.C.)
| |
Collapse
|
3
|
Kumar BKP, Beaubiat S, Yadav CB, Eshed R, Arazi T, Sherman A, Bouché N. Genome wide inherited modifications of the tomato epigenome by trans-activated bacterial CG methyltransferase. Cell Mol Life Sci 2024; 81:222. [PMID: 38767725 PMCID: PMC11106227 DOI: 10.1007/s00018-024-05255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Epigenetic variation is mediated by epigenetic marks such as DNA methylation occurring in all cytosine contexts in plants. CG methylation plays a critical role in silencing transposable elements and regulating gene expression. The establishment of CG methylation occurs via the RNA-directed DNA methylation pathway and CG methylation maintenance relies on METHYLTRANSFERASE1, the homologue of the mammalian DNMT1. PURPOSE Here, we examined the capacity to stably alter the tomato genome methylome by a bacterial CG-specific M.SssI methyltransferase expressed through the LhG4/pOP transactivation system. RESULTS Methylome analysis of M.SssI expressing plants revealed that their euchromatic genome regions are specifically hypermethylated in the CG context, and so are most of their genes. However, changes in gene expression were observed only with a set of genes exhibiting a greater susceptibility to CG hypermethylation near their transcription start site. Unlike gene rich genomic regions, our analysis revealed that heterochromatic regions are slightly hypomethylated at CGs only. Notably, some M.SssI-induced hypermethylation persisted even without the methylase or transgenes, indicating inheritable epigenetic modification. CONCLUSION Collectively our findings suggest that heterologous expression of M.SssI can create new inherited epigenetic variations and changes in the methylation profiles on a genome wide scale. This open avenues for the conception of epigenetic recombinant inbred line populations with the potential to unveil agriculturally valuable tomato epialleles.
Collapse
Affiliation(s)
- Bapatla Kesava Pavan Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
- Molecular Biology, Acrannolife Genomics Private Limited, Chennai, Tamilnadu, 600035, India
| | - Sébastien Beaubiat
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Chandra Bhan Yadav
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
- Department of Genetics, Genomics, and Breeding, NIAB-EMR, East Malling, East Malling, ME19 6BJ, UK
| | - Ravit Eshed
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel.
| | - Nicolas Bouché
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
4
|
Cheng YJ, Wang JW, Ye R. Histone dynamics responding to internal and external cues underlying plant development. PLANT PHYSIOLOGY 2024; 194:1980-1997. [PMID: 38124490 DOI: 10.1093/plphys/kiad676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Plants necessitate a refined coordination of growth and development to effectively respond to external triggers for survival and successful reproduction. This intricate harmonization of plant developmental processes and adaptability hinges on significant alterations within their epigenetic landscapes. In this review, we first delve into recent strides made in comprehending underpinning the dynamics of histones, driven by both internal and external cues. We encapsulate the prevailing working models through which cis/trans elements navigate the acquisition and removal of histone modifications, as well as the substitution of histone variants. As we look ahead, we anticipate that delving deeper into the dynamics of epigenetic regulation at the level of individual cells or specific cell types will significantly enrich our comprehension of how plant development unfolds under the influence of internal and external cues. Such exploration holds the potential to provide unprecedented resolution in understanding the orchestration of plant growth and development.
Collapse
Affiliation(s)
- Ying-Juan Cheng
- College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Ruiqiang Ye
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| |
Collapse
|
5
|
Lu Y, Bu Q, Chuan M, Cui X, Zhao Y, Zhou DX. Metabolic regulation of the plant epigenome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1001-1013. [PMID: 36705504 DOI: 10.1111/tpj.16122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 05/31/2023]
Abstract
Chromatin modifications shape the epigenome and are essential for gene expression reprogramming during plant development and adaptation to the changing environment. Chromatin modification enzymes require primary metabolic intermediates such as S-adenosyl-methionine, acetyl-CoA, alpha-ketoglutarate, and NAD+ as substrates or cofactors. The availability of the metabolites depends on cellular nutrients, energy and reduction/oxidation (redox) states, and affects the activity of chromatin regulators and the epigenomic landscape. The changes in the plant epigenome and the activity of epigenetic regulators in turn control cellular metabolism through transcriptional and post-translational regulation of metabolic enzymes. The interplay between metabolism and the epigenome constitutes a basis for metabolic control of plant growth and response to environmental changes. This review summarizes recent advances regarding the metabolic control of plant chromatin regulators and epigenomes, which are involved in plant adaption to environmental stresses.
