1
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Viudes S, Zamar R, Burlat V, Roux F, Dunand C. Genome wide association study of Arabidopsis seed mucilage layers at a regional scale. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108375. [PMID: 38364630 DOI: 10.1016/j.plaphy.2024.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/18/2024]
Abstract
The myxospermous species Arabidopsis thaliana extrudes a polysaccharidic mucilage from the seed coat epidermis during imbibition. The whole seed mucilage can be divided into a seed-adherent layer and a fully soluble layer, both layers presenting natural genetic variations. The adherent mucilage is variable in size and composition, while the soluble mucilage is variable in composition and physical properties. Studies reporting both the genetic architecture and the putative selective agents acting on this natural genetic variation are scarce. In this study, we set up a Genome Wide Association study (GWAS) based on 424 natural accessions collected from 166 natural populations of A. thaliana located south-west of France and previously characterized for a very important number of abiotic and biotic factors. We identified an extensive genetic variation for both mucilage layers. The adherent mucilage was mainly related to precipitation and temperature whereas the non-adherent mucilage was unrelated to any environmental factors. By combining a hierarchical Bayesian model with a local score approach, we identified 55 and 28 candidate genes, corresponding to 26 and 10 QTLs for the adherent and non-adherent mucilages, respectively. Putative or characterized function and expression data available in the literature were used to filter the candidate genes. Only one gene among our set of candidate genes was already described as a seed mucilage actor, leaving a large set of new candidates putatively implicated inseed mucilage synthesis or release. The present study lay out foundation to understand the influence of regional ecological factors acting on seed mucilage in A. thaliana.
Collapse
Affiliation(s)
- Sébastien Viudes
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Paul Sabatier Toulouse 3, Toulouse INP, Auzeville-Tolosane, France
| | - Rémy Zamar
- Laboratoire des Interactions Plantes-Microbes-Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Paul Sabatier Toulouse 3, Toulouse INP, Auzeville-Tolosane, France
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microbes-Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Paul Sabatier Toulouse 3, Toulouse INP, Auzeville-Tolosane, France.
| |
Collapse
|
3
|
Aoi Y, Benamar A, Saulnier L, Ralet MC, North HM. Biochemical data documenting variations in mucilage polysaccharides in a range of glycosyltransferase mutants. Sci Data 2023; 10:702. [PMID: 37838800 PMCID: PMC10576798 DOI: 10.1038/s41597-023-02604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
During Arabidopsis seed coat development, copious amounts of mucilage polysaccharides are produced in the epidermal cells. When hydrated on imbibition, these polysaccharides expand and are released to encapsulate the seed as a two-layered hydrogel. Polysaccharides are synthesized from UDP-sugars by glycosyltransferases (GTs) and several GTs, with differing activities, have been identified that contribute to mucilage polysaccharide synthesis. How these GTs orchestrate production of the complex polysaccharides found in mucilage remains to be determined. In this study, we generated a range of multiple GT mutants using either CRISPR/Cas9 targeted mutation or genetic crosses of existing T-DNA insertion mutants. Four traits for mucilage amounts or macromolecular properties were examined for four replicate seed lots from 31 different GT mutant combinations. This data provides a valuable resource for future genetic, biochemical, structural, and functional studies of the roles and properties of polysaccharides present in Arabidopsis mucilage and the relative contributions of different GTs to mucilage production.
Collapse
Affiliation(s)
- Yuki Aoi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
- INRAE, UR1268 BIA, 3 impasse Yvette Cauchois, CS71627, 44316 Cedex3, Nantes, France
| | - Abdelilah Benamar
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Luc Saulnier
- INRAE, UR1268 BIA, 3 impasse Yvette Cauchois, CS71627, 44316 Cedex3, Nantes, France
| | - Marie-Christine Ralet
- INRAE, UR1268 BIA, 3 impasse Yvette Cauchois, CS71627, 44316 Cedex3, Nantes, France.
