1
|
Lee K, Yoon H, Seo PJ. The AGL6-ELF3-FT circuit controls flowering time in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2024; 19:2358684. [PMID: 38805453 PMCID: PMC11135843 DOI: 10.1080/15592324.2024.2358684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Adjusting the timing of floral transition is essential for reproductive success in plants. A number of flowering regulators integrate internal and external signals to precisely determine the time to flower. We here report that the AGAMOUS-LIKE 6 (AGL6) - EARLY FLOWERING 3 (ELF3) module regulates flowering in the FLOWERING LOCUS T (FT)-dependent pathway in Arabidopsis. The AGL6 transcriptional repressor promotes floral transition by directly suppressing ELF3, which in turn directly represses FT expression that acts as a floral integrator. Indeed, ELF3 is epistatic to AGL6 in the control of floral transition. Overall, our findings propose that the AGL6-ELF3 module contributes to fine-tuning flowering time in plants.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hobin Yoon
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Won JH, Park J, Lee HG, Shim S, Lee H, Oh E, Seo PJ. The PRR-EC complex and SWR1 chromatin remodeling complex function cooperatively to repress nighttime hypocotyl elongation by modulating PIF4 expression in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100981. [PMID: 38816994 PMCID: PMC11412930 DOI: 10.1016/j.xplc.2024.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The circadian clock entrained by environmental light-dark cycles enables plants to fine-tune diurnal growth and developmental responses. Here, we show that physical interactions among evening clock components, including PSEUDO-RESPONSE REGULATOR 5 (PRR5), TIMING OF CAB EXPRESSION 1 (TOC1), and the Evening Complex (EC) component EARLY FLOWERING 3 (ELF3), define a diurnal repressive chromatin structure specifically at the PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) locus in Arabidopsis. These three clock components act interdependently as well as independently to repress nighttime hypocotyl elongation, as hypocotyl elongation rate dramatically increased specifically at nighttime in the prr5-1 toc1-21 elf3-1 mutant, concomitantly with a substantial increase in PIF4 expression. Transcriptional repression of PIF4 by ELF3, PRR5, and TOC1 is mediated by the SWI2/SNF2-RELATED (SWR1) chromatin remodeling complex, which incorporates histone H2A.Z at the PIF4 locus, facilitating robust epigenetic suppression of PIF4 during the evening. Overall, these findings demonstrate that the PRR-EC-SWR1 complex represses hypocotyl elongation at night through a distinctive chromatin domain covering PIF4 chromatin.
Collapse
Affiliation(s)
- Jin Hoon Won
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeonghyang Park
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangrae Shim
- Department of Forest Resources, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hongwoo Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Rispal J, Rives C, Jouffret V, Leoni C, Dubois L, Chevillard-Briet M, Trouche D, Escaffit F. Control of Intestinal Stemness and Cell Lineage by Histone Variant H2A.Z Isoforms. Mol Cell Biol 2024; 44:455-472. [PMID: 39155414 PMCID: PMC11529411 DOI: 10.1080/10985549.2024.2387720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The histone variant H2A.Z plays important functions in the regulation of gene expression. In mammals, it is encoded by two genes, giving rise to two highly related isoforms named H2A.Z.1 and H2A.Z.2, which can have similar or antagonistic functions depending on the promoter. Knowledge of the physiopathological consequences of such functions emerges, but how the balance between these isoforms regulates tissue homeostasis is not fully understood. Here, we investigated the relative role of H2A.Z isoforms in intestinal epithelial homeostasis. Through genome-wide analysis of H2A.Z genomic localization in differentiating Caco-2 cells, we uncovered an enrichment of H2A.Z isoforms on the bodies of genes which are induced during enterocyte differentiation, stressing the potential importance of H2A.Z isoforms dynamics in this process. Through a combination of in vitro and in vivo experiments, we further demonstrated the two isoforms cooperate for stem and progenitor cells proliferation, as well as for secretory lineage differentiation. However, we found that they antagonistically regulate enterocyte differentiation, with H2A.Z.1 preventing terminal differentiation and H2A.Z.2 favoring it. Altogether, these data indicate that H2A.Z isoforms are critical regulators of intestine homeostasis and may provide a paradigm of how the balance between two isoforms of the same chromatin structural protein can control physiopathological processes.