Collapse
Affiliation(s)
- Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qing Bu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Mingli Chuan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyun Cui
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Donev EN, Derba‐Maceluch M, Yassin Z, Gandla ML, Pramod S, Heinonen E, Kumar V, Scheepers G, Vilaplana F, Johansson U, Hertzberg M, Sundberg B, Winestrand S, Hörnberg A, Alriksson B, Jönsson LJ, Mellerowicz EJ. Field testing of transgenic aspen from large greenhouse screening identifies unexpected winners. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1005-1021. [PMID: 36668687 PMCID: PMC10106850 DOI: 10.1111/pbi.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/30/2022] [Accepted: 12/29/2022] [Indexed: 05/04/2023]
Abstract
Trees constitute promising renewable feedstocks for biorefinery using biochemical conversion, but their recalcitrance restricts their attractiveness for the industry. To obtain trees with reduced recalcitrance, large-scale genetic engineering experiments were performed in hybrid aspen blindly targeting genes expressed during wood formation and 32 lines representing seven constructs were selected for characterization in the field. Here we report phenotypes of five-year old trees considering 49 traits related to growth and wood properties. The best performing construct considering growth and glucose yield in saccharification with acid pretreatment had suppressed expression of the gene encoding an uncharacterized 2-oxoglutarate-dependent dioxygenase (2OGD). It showed minor changes in wood chemistry but increased nanoporosity and glucose conversion. Suppressed levels of SUCROSE SYNTHASE, (SuSy), CINNAMATE 4-HYDROXYLASE (C4H) and increased levels of GTPase activating protein for ADP-ribosylation factor ZAC led to significant growth reductions and anatomical abnormalities. However, C4H and SuSy constructs greatly improved glucose yields in saccharification without and with pretreatment, respectively. Traits associated with high glucose yields were different for saccharification with and without pretreatment. While carbohydrates, phenolics and tension wood contents positively impacted the yields without pretreatment and growth, lignin content and S/G ratio were negative factors, the yields with pretreatment positively correlated with S lignin and negatively with carbohydrate contents. The genotypes with high glucose yields had increased nanoporosity and mGlcA/Xyl ratio, and some had shorter polymers extractable with subcritical water compared to wild-type. The pilot-scale industrial-like pretreatment of best-performing 2OGD construct confirmed its superior sugar yields, supporting our strategy.