| | - Helen M North
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| |
Collapse
|
4
|
Ang ME, Cowley JM, Yap K, Hahn MG, Mikkelsen D, Tucker MR, Williams BA, Burton RA. Novel constituents of Salvia hispanica L. (chia) nutlet mucilage and the improved in vitro fermentation of nutlets when ground. Food Funct 2023; 14:1401-1414. [PMID: 36637177 DOI: 10.1039/d2fo03002k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Upon wetting, chia (Salvia hispanica L.) nutlets produce a gel-like capsule of polysaccharides called mucilage that comprises a significant part of their dietary fibre content. Seed/nutlet mucilage is often used as a texture modifying hydrocolloid and bulking dietary fibre due to its water-binding ability, though the utility of mucilage from different sources is highly structure-function dependent. The composition and structure of chia nutlet mucilage is poorly defined, and a better understanding will aid in exploiting its dietary fibre functionality, particularly if, and how, it is utilised by gut microbiota. In this study, microscopy, chromatography, mass spectrometry and glycome profiling techniques showed that chia nutlet mucilage is highly complex, layered, and contains several polymer types. The mucilage comprises a novel xyloamylose containing both β-linked-xylose and α-linked-glucose, a near-linear xylan that may be sparsely substituted, a modified cellulose domain, and abundant alcohol-soluble oligosaccharides. To assess the dietary fibre functionality of chia nutlet mucilage, an in vitro cumulative gas production technique was used to determine the fermentability of different chia nutlet preparations. The complex nature of chia nutlet mucilage led to poor fermentation where the oligosaccharides appeared to be the only fermentable substrate present in the mucilage. Of note, ground chia nutlets were better fermented than intact whole nutlets, as judged by short chain fatty acid production. Therefore, it is suggested that the benefits of eating chia as a "superfood", could be notably enhanced if the nutlets are ground rather than being consumed whole, improving the bioaccessibility of key nutrients including dietary fibre.
Collapse
Affiliation(s)
- Main Ern Ang
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | - James M Cowley
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | - Kuok Yap
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Deirdre Mikkelsen
- The University of Queensland, Australian Research Council Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, St Lucia, QLD 4072, Australia.,School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | - Barbara A Williams
- The University of Queensland, Australian Research Council Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, St Lucia, QLD 4072, Australia
| | - Rachel A Burton
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
5
|
Amos RA, Atmodjo MA, Huang C, Gao Z, Venkat A, Taujale R, Kannan N, Moremen KW, Mohnen D. Polymerization of the backbone of the pectic polysaccharide rhamnogalacturonan I. NATURE PLANTS 2022; 8:1289-1303. [PMID: 36357524 PMCID: PMC10115348 DOI: 10.1038/s41477-022-01270-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/05/2022] [Indexed: 06/10/2023]
Abstract
Rhamnogalacturonan I (RG-I) is a major plant cell wall pectic polysaccharide defined by its repeating disaccharide backbone structure of [4)-α-D-GalA-(1,2)-α-L-Rha-(1,]. A family of RG-I:Rhamnosyltransferases (RRT) has previously been identified, but synthesis of the RG-I backbone has not been demonstrated in vitro because the identity of Rhamnogalacturonan I:Galaturonosyltransferase (RG-I:GalAT) was unknown. Here a putative glycosyltransferase, At1g28240/MUCI70, is shown to be an RG-I:GalAT. The name RGGAT1 is proposed to reflect the catalytic activity of this enzyme. When incubated together with the rhamnosyltransferase RRT4, the combined activities of RGGAT1 and RRT4 result in elongation of RG-I acceptors in vitro into a polymeric product. RGGAT1 is a member of a new GT family categorized as GT116, which does not group into existing GT-A clades and is phylogenetically distinct from the GALACTURONOSYLTRANSFERASE (GAUT) family of GalA transferases that synthesize the backbone of the pectin homogalacturonan. RGGAT1 has a predicted GT-A fold structure but employs a metal-independent catalytic mechanism that is rare among glycosyltransferases with this fold type. The identification of RGGAT1 and the 8-member Arabidopsis GT116 family provides a new avenue for studying the mechanism of RG-I synthesis and the function of RG-I in plants.
Collapse
Affiliation(s)
- Robert A Amos
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Melani A Atmodjo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Chin Huang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Zhongwei Gao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Rahil Taujale
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
6
|
Saez-Aguayo S, Largo-Gosens A. Rhamnogalacturonan-I forms mucilage: behind its simplicity, a cutting-edge organization. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3299-3303. [PMID: 36305092 PMCID: PMC9162176 DOI: 10.1093/jxb/erac094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Zhang Y, Yin Q, Qin W, Gao H, Du J, Chen J, Li H, Zhou G, Wu H, Wu A-M. 2022. The Class II KNOX family members KNAT3 and KNAT7 redundantly participate in Arabidopsis seed coat mucilage biosynthesis. Journal of Experimental Botany 73, 3477–3495.