Collapse
Affiliation(s)
- Jérémie Rispal
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Clémence Rives
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Virginie Jouffret
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Caroline Leoni
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Louise Dubois
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Martine Chevillard-Briet
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Didier Trouche
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Fabrice Escaffit
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| |
Collapse
|
4
|
Li H, Xue M, Zhang H, Zhao F, Li X, Yu S, Jiang D. A warm temperature-released negative feedback loop fine-tunes PIF4-mediated thermomorphogenesis in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100833. [PMID: 38327058 PMCID: PMC11121753 DOI: 10.1016/j.xplc.2024.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/24/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Plants can sense temperature changes and adjust their growth accordingly. In Arabidopsis, high ambient temperatures stimulate stem elongation by activating a key thermoresponsive regulator, PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Here, we show that warmth promotes the nighttime transcription of GI, which is necessary for the high temperature-induced transcription of TOC1. Genetic analyses suggest that GI prevents excessive thermoresponsive growth by inhibiting PIF4, with this regulatory mechanism being partially reliant on TOC1. GI transcription is repressed by ELF3 and HY5, which concurrently inhibit PIF4 expression and activity. Temperature elevation causes the deactivation or degradation of ELF3 and HY5, leading to PIF4 activation and relief of GI transcriptional repression at high temperatures. This allows PIF4 to further activate GI transcription in response to elevated temperatures. GI, in turn, inhibits PIF4, establishing a negative feedback loop that fine-tunes PIF4 activity. In addition, we demonstrate that ELF3, HY5, and PIF4 regulate GI transcription by modulating the enrichment of histone variant H2A.Z at the GI locus. Together, our findings suggest that thermal release of a negative feedback loop finely adjusts plant thermomorphogenesis.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mande Xue
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengyue Zhao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Yuan L, Avello P, Zhu Z, Lock SCL, McCarthy K, Redmond EJ, Davis AM, Song Y, Ezer D, Pitchford JW, Quint M, Xie Q, Xu X, Davis SJ, Ronald J. Complex epistatic interactions between ELF3, PRR9, and PRR7 regulate the circadian clock and plant physiology. Genetics 2024; 226:iyad217. [PMID: 38142447 PMCID: PMC10917503 DOI: 10.1093/genetics/iyad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/07/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023] Open
Abstract
Circadian clocks are endogenous timekeeping mechanisms that coordinate internal physiological responses with the external environment. EARLY FLOWERING3 (ELF3), PSEUDO RESPONSE REGULATOR (PRR9), and PRR7 are essential components of the plant circadian clock and facilitate entrainment of the clock to internal and external stimuli. Previous studies have highlighted a critical role for ELF3 in repressing the expression of PRR9 and PRR7. However, the functional significance of activity in regulating circadian clock dynamics and plant development is unknown. To explore this regulatory dynamic further, we first employed mathematical modeling to simulate the effect of the prr9/prr7 mutation on the elf3 circadian phenotype. These simulations suggested that simultaneous mutations in prr9/prr7 could rescue the elf3 circadian arrhythmia. Following these simulations, we generated all Arabidopsis elf3/prr9/prr7 mutant combinations and investigated their circadian and developmental phenotypes. Although these assays could not replicate the results from the mathematical modeling, our results have revealed a complex epistatic relationship between ELF3 and PRR9/7 in regulating different aspects of plant development. ELF3 was essential for hypocotyl development under ambient and warm temperatures, while PRR9 was critical for root thermomorphogenesis. Finally, mutations in prr9 and prr7 rescued the photoperiod-insensitive flowering phenotype of the elf3 mutant. Together, our results highlight the importance of investigating the genetic relationship among plant circadian genes.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Paula Avello
- Department of Mathematics, University of York, York, YO10 5DD, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Sarah C L Lock
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Kayla McCarthy
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ethan J Redmond
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Amanda M Davis
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Yang Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Daphne Ezer
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Jonathan W Pitchford
- Department of Mathematics, University of York, York, YO10 5DD, UK
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Seth J Davis
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - James Ronald
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
6
|
Chen H, Wang W, Chen X, Niu Y, Qi Y, Yu Z, Xiong M, Xu P, Wang W, Guo T, Yang HQ, Mao Z. PIFs interact with SWI2/SNF2-related 1 complex subunit 6 to regulate H2A.Z deposition and photomorphogenesis in Arabidopsis. J Genet Genomics 2023; 50:983-992. [PMID: 37120038 DOI: 10.1016/j.jgg.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Light is an essential environmental signal perceived by a broad range of photoreceptors in plants. Among them, the red/far-red light receptor phytochromes function to promote photomorphogenesis, which is critical to the survival of seedlings after seeds germination. The basic-helix-loop-helix transcription factors phytochrome-interacting factors (PIFs) are the pivotal direct downstream components of phytochromes. H2A.Z is a highly conserved histone variant regulating gene transcription, and its incorporation into nucleosomes is catalyzed by SWI2/SNF2-related 1 complex, in which SWI2/SNF2-related 1 complex subunit 6 (SWC6) and actin-related protein 6 (ARP6) serve as core subunits. Here, we show that PIFs physically interact with SWC6 in vitro and in vivo, leading to the disassociation of HY5 from SWC6. SWC6 and ARP6 regulate hypocotyl elongation partly through PIFs in red light. PIFs and SWC6 coregulate the expression of auxin-responsive genes such as IAA6, IAA19, IAA20, and IAA29 and repress H2A.Z deposition at IAA6 and IAA19 in red light. Based on previous studies and our findings, we propose that PIFs inhibit photomorphogenesis, at least in part, through repression of H2A.Z deposition at auxin-responsive genes mediated by the interactions of PIFs with SWC6 and promotion of their expression in red light.