Collapse
Affiliation(s)
- Evgeniy N. Donev
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| | - Marta Derba‐Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| | - Zakiya Yassin
- Enhet Produktionssystem och MaterialRISE Research Institutes of SwedenVäxjöSweden
| | | | - Sivan Pramod
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
| | - Emilia Heinonen
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
- Wallenberg Wood Science Centre (WWSC)KTH Royal Institute of TechnologyStockholmSweden
| | - Vikash Kumar
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| | - Gerhard Scheepers
- Enhet Produktionssystem och MaterialRISE Research Institutes of SwedenVäxjöSweden
| | - Francisco Vilaplana
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
- Wallenberg Wood Science Centre (WWSC)KTH Royal Institute of TechnologyStockholmSweden
| | - Ulf Johansson
- Tönnersjöheden Experimental ForestSwedish University of Agricultural SciencesSimlångsdalenSweden
| | | | - Björn Sundberg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| | | | | | | | | | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
7
|
Sobieszczuk-Nowicka E, Arasimowicz-Jelonek M, Tanwar UK, Floryszak-Wieczorek J. Plant homocysteine, a methionine precursor and plant's hallmark of metabolic disorders. FRONTIERS IN PLANT SCIENCE 2022; 13:1044944. [PMID: 36570932 PMCID: PMC9773845 DOI: 10.3389/fpls.2022.1044944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Homocysteine (Hcy) is a sulfur-containing non-proteinogenic amino acid, which arises from redox-sensitive methionine metabolism. In plants, Hcy synthesis involves both cystathionine β-lyase and S-adenosylhomocysteine hydrolase activities. Thus, Hcy itself is crucial for de novo methionine synthesis and S-adenosylmethionine recycling, influencing the formation of ethylene, polyamines, and nicotianamine. Research on mammalian cells has shown biotoxicity of this amino acid, as Hcy accumulation triggers oxidative stress and the associated lipid peroxidation process. In addition, the presence of highly reactive groups induces Hcy and Hcy derivatives to modify proteins by changing their structure and function. Currently, Hcy is recognized as a critical, independent hallmark of many degenerative metabolic diseases. Research results indicate that an enhanced Hcy level is also toxic to yeast and bacteria cells. In contrast, in the case of plants the metabolic status of Hcy remains poorly examined and understood. However, the presence of the toxic Hcy metabolites and Hcy over-accumulation during the development of an infectious disease seem to suggest harmful effects of this amino acid also in plant cells. The review highlights potential implications of Hcy metabolism in plant physiological disorders caused by environmental stresses. Moreover, recent research advances emphasize that recognizing the Hcy mode of action in various plant systems facilitates verification of the potential status of Hcy metabolites as bioindicators of metabolism disorders and thus may constitute an element of broadly understood biomonitoring.
Collapse
Affiliation(s)
- Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
8
|
Ali S, Khan N, Tang Y. Epigenetic marks for mitigating abiotic stresses in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153740. [PMID: 35716656 DOI: 10.1016/j.jplph.2022.153740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/02/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stressors are one of the major factors affecting agricultural output. Plants have evolved adaptive systems to respond appropriately to various environmental cues. These responses can be accomplished by modulating or fine-tuning genetic and epigenetic regulatory mechanisms. Understanding the response of plants' molecular features to abiotic stress is a priority in the current period of continued environmental changes. Epigenetic modifications are necessary that control gene expression by changing chromatin status and recruiting various transcription regulators. The present study summarized the current knowledge on epigenetic modifications concerning plant responses to various environmental stressors. The functional relevance of epigenetic marks in regulating stress tolerance has been revealed, and epigenetic changes impact the effector genes. This study looks at the epigenetic mechanisms that govern plant abiotic stress responses, especially DNA methylation, histone methylation/acetylation, chromatin remodeling, and various metabolites. Plant breeders will benefit from a thorough understanding of these processes to create alternative crop improvement approaches. Genome editing with clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) provides genetic tools to make agricultural genetic engineering more sustainable and publicly acceptable.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, FL, 32611, USA
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
9
|