Collapse
Affiliation(s)
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingenería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain
| |
Collapse
|
7
|
Zhang Y, Yin Q, Qin W, Gao H, Du J, Chen J, Li H, Zhou G, Wu H, Wu AM. The Class II KNOX family members KNAT3 and KNAT7 redundantly participate in Arabidopsis seed coat mucilage biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3477-3495. [PMID: 35188965 DOI: 10.1093/jxb/erac066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The production of Arabidopsis seed mucilage involves complex polysaccharide biosynthetic pathways and developmental processes in seed epidermal cells. Although the polysaccharide components of Arabidopsis seed mucilage have been identified, their regulatory mechanism requires further investigation. Here, we show that Class II KNOX gene family members KNAT3 and KNAT7 play an essential role in regulating mucilage production in the early developmental stages of Arabidopsis seeds. Double mutant knat3knat7 resulted in defective seed mucilage production and columellae formation, whereas knat3 showed a normal phenotype compared with wild type, and the mucilage thickness in knat7 was slightly disturbed. Rhamnogalacturonan I (RG-I) and its biosynthetic substrates galacturonic acid and rhamnose were reduced in both the adherent and soluble mucilage of knat3knat7. Comparative transcriptome analysis on whole seeds suggested that polysaccharide, glucosinolate and anthocyanin biosynthetic pathways were specifically repressed in knat3knat7. Transient co-expression of KNAT3 and KNAT7 with promoter regions of candidate genes in Arabidopsis protoplasts revealed that both KNAT3 and KNAT7 act as positive regulators of the RG-I biosynthetic gene MUCILAGE-MODIFIED 4 (MUM4, AT1G53500). Collectively, our results demonstrate that KNAT3 and KNAT7 are multifunctional transcription factors in secondary cell wall development and redundantly modulate mucilage biosynthesis in Arabidopsis seeds.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Qi Yin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Han Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- College of life sciences, South China Agricultural University. Guangzhou, 510642, China
| | - Jinge Du
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Jiajun Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Gongke Zhou
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
- College of life sciences, South China Agricultural University. Guangzhou, 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
8
|
Šola K, Dean GH, Li Y, Lohmann J, Movahedan M, Gilchrist EJ, Adams KL, Haughn GW. Expression Patterns and Functional Characterization of Arabidopsis Galactose Oxidase-Like Genes Suggest Specialized Roles for Galactose Oxidases in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:1927-1943. [PMID: 34042158 DOI: 10.1093/pcp/pcab073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Galactose oxidases (GalOxs) are well-known enzymes that have been identified in several fungal species and characterized using structural and enzymatic approaches. However, until very recently, almost no information on their biological functions was available. The Arabidopsis (Arabidopsis thaliana) gene ruby particles in mucilage (RUBY) encodes a putative plant GalOx that is required for pectin cross-linking through modification of galactose (Gal) side chains and promotes cell-cell adhesion between seed coat epidermal cells. RUBY is one member of a family of seven putative GalOxs encoded in the Arabidopsis genome. To examine the function(s) of GalOxs in plants, we studied the remaining six galactose oxidase-like (GOXL) proteins. Like RUBY, four of these proteins (GOXL1, GOXL3, GOXL5 and GOXL6) were found to localize primarily to the apoplast, while GOXL2 and GOXL4 were found primarily in the cytoplasm. Complementation and GalOx assay data suggested that GOXL1, GOXL3 and possibly GOXL6 have similar biochemical activity to RUBY, whereas GOXL5 only weakly complemented and GOXL2 and GOXL4 showed no activity. Members of this protein family separated into four distinct clades prior to the divergence of the angiosperms. There have been recent duplications in Brassicaceae resulting in two closely related pairs of genes that have either retained similarity in expression (GOXL1 and GOXL6) or show expression divergence (GOXL3 and RUBY). Mutant phenotypes were not detected when these genes were disrupted, but their expression patterns suggest that these proteins may function in tissues that require mechanical reinforcements in the absence of lignification.
Collapse
Affiliation(s)
- Krešimir Šola
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, Noord-Holland 1098 XH, The Netherlands
| | - Gillian H Dean
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
| | - Yi Li
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Sjaak van Schie B.V., Maasdijk, Schenkeldijk 8, Zuid-Holland 2676 LD, The Netherlands
| | - Julia Lohmann
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Mahsa Movahedan
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Burnaby Hospital, 3935 Kincaid St, Burnaby, British Columbia V5G 2X6, Canada
| | - Erin J Gilchrist
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Anandia Labs, 125-887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - Keith L Adams
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
| | - George W Haughn
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
9
|
Mydy LS, Chigumba DN, Kersten RD. Plant Copper Metalloenzymes As Prospects for New Metabolism Involving Aromatic Compounds. FRONTIERS IN PLANT SCIENCE 2021; 12:692108. [PMID: 34925392 PMCID: PMC8672867 DOI: 10.3389/fpls.2021.692108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Copper is an important transition metal cofactor in plant metabolism, which enables diverse biocatalysis in aerobic environments. Multiple classes of plant metalloenzymes evolved and underwent genetic expansions during the evolution of terrestrial plants and, to date, several representatives of these copper enzyme classes have characterized mechanisms. In this review, we give an updated overview of chemistry, structure, mechanism, function and phylogenetic distribution of plant copper metalloenzymes with an emphasis on biosynthesis of aromatic compounds such as phenylpropanoids (lignin, lignan, flavonoids) and cyclic peptides with macrocyclizations via aromatic amino acids. We also review a recent addition to plant copper enzymology in a copper-dependent peptide cyclase called the BURP domain. Given growing plant genetic resources, a large pool of copper biocatalysts remains to be characterized from plants as plant genomes contain on average more than 70 copper enzyme genes. A major challenge in characterization of copper biocatalysts from plant genomes is the identification of endogenous substrates and catalyzed reactions. We highlight some recent and future trends in filling these knowledge gaps in plant metabolism and the potential for genomic discovery of copper-based enzymology from plants.