Collapse
Affiliation(s)
- Huiru Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wanting Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yake Niu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yuanyuan Qi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ze Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Minyu Xiong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Pengbo Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
7
|
Wu X, Zhang X, Huang B, Han J, Fang H. Advances in biological functions and mechanisms of histone variants in plants. Front Genet 2023; 14:1229782. [PMID: 37588047 PMCID: PMC10426802 DOI: 10.3389/fgene.2023.1229782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Nucleosome is the basic subunit of chromatin, consisting of approximately 147bp DNA wrapped around a histone octamer, containing two copies of H2A, H2B, H3 and H4. A linker histone H1 can bind nucleosomes through its conserved GH1 domain, which may promote chromatin folding into higher-order structures. Therefore, the complexity of histones act importantly for specifying chromatin and gene activities. Histone variants, encoded by separate genes and characterized by only a few amino acids differences, can affect nucleosome packaging and stability, and then modify the chromatin properties. Serving as carriers of pivotal genetic and epigenetic information, histone variants have profound significance in regulating plant growth and development, response to both biotic and abiotic stresses. At present, the biological functions of histone variants in plant have become a research hotspot. Here, we summarize recent researches on the biological functions, molecular chaperons and regulatory mechanisms of histone variants in plant, and propose some novel research directions for further study of plant histone variants research field. Our study will provide some enlightens for studying and understanding the epigenetic regulation and chromatin specialization mediated by histone variant in plant.
Collapse
Affiliation(s)
- Xi Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xu Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Borong Huang
- Developmental Biology, Laboratory of Plant Molecular and Zhejiang A & F University, Hangzhou, China
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Huihui Fang
- Developmental Biology, Laboratory of Plant Molecular and Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
8
|
Ahn G, Park HJ, Jeong SY, Shin GI, Ji MG, Cha JY, Kim J, Kim MG, Yun DJ, Kim WY. HOS15 represses flowering by promoting GIGANTEA degradation in response to low temperature in Arabidopsis. PLANT COMMUNICATIONS 2023:100570. [PMID: 36864727 PMCID: PMC10363504 DOI: 10.1016/j.xplc.2023.100570] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Flowering is the primary stage of the plant developmental transition and is tightly regulated by environmental factors such as light and temperature. However, the mechanisms by which temperature signals are integrated into the photoperiodic flowering pathway are still poorly understood. Here, we demonstrate that HOS15, which is known as a GI transcriptional repressor in the photoperiodic flowering pathway, controls flowering time in response to low ambient temperature. At 16°C, the hos15 mutant exhibits an early flowering phenotype, and HOS15 acts upstream of photoperiodic flowering genes (GI, CO, and FT). GI protein abundance is increased in the hos15 mutant and is insensitive to the proteasome inhibitor MG132. Furthermore, the hos15 mutant has a defect in low ambient temperature-mediated GI degradation, and HOS15 interacts with COP1, an E3 ubiquitin ligase for GI degradation. Phenotypic analyses of the hos15 cop1 double mutant revealed that repression of flowering by HOS15 is dependent on COP1 at 16°C. However, the HOS15-COP1 interaction was attenuated at 16°C, and GI protein abundance was additively increased in the hos15 cop1 double mutant, indicating that HOS15 acts independently of COP1 in GI turnover at low ambient temperature. This study proposes that HOS15 controls GI abundance through multiple modes as an E3 ubiquitin ligase and transcriptional repressor to coordinate appropriate flowering time in response to ambient environmental conditions such as temperature and day length.