Sheng M, Ma X, Wang J, Xue T, Li Z, Cao Y, Yu X, Zhang X, Wang Y, Xu W, Su Z. KNOX II transcription factor HOS59 functions in regulating rice grain size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:863-880. [PMID: 35167131 DOI: 10.1111/tpj.15709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Plant Knotted1-like homeobox (KNOX) genes encode homeodomain-containing transcription factors. In rice (Oryza sativa L.), little is known about the downstream target genes of KNOX Class II subfamily proteins. Here we generated chromatin immunoprecipitation (ChIP)-sequencing datasets for HOS59, a member of the rice KNOX Class II subfamily, and characterized the genome-wide binding sites of HOS59. We conducted trait ontology (TO) analysis of 9705 identified downstream target genes, and found that multiple TO terms are related to plant structure morphology and stress traits. ChIP-quantitative PCR (qPCR) was conducted to validate some key target genes. Meanwhile, our IP-MS datasets showed that HOS59 was closely associated with BELL family proteins, some grain size regulators (OsSPL13, OsSPL16, OsSPL18, SLG, etc.), and some epigenetic modification factors such as OsAGO4α and OsAGO4β, proteins involved in small interfering RNA-mediated gene silencing. Furthermore, we employed CRISPR/Cas9 editing and transgenic approaches to generate hos59 mutants and overexpression lines, respectively. Compared with wild-type plants, the hos59 mutants have longer grains and increased glume cell length, a loose plant architecture, and drooping leaves, while the overexpression lines showed smaller grain size, erect leaves, and lower plant height. The qRT-PCR results showed that mutation of the HOS59 gene led to upregulation of some grain size-related genes such as OsSPL13, OsSPL18, and PGL2. In summary, our results indicate that HOS59 may be a repressor of the downstream target genes, negatively regulating glume cell length, rice grain size, plant architecture, etc. The identified downstream target genes and possible interaction proteins of HOS59 improve our understanding of the KNOX regulatory networks.
Collapse
Affiliation(s)
- Minghao Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuelian Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiyao Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianxi Xue
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongqiu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaxin Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Lian T, Wang X, Li S, Jiang H, Zhang C, Wang H, Jiang L. Comparative Transcriptome Analysis Reveals Mechanisms of Folate Accumulation in Maize Grains. Int J Mol Sci 2022; 23:ijms23031708. [PMID: 35163628 PMCID: PMC8836222 DOI: 10.3390/ijms23031708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Previously, the complexity of folate accumulation in the early stages of maize kernel development has been reported, but the mechanisms of folate accumulation are unclear. Two maize inbred lines, DAN3130 and JI63, with different patterns of folate accumulation and different total folate contents in mature kernels were used to investigate the transcriptional regulation of folate metabolism during late stages of kernel formation by comparative transcriptome analysis. The folate accumulation during DAP 24 to mature kernels could be controlled by circumjacent pathways of folate biosynthesis, such as pyruvate metabolism, glutamate metabolism, and serine/glycine metabolism. In addition, the folate variation between these two inbred lines was related to those genes among folate metabolism, such as genes in the pteridine branch, para-aminobenzoate branch, serine/tetrahydrofolate (THF)/5-methyltetrahydrofolate cycle, and the conversion of THF monoglutamate to THF polyglutamate. The findings provided insight into folate accumulation mechanisms during maize kernel formation to promote folate biofortification.
Collapse
Affiliation(s)
- Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Plant Genetics, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Xuxia Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
| | - Sha Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
| | - Haiyang Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
- National Agricultural Science and Technology Center, Chengdu 610213, China
- Correspondence: (H.W.); (L.J.)
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Correspondence: (H.W.); (L.J.)
| |
Collapse
|
11
|
Escaray F, Felipo-Benavent A, Vera P. Linking plant metabolism and immunity through methionine biosynthesis. MOLECULAR PLANT 2022; 15:6-8. [PMID: 34952214 DOI: 10.1016/j.molp.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Francisco Escaray
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Amelia Felipo-Benavent
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| |
Collapse
|
12
|
Can Forest Trees Cope with Climate Change?-Effects of DNA Methylation on Gene Expression and Adaptation to Environmental Change. Int J Mol Sci 2021; 22:ijms222413524. [PMID: 34948318 PMCID: PMC8703565 DOI: 10.3390/ijms222413524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, including chromatin modifications and DNA methylation, play key roles in regulating gene expression in both plants and animals. Transmission of epigenetic markers is important for some genes to maintain specific expression patterns and preserve the status quo of the cell. This article provides a review of existing research and the current state of knowledge about DNA methylation in trees in the context of global climate change, along with references to the potential of epigenome editing tools and the possibility of their use for forest tree research. Epigenetic modifications, including DNA methylation, are involved in evolutionary processes, developmental processes, and environmental interactions. Thus, the implications of epigenetics are important for adaptation and phenotypic plasticity because they provide the potential for tree conservation in forest ecosystems exposed to adverse conditions resulting from global warming and regional climate fluctuations.