Collapse
Affiliation(s)
| | | | - Roland D. Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Sterol Glucosyltransferases Tailor Polysaccharide Accumulation in Arabidopsis Seed Coat Epidermal Cells. Cells 2021; 10:cells10102546. [PMID: 34685527 PMCID: PMC8533880 DOI: 10.3390/cells10102546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
The conjugation of sterols with a Glc moiety is catalyzed by sterol glucosyltransferases (SGTs). A portion of the resulting steryl glucosides (SG) are then esterified with a long-chain fatty acid to form acyl-SG (ASG). SG and ASG are prevalent components of plant cellular membranes and influence their organization and functional properties. Mutant analysis had previously inferred that two Arabidopsis SGTs, UGT80A2 and UGT80B1/TT15, could have specialized roles in the production of SG in seeds, despite an overlap in their enzymatic activity. Here, we establish new roles for both enzymes in the accumulation of polysaccharides in seed coat epidermal cells (SCEs). The rhamnogalacturonan-I (RG-I) content of the inner layer of seed mucilage was higher in ugt80A2, whereas RG-I accumulation was lower in mutants of UGT80B1, with double mutant phenotypes indicating that UGT80A2 acts independently from UGT80B1. In contrast, an additive phenotype was observed in double mutants for increased galactoglucomannan (GGM) content. Double mutants also exhibited increased polymer density within the inner mucilage layer. In contrast, cell wall defects were only observed in mutants defective for UGT80B1, while more mucilage cellulose was only observed when UGT80A2 was mutated. The generation of a range of phenotypic effects, simultaneously within a single cell type, demonstrates that the adjustment of the SG and ASG composition of cellular membranes by UGT80A2 and UGT80B1 tailors polysaccharide accumulation in Arabidopsis seeds.
Collapse
|
11
|
Myxospermy Evolution in Brassicaceae: A Highly Complex and Diverse Trait with Arabidopsis as an Uncommon Model. Cells 2021; 10:cells10092470. [PMID: 34572119 PMCID: PMC8469493 DOI: 10.3390/cells10092470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 01/13/2023] Open
Abstract
The ability to extrude mucilage upon seed imbibition (myxospermy) occurs in several Angiosperm taxonomic groups, but its ancestral nature or evolutionary convergence origin remains misunderstood. We investigated seed mucilage evolution in the Brassicaceae family with comparison to the knowledge accumulated in Arabidopsis thaliana. The myxospermy occurrence was evaluated in 27 Brassicaceae species. Phenotyping included mucilage secretory cell morphology and topochemistry to highlight subtle myxospermy traits. In parallel, computational biology was driven on the one hundred genes constituting the so-called A. thaliana mucilage secretory cell toolbox to confront their sequence conservation to the observed phenotypes. Mucilage secretory cells show high morphology diversity; the three studied Arabidopsis species had a specific extrusion modality compared to the other studied Brassicaceae species. Orthologous genes from the A. thaliana mucilage secretory cell toolbox were mostly found in all studied species without correlation with the occurrence of myxospermy or even more sub-cellular traits. Seed mucilage may be an ancestral feature of the Brassicaceae family. It consists of highly diverse subtle traits, probably underlined by several genes not yet characterized in A. thaliana or by species-specific genes. Therefore, A. thaliana is probably not a sufficient reference for future myxospermy evo-devo studies.