Collapse
Affiliation(s)
- Gyeongik Ahn
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Song Yi Jeong
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyeong-Im Shin
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myung Geun Ji
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Yung Cha
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeongsik Kim
- Faculty of Science Education and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dae-Jin Yun
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Republic of Korea; Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Woe-Yeon Kim
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
9
|
Long J, Carter B, Johnson ET, Ogas J. Contribution of the histone variant H2A.Z to expression of responsive genes in plants. Semin Cell Dev Biol 2023; 135:85-92. [PMID: 35474148 PMCID: PMC9588091 DOI: 10.1016/j.semcdb.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/19/2022]
Abstract
The histone variant H2A.Z plays a critical role in chromatin-based processes such as transcription, replication, and repair in eukaryotes. Although many H2A.Z-associated processes and features are conserved in plants and animals, a distinguishing feature of plant chromatin is the enrichment of H2A.Z in the bodies of genes that exhibit dynamic expression, particularly in response to differentiation and the environment. Recent work sheds new light on the plant machinery that enables dynamic changes in H2A.Z enrichment and identifies additional chromatin-based pathways that contribute to transcriptional properties of H2A.Z-enriched chromatin. In particular, analysis of a variety of responsive loci reveals a repressive role for H2A.Z in expression of responsive genes and identifies roles for SWR1 and INO80 chromatin remodelers in enabling dynamic regulation of H2A.Z levels and transcription. These studies lay the groundwork for understanding how this ancient histone variant is harnessed by plants to enable responsive and dynamic gene expression (Graphical Abstract).
Collapse
Affiliation(s)
- Jiaxin Long
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Benjamin Carter
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Emily T Johnson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Joe Ogas
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
10
|
Davis W, Endo M, Locke JCW. Spatially specific mechanisms and functions of the plant circadian clock. PLANT PHYSIOLOGY 2022; 190:938-951. [PMID: 35640123 PMCID: PMC9516738 DOI: 10.1093/plphys/kiac236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Like many organisms, plants have evolved a genetic network, the circadian clock, to coordinate processes with day/night cycles. In plants, the clock is a pervasive regulator of development and modulates many aspects of physiology. Clock-regulated processes range from the correct timing of growth and cell division to interactions with the root microbiome. Recently developed techniques, such as single-cell time-lapse microscopy and single-cell RNA-seq, are beginning to revolutionize our understanding of this clock regulation, revealing a surprising degree of organ, tissue, and cell-type specificity. In this review, we highlight recent advances in our spatial view of the clock across the plant, both in terms of how it is regulated and how it regulates a diversity of output processes. We outline how understanding these spatially specific functions will help reveal the range of ways that the clock provides a fitness benefit for the plant.