Collapse
|
13
|
Liu J, Chang C. Concerto on Chromatin: Interplays of Different Epigenetic Mechanisms in Plant Development and Environmental Adaptation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122766. [PMID: 34961235 PMCID: PMC8705648 DOI: 10.3390/plants10122766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 05/26/2023]
Abstract
Epigenetic mechanisms such as DNA methylation, histone post-translational modifications, chromatin remodeling, and noncoding RNAs, play important roles in regulating plant gene expression, which is involved in various biological processes including plant development and stress responses. Increasing evidence reveals that these different epigenetic mechanisms are highly interconnected, thereby contributing to the complexity of transcriptional reprogramming in plant development processes and responses to environmental stresses. Here, we provide an overview of recent advances in understanding the epigenetic regulation of plant gene expression and highlight the crosstalk among different epigenetic mechanisms in making plant developmental and stress-responsive decisions. Structural, physical, transcriptional and metabolic bases for these epigenetic interplays are discussed.
Collapse
|
14
|
GSNOR Contributes to Demethylation and Expression of Transposable Elements and Stress-Responsive Genes. Antioxidants (Basel) 2021; 10:antiox10071128. [PMID: 34356361 PMCID: PMC8301139 DOI: 10.3390/antiox10071128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022] Open
Abstract
In the past, reactive nitrogen species (RNS) were supposed to be stress-induced by-products of disturbed metabolism that cause oxidative damage to biomolecules. However, emerging evidence demonstrates a substantial role of RNS as endogenous signals in eukaryotes. In plants, S-nitrosoglutathione (GSNO) is the dominant RNS and serves as the •NO donor for S-nitrosation of diverse effector proteins. Remarkably, the endogenous GSNO level is tightly controlled by S-nitrosoglutathione reductase (GSNOR) that irreversibly inactivates the glutathione-bound NO to ammonium. Exogenous feeding of diverse RNS, including GSNO, affected chromatin accessibility and transcription of stress-related genes, but the triggering function of RNS on these regulatory processes remained elusive. Here, we show that GSNO reductase-deficient plants (gsnor1-3) accumulate S-adenosylmethionine (SAM), the principal methyl donor for methylation of DNA and histones. This SAM accumulation triggered a substantial increase in the methylation index (MI = [SAM]/[S-adenosylhomocysteine]), indicating the transmethylation activity and histone methylation status in higher eukaryotes. Indeed, a mass spectrometry-based global histone profiling approach demonstrated a significant global increase in H3K9me2, which was independently verified by immunological detection using a selective antibody. Since H3K9me2-modified regions tightly correlate with methylated DNA regions, we also determined the DNA methylation status of gsnor1-3 plants by whole-genome bisulfite sequencing. DNA methylation in the CG, CHG, and CHH contexts in gsnor1-3 was significantly enhanced compared to the wild type. We propose that GSNOR1 activity affects chromatin accessibility by controlling the transmethylation activity (MI) required for maintaining DNA methylation and the level of the repressive chromatin mark H3K9me2.