Collapse
|
12
|
Yamada H, Kubo S, Kunishige Y, Azuma H, Kotani Y, Handa S, Nakazawa M, Ueda M, Hasegawa Y, Sakamoto T. Homogalacturonan and xylogalacturonan region specificity of self-cloning vector-expressed pectin methylesterases (AoPME1-3) in Aspergillus oryzae. Enzyme Microb Technol 2021; 150:109894. [PMID: 34489047 DOI: 10.1016/j.enzmictec.2021.109894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Aspergillus oryzae is a safe microorganism that is commonly used in food production. We constructed a self-cloning vector capable of high expression in A. oryzae. Using the vector, three putative pectin methylesterase (PME) genes belonging to Carbohydrate Esterase family 8 derived from A. oryzae were expressed, and several characteristics of the gene products were examined. The effects of temperature and pH on the three enzymes (AoPME1, 2, and 3) were similar, with optimal reaction temperatures of 50 - 60 °C and optimal reaction pH range of 5 - 6. The specific activities of AoPME1, 2, and 3 for apple pectin were significantly different (34, 7,601, and 2 U/mg, respectively). When the substrate specificity was examined, AoPME1 showed high activity towards pectin derived from soybean and pea. Although AoPME2 showed little activity towards these pectins, it showed very high activity towards apple- and citrus-derived pectins. AoPME3 showed low specific activity towards all substrates tested. Sugar composition analysis revealed that apple- and citrus-derived pectins were rich in homogalacturonan, while soybean- and pea-derived pectins were rich in xylogalacturonan. When pea pectin was treated with endo-polygalacturonase or endo-xylogalacturonase in the presence of each PME, specific synergistic actions were observed (endo-polygalacturonase with AoPME1 or AoPME2 and endo-xylogalacturonase with AoPME1 or AoPME3). Thus, AoPME1 and AoPME3 hydrolyzed the methoxy group in xylogalacturonan. This is the first report of this activity in microbial enzymes. Our findings on the substrate specificity of PMEs should lead to the determination of the distribution of methoxy groups in pectin and the development of new applications in the field of food manufacturing.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- General Research Laboratory, Ozeki Corporation, Nishinomiya, Hyogo, 663-8227, Japan
| | - Shoko Kubo
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Yuika Kunishige
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Hotaru Azuma
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Yuka Kotani
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Satoshi Handa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Masami Nakazawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Mitsuhiro Ueda
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | | | - Tatsuji Sakamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
13
|
The composition of Australian Plantago seeds highlights their potential as nutritionally-rich functional food ingredients. Sci Rep 2021; 11:12692. [PMID: 34135417 PMCID: PMC8209032 DOI: 10.1038/s41598-021-92114-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
When wetted, Plantago seeds become covered with a polysaccharide-rich gel called mucilage that has value as a food additive and bulking dietary fibre. Industrially, the dry husk layer that becomes mucilage, called psyllium, is milled off Plantago ovata seeds, the only commercial-relevant Plantago species, while the residual inner seed tissues are either used for low value animal feed or discarded. We suggest that this practice is potentially wasting a highly nutritious resource and here describe the use of histological, physicochemical, and chromatographic analyses to compare whole seed composition/characteristics of P. ovata with 11 relatives already adapted to harsh Australian conditions that may represent novel commercial crop options. We show that substantial interspecific differences in mucilage yield and macromolecular properties are mainly a consequence of differences in heteroxylan and pectin composition and probably represent wide differences in hydrocolloid functionality that can be exploited in industry. We also show that non-mucilage producing inner seed tissues contain a substantial mannan-rich endosperm, high in fermentable sugars, protein, and fats. Whole seed Plantago flour, particularly from some species obtained from harsh Australian environments, may provide improved economic and health benefits compared to purified P. ovata psyllium husk, by retaining the functionality of the seed mucilage and providing additional essential nutrients.
Collapse
|
14
|
Mas Garcia S, Roger JM, Cambert M, Rondeau-Mouro C. Untargeted analysis of TD-NMR signals using a multivariate curve resolution approach: Application to the water-imbibition kinetics of Arabidopsis seeds. Talanta 2021; 233:122525. [PMID: 34215028 DOI: 10.1016/j.talanta.2021.122525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
The aim of this study is to investigate the ability of Time-Domain Nuclear Magnetic Resonance (TD-NMR) combined with Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) analysis to detect changes in hydration properties of nineteen genotypes of Arabidopsis (Arabidopsis thaliana) seeds during the imbibition process. The Hybrid hard and Soft modelling version of MCR-ALS (HS-MCR) applied to raw TD-NMR data allowed the introduction of kinetic models to elucidate underlying biological mechanisms. The imbibition process of all investigated hydrated Arabidopsis seeds could be described with a kinetic model based on two consecutive first-order reactions related to an initial absorption of water from the bulk around the seed and a posteriori hydration of the internal seed tissues, respectively. Good data fit was achieved (LOF % = 0.98 and r2% = 99.9), indicating that the hypothesis of the selected kinetic model was correct. An interpretation of the mucilage characteristics of the studied Arabidopsis seeds was also provided. The presented methodology offers a novel and general strategy to describe in a comprehensive way the kinetic process of plant tissue hydration in a screening objective. This work also proves the potential of the MCR methods to analyse raw TD-NMR signals as alternative to the controversial and time-consuming pre-processing techniques of this kind of data, known to be an ill-conditioned and ill-posed problem.