Collapse
Affiliation(s)
- William Davis
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - James C W Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Michael TP. Core circadian clock and light signaling genes brought into genetic linkage across the green lineage. PLANT PHYSIOLOGY 2022; 190:1037-1056. [PMID: 35674369 PMCID: PMC9516744 DOI: 10.1093/plphys/kiac276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The circadian clock is conserved at both the level of transcriptional networks as well as core genes in plants, ensuring that biological processes are phased to the correct time of day. In the model plant Arabidopsis (Arabidopsis thaliana), the core circadian SHAQKYF-type-MYB (sMYB) genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and REVEILLE (RVE4) show genetic linkage with PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7, respectively. Leveraging chromosome-resolved plant genomes and syntenic ortholog analysis enabled tracing this genetic linkage back to Amborella trichopoda, a sister lineage to the angiosperm, and identifying an additional evolutionarily conserved genetic linkage in light signaling genes. The LHY/CCA1-PRR5/9, RVE4/8-PRR3/7, and PIF3-PHYA genetic linkages emerged in the bryophyte lineage and progressively moved within several genes of each other across an array of angiosperm families representing distinct whole-genome duplication and fractionation events. Soybean (Glycine max) maintained all but two genetic linkages, and expression analysis revealed the PIF3-PHYA linkage overlapping with the E4 maturity group locus was the only pair to robustly cycle with an evening phase, in contrast to the sMYB-PRR morning and midday phase. While most monocots maintain the genetic linkages, they have been lost in the economically important grasses (Poaceae), such as maize (Zea mays), where the genes have been fractionated to separate chromosomes and presence/absence variation results in the segregation of PRR7 paralogs across heterotic groups. The environmental robustness model is put forward, suggesting that evolutionarily conserved genetic linkages ensure superior microhabitat pollinator synchrony, while wide-hybrids or unlinking the genes, as seen in the grasses, result in heterosis, adaptation, and colonization of new ecological niches.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
12
|
Ronald J, Su C, Wang L, Davis SJ. Cellular localization of Arabidopsis EARLY FLOWERING3 is responsive to light quality. PLANT PHYSIOLOGY 2022; 190:1024-1036. [PMID: 35191492 PMCID: PMC9516731 DOI: 10.1093/plphys/kiac072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 05/13/2023]
Abstract
Circadian clocks facilitate the coordination of physiological and developmental processes to changing daily and seasonal cycles. A hub for environmental signaling pathways in the Arabidopsis (Arabidopsis thaliana) circadian clock is the evening complex (EC), a protein complex composed of EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRYTHMO (LUX). Formation of the EC depends on ELF3, a scaffold protein that recruits the other components of the EC and chromatin remodeling enzymes to repress gene expression. Regulating the cellular distribution of ELF3 is thus an important mechanism in controlling its activity. Here, we determined that the cellular and sub-nuclear localization of ELF3 is responsive to red (RL) and blue light and that these two wavelengths have apparently competitive effects on where in the cell ELF3 localizes. We further characterized the RL response, revealing that at least two RL pathways influence the cellular localization of ELF3. One of these depends on the RL photoreceptor phytochrome B (phyB), while the second is at least partially independent of phyB activity. Finally, we investigated how changes in the cellular localization of ELF3 are associated with repression of EC target-gene expression. Our analyses revealed a complex effect whereby ELF3 is required for controlling RL sensitivity of morning-phased genes, but not evening-phased genes. Together, our findings establish a previously unknown mechanism through which light signaling influences ELF3 activity.
Collapse
Affiliation(s)
- James Ronald
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Chen Su
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
13
|
Foroozani M, Holder DH, Deal RB. Histone Variants in the Specialization of Plant Chromatin. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:149-172. [PMID: 35167758 PMCID: PMC9133179 DOI: 10.1146/annurev-arplant-070221-050044] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The basic unit of chromatin, the nucleosome, is an octamer of four core histone proteins (H2A, H2B, H3, and H4) and serves as a fundamental regulatory unit in all DNA-templated processes. The majority of nucleosome assembly occurs during DNA replication when these core histones are produced en masse to accommodate the nascent genome. In addition, there are a number of nonallelic sequence variants of H2A and H3 in particular, known as histone variants, that can be incorporated into nucleosomes in a targeted and replication-independent manner. By virtue of their sequence divergence from the replication-coupled histones, these histone variants can impart unique properties onto the nucleosomes they occupy and thereby influence transcription and epigenetic states, DNA repair, chromosome segregation, and other nuclear processes in ways that profoundly affect plant biology. In this review, we discuss the evolutionary origins of these variants in plants, their known roles in chromatin, and their impacts on plant development and stress responses. We focus on the individual and combined roles of histone variants in transcriptional regulation within euchromatic and heterochromatic genome regions. Finally, we highlight gaps in our understanding of plant variants at the molecular, cellular, and organismal levels, and we propose new directions for study in the field of plant histone variants.