Collapse
|
15
|
Wang Q, Dai X, Pang H, Cheng Y, Huang X, Li H, Yan X, Lu F, Wei H, Sederoff RR, Li Q. BEL1-like Homeodomain Protein BLH6a Is a Negative Regulator of CAl5H2 in Sinapyl Alcohol Monolignol Biosynthesis in Poplar. FRONTIERS IN PLANT SCIENCE 2021; 12:695223. [PMID: 34249068 PMCID: PMC8269948 DOI: 10.3389/fpls.2021.695223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Lignin is one of the major components of xylem cell walls in tree stems. The lignin in the wood of most flowering plants (dicotyledonous angiosperms) is typically polymerized from three monolignol precursors, coniferyl alcohol, sinapyl alcohol, and p-coumaroyl alcohol, resulting in guaiacyl (G), syringyl (S), and hydroxyphenyl (H) subunits, respectively. In this study, we focus on the transcriptional regulation of a coniferaldehyde 5-hydroxylase (CAld5H2) gene, which encodes a key enzyme for sinapyl alcohol biosynthesis. We carried out a yeast one-hybrid (Y1H) screen to identify candidate upstream transcription factors (TFs) regulating CAld5H2. We obtained 12 upstream TFs as potential regulators of CAld5H2. One of these TF genes, BLH6a, encodes a BEL1-like homeodomain (BLH) protein and negatively regulated the CAld5H2 promoter activity. The direct regulation of CAld5H2 promoter by BLH6a was supported by chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) and dominant repression of BLH6a in transgenic plants. Luciferase complementation imaging analyses showed extensive protein-protein interactions among these 12 TFs. We propose that BLH6a is a negative regulator of CAld5H2, which acts through combinatorial regulation of multiple TFs for sinapyl alcohol (S monolignol) biosynthesis in poplar.
Collapse
Affiliation(s)
- Qiao Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Yanxia Cheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Fachuang Lu
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, United States
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
16
|
Neves M, Correia S, Cavaleiro C, Canhoto J. Modulation of Organogenesis and Somatic Embryogenesis by Ethylene: An Overview. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061208. [PMID: 34198660 PMCID: PMC8232195 DOI: 10.3390/plants10061208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 05/13/2023]
Abstract
Ethylene is a plant hormone controlling physiological and developmental processes such as fruit maturation, hairy root formation, and leaf abscission. Its effect on regeneration systems, such as organogenesis and somatic embryogenesis (SE), has been studied, and progress in molecular biology techniques have contributed to unveiling the mechanisms behind its effects. The influence of ethylene on regeneration should not be overlooked. This compound affects regeneration differently, depending on the species, genotype, and explant. In some species, ethylene seems to revert recalcitrance in genotypes with low regeneration capacity. However, its effect is not additive, since in genotypes with high regeneration capacity this ability decreases in the presence of ethylene precursors, suggesting that regeneration is modulated by ethylene. Several lines of evidence have shown that the role of ethylene in regeneration is markedly connected to biotic and abiotic stresses as well as to hormonal-crosstalk, in particular with key regeneration hormones and growth regulators of the auxin and cytokinin families. Transcriptional factors of the ethylene response factor (ERF) family are regulated by ethylene and strongly connected to SE induction. Thus, an evident connection between ethylene, stress responses, and regeneration capacity is markedly established. In this review the effect of ethylene and the way it interacts with other players during organogenesis and somatic embryogenesis is discussed. Further studies on the regulation of ERF gene expression induced by ethylene during regeneration can contribute to new insights on the exact role of ethylene in these processes. A possible role in epigenetic modifications should be considered, since some ethylene signaling components are directly related to histone acetylation.
Collapse
Affiliation(s)
- Mariana Neves
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (M.N.); (S.C.)
| | - Sandra Correia
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (M.N.); (S.C.)
| | - Carlos Cavaleiro
- CIEPQPF, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Jorge Canhoto
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (M.N.); (S.C.)