Collapse
Affiliation(s)
- Silvia Mas Garcia
- ITAP, INRAE, Institut Agro, University Montpellier, 34196, Montpellier, France; ChemHouse Research Group, 34196, Montpellier, France.
| | - Jean-Michel Roger
- ITAP, INRAE, Institut Agro, University Montpellier, 34196, Montpellier, France; ChemHouse Research Group, 34196, Montpellier, France
| | - Mireille Cambert
- INRAE, UR1466 OPAALE, 17 Avenue de Cucillé, CS 64427, F-35044, Rennes, France
| | | |
Collapse
|
15
|
Liu Y, Liu Z, Zhu X, Hu X, Zhang H, Guo Q, Yada RY, Cui SW. Seed coat mucilages: Structural, functional/bioactive properties, and genetic information. Compr Rev Food Sci Food Saf 2021; 20:2534-2559. [PMID: 33836113 DOI: 10.1111/1541-4337.12742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Seed coat mucilages are mainly polysaccharides covering the outer layer of the seeds to facilitate seed hydration and germination, thereby improving seedling emergence and reducing seedling mortality. Four types of polysaccharides are found in mucilages including xylan, pectin, glucomannan, and cellulose. Recently, mucilages from flaxseed, yellow mustard seed, chia seed, and so on, have been used extensively in the areas of food, pharmaceutical, and cosmetics contributing to stability, texture, and appearance. This review, for the first time, addresses the similarities and differences in physicochemical properties, molecular structure, and functional/bioactive properties of mucilages among different sources; highlights their structure and function relationships; and systematically summarizes the related genetic information, aiming with the intent to explore the potential functions thereby extending their future industrial applications.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhenfei Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Xuerui Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steve W Cui
- Guelph Research and Development Centre, Agri- and Agri-food Canada, Guelph, Ontario, Canada
| |
Collapse
|
16
|
Saez-Aguayo S, Parra-Rojas JP, Sepúlveda-Orellana P, Celiz-Balboa J, Arenas-Morales V, Sallé C, Salinas-Grenet H, Largo-Gosens A, North HM, Ralet MC, Orellana A. Transport of UDP-rhamnose by URGT2, URGT4, and URGT6 modulates rhamnogalacturonan-I length. PLANT PHYSIOLOGY 2021; 185:914-933. [PMID: 33793913 PMCID: PMC8133686 DOI: 10.1093/plphys/kiaa070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/19/2020] [Indexed: 05/10/2023]
Abstract
Rhamnogalacturonan-I biosynthesis occurs in the lumen of the Golgi apparatus, a compartment where UDP-Rhamnose and UDP-Galacturonic Acid are the main substrates for synthesis of the backbone polymer of pectin. Recent studies showed that UDP-Rha is transported from the cytosol into the Golgi apparatus by a family of six UDP-rhamnose/UDP-galactose transporters (URGT1-6). In this study, analysis of adherent and soluble mucilage (SM) of Arabidopsis thaliana seeds revealed distinct roles of URGT2, URGT4, and URGT6 in mucilage biosynthesis. Characterization of SM polymer size showed shorter chains in the urgt2 urgt4 and urgt2 urgt4 urgt6 mutants, suggesting that URGT2 and URGT4 are mainly involved in Rhamnogalacturonan-I (RG-I) elongation. Meanwhile, mutants in urgt6 exhibited changes only in adherent mucilage (AM). Surprisingly, the estimated number of RG-I polymer chains present in urgt2 urgt4 and urgt2 urgt4 urgt6 mutants was higher than in wild-type. Interestingly, the increased number of shorter RG-I chains was accompanied by an increased amount of xylan. In the urgt mutants, expression analysis of other genes involved in mucilage biosynthesis showed some compensation. Studies of mutants of transcription factors regulating mucilage formation indicated that URGT2, URGT4, and URGT6 are likely part of a gene network controlled by these regulators and involved in RG-I synthesis. These results suggest that URGT2, URGT4, and URGT6 play different roles in the biosynthesis of mucilage, and the lack of all three affects the production of shorter RG-I polymers and longer xylan domains.