Collapse
Affiliation(s)
| | - Dylan H Holder
- Department of Biology, Emory University, Atlanta, Georgia, USA;
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, Georgia, USA;
| |
Collapse
|
14
|
Uehara TN, Nonoyama T, Taki K, Kuwata K, Sato A, Fujimoto KJ, Hirota T, Matsuo H, Maeda AE, Ono A, Takahara TT, Tsutsui H, Suzuki T, Yanai T, Kay SA, Itami K, Kinoshita T, Yamaguchi J, Nakamichi N. Phosphorylation of RNA Polymerase II by CDKC;2 Maintains the Arabidopsis Circadian Clock Period. PLANT & CELL PHYSIOLOGY 2022; 63:450-462. [PMID: 35086143 PMCID: PMC9016870 DOI: 10.1093/pcp/pcac011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The circadian clock is an internal timekeeping system that governs about 24 h biological rhythms of a broad range of developmental and metabolic activities. The clocks in eukaryotes are thought to rely on lineage-specific transcriptional-translational feedback loops. However, the mechanisms underlying the basic transcriptional regulation events for clock function have not yet been fully explored. Here, through a combination of chemical biology and genetic approaches, we demonstrate that phosphorylation of RNA polymerase II by CYCLIN DEPENDENT KINASE C; 2 (CDKC;2) is required for maintaining the circadian period in Arabidopsis. Chemical screening identified BML-259, the inhibitor of mammalian CDK2/CDK5, as a compound lengthening the circadian period of Arabidopsis. Short-term BML-259 treatment resulted in decreased expression of most clock-associated genes. Development of a chemical probe followed by affinity proteomics revealed that BML-259 binds to CDKC;2. Loss-of-function mutations of cdkc;2 caused a long period phenotype. In vitro experiments demonstrated that the CDKC;2 immunocomplex phosphorylates the C-terminal domain of RNA polymerase II, and BML-259 inhibits this phosphorylation. Collectively, this study suggests that transcriptional activity maintained by CDKC;2 is required for proper period length, which is an essential feature of the circadian clock in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Kazuhiro J Fujimoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Hiromi Matsuo
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Akari E Maeda
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
| | - Azusa Ono
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
| | - Tomoaki T Takahara
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo, 162-0041 Japan
| | - Hiroki Tsutsui
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Steve A Kay
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
- JST ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Junichiro Yamaguchi
- *Corresponding authors: Norihito Nakamichi, E-mail, ; Junichiro Yamaguchi, E-mail,
| | - Norihito Nakamichi
- *Corresponding authors: Norihito Nakamichi, E-mail, ; Junichiro Yamaguchi, E-mail,
| |
Collapse
|
15
|
Mao Z, Wei X, Li L, Xu P, Zhang J, Wang W, Guo T, Kou S, Wang W, Miao L, Cao X, Zhao J, Yang G, Zhang S, Lian H, Yang HQ. Arabidopsis cryptochrome 1 controls photomorphogenesis through regulation of H2A.Z deposition. THE PLANT CELL 2021; 33:1961-1979. [PMID: 33768238 PMCID: PMC8290288 DOI: 10.1093/plcell/koab091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/23/2021] [Indexed: 05/20/2023]
Abstract
Light is a key environmental cue that fundamentally regulates plant growth and development, which is mediated by the multiple photoreceptors including the blue light (BL) photoreceptor cryptochrome 1 (CRY1). The signaling mechanism of Arabidopsis thaliana CRY1 involves direct interactions with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)/SUPPRESSOR OF PHYA-105 1 and stabilization of COP1 substrate ELONGATED HYPOCOTYL 5 (HY5). H2A.Z is an evolutionarily conserved histone variant, which plays a critical role in transcriptional regulation through its deposition in chromatin catalyzed by SWR1 complex. Here we show that CRY1 physically interacts with SWC6 and ARP6, the SWR1 complex core subunits that are essential for mediating H2A.Z deposition, in a BL-dependent manner, and that BL-activated CRY1 enhances the interaction of SWC6 with ARP6. Moreover, HY5 physically interacts with SWC6 and ARP6 to direct the recruitment of SWR1 complex to HY5 target loci. Based on previous studies and our findings, we propose that CRY1 promotes H2A.Z deposition to regulate HY5 target gene expression and photomorphogenesis in BL through the enhancement of both SWR1 complex activity and HY5 recruitment of SWR1 complex to HY5 target loci, which is likely mediated by interactions of CRY1 with SWC6 and ARP6, and CRY1 stabilization of HY5, respectively.