- Correspondence:
| |
Collapse
|
17
|
Samo N, Ebert A, Kopka J, Mozgová I. Plant chromatin, metabolism and development - an intricate crosstalk. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102002. [PMID: 33497897 DOI: 10.1016/j.pbi.2021.102002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Chromatin structure influences DNA accessibility and underlying gene expression. Disturbances of chromatin structure often result in pleiotropic developmental phenotypes. Interactions between chromatin modifications and development have been the main focus of epigenetic studies. Recent years brought major advance in uncovering and understanding connections between chromatin organisation in the nucleus and metabolic processes that take place in the cytoplasm or other cellular compartments. Products of primary metabolism and cell redox states influence chromatin-modifying complexes, and chromatin modifiers in turn affect expression of metabolic genes. Current evidence indicates that complex interaction loops between these biological system layers exist. Applying interdisciplinary and holistic approaches will decipher causality and molecular mechanisms of the dynamic crosstalk between chromatin structure, metabolism and plant growth and development.
Collapse
Affiliation(s)
- Naseem Samo
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Alina Ebert
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Iva Mozgová
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.
| |
Collapse
|
18
|
Gu D, Yang J, Wu S, Liao Y, Zeng L, Yang Z. Epigenetic Regulation of the Phytohormone Abscisic Acid Accumulation under Dehydration Stress during Postharvest Processing of Tea ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1039-1048. [PMID: 33464046 DOI: 10.1021/acs.jafc.0c07220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The plant hormone abscisic acid (ABA) accumulates in tea leaves under dehydration stress during the withering process. However, the mechanism underlying ABA biosynthesis regulation remains largely unclear. In the present study, we found increased expression of ABA biosynthesis genes under dehydration stress during postharvest processing of tea. Furthermore, dehydration stress promoted ABA accumulation by increasing histone acetylation of ABA anabolism genes but by decreasing the levels of histone H3 lysine 9 dimethylation and DNA methylation of ABA biosynthesis genes. We screened candidate regulators of histone deacetylation and DNA methylation under dehydration stress. Taken together, our results indicate a role for epigenetic modifications during postharvest processing of tea.
Collapse
Affiliation(s)
- Dachuan Gu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Shuhua Wu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
19
|
Lindermayr C, Rudolf EE, Durner J, Groth M. Interactions between metabolism and chromatin in plant models. Mol Metab 2020; 38:100951. [PMID: 32199818 PMCID: PMC7300381 DOI: 10.1016/j.molmet.2020.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND One of the fascinating aspects of epigenetic regulation is that it provides means to rapidly adapt to environmental change. This is particularly relevant in the plant kingdom, where most species are sessile and exposed to increasing habitat fluctuations due to global warming. Although the inheritance of epigenetically controlled traits acquired through environmental impact is a matter of debate, it is well documented that environmental cues lead to epigenetic changes, including chromatin modifications, that affect cell differentiation or are associated with plant acclimation and defense priming. Still, in most cases, the mechanisms involved are poorly understood. An emerging topic that promises to reveal new insights is the interaction between epigenetics and metabolism. SCOPE OF REVIEW This study reviews the links between metabolism and chromatin modification, in particular histone acetylation, histone methylation, and DNA methylation, in plants and compares them to examples from the mammalian field, where the relationship to human diseases has already generated a larger body of literature. This study particularly focuses on the role of reactive oxygen species (ROS) and nitric oxide (NO) in modulating metabolic pathways and gene activities that are involved in these chromatin modifications. As ROS and NO are hallmarks of stress responses, we predict that they are also pivotal in mediating chromatin dynamics during environmental responses. MAJOR CONCLUSIONS Due to conservation of chromatin-modifying mechanisms, mammals and plants share a common dependence on metabolic intermediates that serve as cofactors for chromatin modifications. In addition, plant-specific non-CG methylation pathways are particularly sensitive to changes in folate-mediated one-carbon metabolism. Finally, reactive oxygen and nitrogen species may fine-tune epigenetic processes and include similar signaling mechanisms involved in environmental stress responses in plants as well as animals.
Collapse
Affiliation(s)
- Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 München/Neuherberg, Germany.
| | - Eva Esther Rudolf
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 München/Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 München/Neuherberg, Germany
| | - Martin Groth
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 München/Neuherberg, Germany.
| |
Collapse
|