Collapse
Affiliation(s)
- Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
| | | | | | | | | | - Christine Sallé
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, F-78026 Versailles Cedex, France
| | | | - Asier Largo-Gosens
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Helen M North
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, F-78026 Versailles Cedex, France
| | | | - Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
- FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Author for communication:
| |
Collapse
|
17
|
Cambert M, Berger A, Sallé C, Esling S, Charif D, Cadoret T, Ralet MC, North HM, Rondeau-Mouro C. Datasets of seed mucilage traits for Arabidopsis thaliana natural accessions with atypical outer mucilage. Sci Data 2021; 8:79. [PMID: 33750820 PMCID: PMC7943791 DOI: 10.1038/s41597-021-00857-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/12/2021] [Indexed: 11/09/2022] Open
Abstract
The seeds of Arabidopsis thaliana become encapsulated by a layer of mucilage when imbibed. This polysaccharide-rich hydrogel is constituted of two layers, an outer layer that can be easily extracted with water and an inner layer that must be examined in situ in order to study its properties and structure in a non-destructive manner or disintegrated through hydrolysis or physical means in order to analyze its constituents. Mucilage production is an adaptive trait and we have exploited 19 natural accessions previously found to have atypical and varied outer mucilage characteristics. A detailed study using biochemical, histological and Time-Domain NMR analyses has been used to generate three related datasets covering 33 traits measured in four biological replicates. This data will be a rich resource for genetic, biochemical, structural and functional analyses investigating mucilage constituent polysaccharides or their role as adaptive traits.
Collapse
Affiliation(s)
- Mireille Cambert
- INRAE, UR1466 OPAALE, 17 avenue de Cucillé, CS 64427, 35044, Rennes Cedex, France
| | - Adeline Berger
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Route de Saint Cyr, RD10, 78000, Versailles, France
| | - Christine Sallé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Route de Saint Cyr, RD10, 78000, Versailles, France
| | - Stéphanie Esling
- INRAE, UR1466 OPAALE, 17 avenue de Cucillé, CS 64427, 35044, Rennes Cedex, France
| | - Delphine Charif
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Route de Saint Cyr, RD10, 78000, Versailles, France
| | - Tudel Cadoret
- INRAE, UR1268 BIA, 3, Impasse Yvette Cauchois, CS 71627, 44316 Cedex 3, Nantes, France
| | - Marie-Christine Ralet
- INRAE, UR1268 BIA, 3, Impasse Yvette Cauchois, CS 71627, 44316 Cedex 3, Nantes, France
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Route de Saint Cyr, RD10, 78000, Versailles, France.
| | | |
Collapse
|
18
|
Viudes S, Burlat V, Dunand C. Seed mucilage evolution: Diverse molecular mechanisms generate versatile ecological functions for particular environments. PLANT, CELL & ENVIRONMENT 2020; 43:2857-2870. [PMID: 32557703 DOI: 10.1111/pce.13827] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Plant myxodiasporous species have the ability to release a polysaccharidic mucilage upon imbibition of the seed (myxospermy) or the fruit (myxocarpy). This is a widespread capacity in angiosperms providing multiple ecological functions including higher germination efficiency under environmental stresses. It is unclear whether myxodiaspory has one or multiple evolutionary origins and why it was supposedly lost in several species. Here, we summarize recent advances on three main aspects of myxodiaspory. (a) It represents a combination of highly diverse traits at different levels of observation, ranging from the dual tissular origin of mucilage secretory cells to diverse mucilage polysaccharidic composition and ultrastructural organization. (b) An asymmetrical selection pressure is exerted on myxospermy-related genes that were first identified in Arabidopsis thaliana. The A. thaliana and the flax intra-species mucilage variants show that myxospermy is a fast-evolving trait due to high polymorphism in a few genes directly acting on mucilage establishment. In A. thaliana, these actors are downstream of a master regulatory complex and an original phylogenetic overview provided here illustrates that this complex has sequentially evolved after the common ancestor of seed plants and was fully established in the common ancestor of the rosid clade. (c) Newly identified myxodiaspory ecological functions indicate new perspectives such as soil microorganism control and plant establishment support.
Collapse
Affiliation(s)
- Sébastien Viudes
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, Castanet-Tolosan, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, Castanet-Tolosan, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
19
|
Williams MAK, Cornuault V, Irani AH, Symonds VV, Malmström J, An Y, Sims IM, Carnachan SM, Sallé C, North HM. Polysaccharide Structures in the Outer Mucilage of Arabidopsis Seeds Visualized by AFM. Biomacromolecules 2020; 21:1450-1459. [PMID: 32058700 DOI: 10.1021/acs.biomac.9b01756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Evidence is presented that the polysaccharide rhamnogalacturonan I (RGI) can be biosynthesized in remarkably organized branched configurations and surprisingly long versions and can self-assemble into a plethora of structures. AFM imaging has been applied to study the outer mucilage obtained from wild-type (WT) and mutant (bxl1-3 and cesa5-1) Arabidopsis thaliana seeds. For WT mucilage, ordered, multichain structures of the polysaccharide RGI were observed, with a helical twist visible in favorable circumstances. Molecular dynamics (MD) simulations demonstrated the stability of several possible multichain complexes and the possibility of twisted fibril formation. For bxl1-3 seeds, the imaged polymers clearly showed the presence of side chains. These were surprisingly regular and well organized with an average length of ∼100 nm and a spacing of ∼50 nm. The heights of the side chains imaged were suggestive of single polysaccharide chains, while the backbone was on average 4 times this height and showed regular height variations along its length consistent with models of multichain fibrils examined in MD. Finally, in mucilage extracts from cesa5-1 seeds, a minor population of chains in excess of 30 μm long was observed.
Collapse
Affiliation(s)
- Martin A K Williams
- School of Fundamental Sciences, Massey University, PN461, Private Bag 11222, Palmerston North 4442, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand.,The Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Valérie Cornuault
- School of Fundamental Sciences, Massey University, PN461, Private Bag 11222, Palmerston North 4442, New Zealand.,The Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Amir H Irani
- School of Fundamental Sciences, Massey University, PN461, Private Bag 11222, Palmerston North 4442, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - V Vaughan Symonds
- School of Fundamental Sciences, Massey University, PN461, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Jenny Malmström
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand.,Department of Chemical and Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yiran An
- Department of Chemical and Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33-436, Petone 5046, New Zealand
| | - Susan M Carnachan
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33-436, Petone 5046, New Zealand
| | - Christine Sallé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
20
|
Celiz-Balboa J, Largo-Gosens A, Parra-Rojas JP, Arenas-Morales V, Sepulveda-Orellana P, Salinas-Grenet H, Saez-Aguayo S, Orellana A. Functional Interchangeability of Nucleotide Sugar Transporters URGT1 and URGT2 Reveals That urgt1 and urgt2 Cell Wall Chemotypes Depend on Their Spatio-Temporal Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:594544. [PMID: 33363558 PMCID: PMC7752924 DOI: 10.3389/fpls.2020.594544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/02/2020] [Indexed: 05/04/2023]
Abstract
Nucleotide sugar transporters (NSTs) are Golgi-localized proteins that play a role in polysaccharide biosynthesis by transporting substrates (nucleotide sugars) from the cytosol into the Golgi apparatus. In Arabidopsis, there is an NST subfamily of six members, called URGTs, which transport UDP-rhamnose and UDP-galactose in vitro. URGTs are very similar in protein sequences, and among them, URGT1 and URGT2 are highly conserved in protein sequence and also showed very similar kinetic parameters toward UDP-rhamnose and UDP-galactose in vitro. Despite the similarity in sequence and in vitro function, mutants in urgt1 led to a specific reduction in galactose in rosette leaves. In contrast, mutants in urgt2 showed a decrease in rhamnose content in soluble mucilage from seeds. Given these specific and quite different chemotypes, we wonder whether the differences in gene expression could explain the observed differences between the mutants. Toward that end, we analyzed whether URGT2 could rescue the urgt1 phenotype and vice versa by performing a promoter swapping experiment. We analyzed whether the expression of the URGT2 coding sequence, controlled by the URGT1 promoter, could rescue the urgt1 rosette phenotype. A similar strategy was used to determine whether URGT1 could rescue the urgt2 mucilage phenotype. Expression analysis of the swapped genes, using qRT-PCR, was similar to the native URGT1 and URGT2 genes in wild-type plants. To monitor the protein expression of the swapped genes, both URGTs were tagged with green fluorescent protein (GFP). Confocal microscopy analyses of the swapped lines containing URGT2-GFP showed fluorescence in motile dot-like structures in rosette leaves. Swapped lines containing URGT1-GFP showed fluorescence in dot-like structures in the seed coat. Finally, the expression of URGT2 in urgt1 mutants rescued galactose reduction in rosette leaves. In the same manner, the expression of URGT1 in urgt2 mutants recovered the content of rhamnose in soluble mucilage. Hence, our results showed that their expression in different organs modulates the role in vivo of URGT1 and URGT2. Likely, this is due to their presence in different cellular contexts, where other proteins, acting in partnership, may drive their functions toward different pathways.
Collapse
Affiliation(s)
| | - Asier Largo-Gosens
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
| | | | | | | | | | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
- *Correspondence: Susana Saez-Aguayo,
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Ariel Orellana,
| |
Collapse
|