Collapse
Affiliation(s)
- Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xuxu Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ling Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Xu
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingyi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shuang Kou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wanting Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Langxi Miao
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoli Cao
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiachen Zhao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Guangqiong Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shilong Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
16
|
Srivastava AK, Suresh Kumar J, Suprasanna P. Seed 'primeomics': plants memorize their germination under stress. Biol Rev Camb Philos Soc 2021; 96:1723-1743. [PMID: 33961327 DOI: 10.1111/brv.12722] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Seed priming is a pre-germination treatment administered through various chemical, physical and biological agents, which induce mild stress during the early phases of germination. Priming facilitates synchronized seed germination, better seedling establishment, improved plant growth and enhanced yield, especially in stressful environments. In parallel, the phenomenon of 'stress memory' in which exposure to a sub-lethal stress leads to better responses to future or recurring lethal stresses has gained widespread attention in recent years. The versatility and realistic yield gains associated with seed priming and its connection with stress memory make a critical examination useful for the design of robust approaches for maximizing future yield gains. Herein, a literature review identified selenium, salicylic acid, poly-ethylene glycol, CaCl2 and thiourea as the seed priming agents (SPRs) for which the most studies have been carried out. The average priming duration for SPRs generally ranged from 2 to 48 h, i.e. during phase I/II of germination. The major signalling events for regulating early seed germination, including the DOG1 (delay of germination 1)-abscisic acid (ABA)-heme regulatory module, ABA-gibberellic acid antagonism and nucleus-organelle communication are detailed. We propose that both seed priming and stress memory invoke a 'bet-hedging' strategy in plants, wherein their growth under optimal conditions is compromised in exchange for better growth under stressful conditions. The molecular basis of stress memory is explained at the level of chromatin reorganization, alternative transcript splicing, metabolite accumulation and autophagy. This provides a useful framework to study similar mechanisms operating during seed priming. In addition, we highlight the potential for merging findings on seed priming with those of stress memory, with the dual benefit of advancing fundamental research and boosting crop productivity. Finally, a roadmap for future work, entailing identification of SPR-responsive varieties and the development of dual/multiple-benefit SPRs, is proposed for enhancing SPR-mediated agricultural productivity worldwide.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Jisha Suresh Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
17
|
Lee HG, Seo PJ. The Arabidopsis JMJ29 Protein Controls Circadian Oscillation through Diurnal Histone Demethylation at the CCA1 and PRR9 Loci. Genes (Basel) 2021; 12:genes12040529. [PMID: 33916408 PMCID: PMC8066055 DOI: 10.3390/genes12040529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/18/2022] Open
Abstract
The circadian clock matches various biological processes to diurnal environmental cycles, such as light and temperature. Accumulating evidence shows that chromatin modification is crucial for robust circadian oscillation in plants, although chromatin modifiers involved in regulating core clock gene expression have been limitedly investigated. Here, we report that the Jumonji C domain-containing histone demethylase JMJ29, which belongs to the JHDM2/KDM3 group, shapes rhythmic changes in H3K4me3 histone marks at core clock loci in Arabidopsis. The evening-expressed JMJ29 protein interacts with the Evening Complex (EC) component EARLY FLOWERING 3 (ELF3). The EC recruits JMJ29 to the CCA1 and PRR9 promoters to catalyze the H3K4me3 demethylation at the cognate loci, maintaining a low-level expression during the evening time. Together, our findings demonstrate that interaction of circadian components with chromatin-related proteins underlies diurnal fluctuation of chromatin structures to maintain circadian waveforms in plants.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea;
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea;
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Correspondence:
| |
Collapse
|
18
|
Zhang S, Liu H, Yuan L, Li X, Wang L, Xu X, Xie Q. Recognition of CCA1 alternative protein isoforms during temperature acclimation. PLANT CELL REPORTS 2021; 40:421-432. [PMID: 33398474 DOI: 10.1007/s00299-020-02644-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/26/2020] [Indexed: 05/14/2023]
Abstract
CCA1α and CCA1β protein variants respond to environmental light and temperature cues, and higher temperature promotes CCA1β protein production and causes its retention detectable in the cytoplasm. CIRCADIAN CLOCK ASSOCIATED1 (CCA1), as the core transcription factor of circadian clock, is involved in the regulation of endogenous circadian rhythm in Arabidopsis. Previous studies have shown that CCA1 consists of two abundant splice variants, fully spliced CCA1α and intron-retaining CCA1β. CCA1β is believed to form a nonfunctional heterodimer with CCA1α and its closed-related homolog LHY. Many studies have established that CCA1β is a transcription product, while how CCA1β protein is produced and how two CCA1 isoforms respond to environmental cues have not been elucidated. In this study, we identified CCA1α and CCA1β protein variants under different photoperiods with warm or cold temperature cycles, respectively. Our results showed that CCA1 protein production is regulated by prolonged light exposure and warm temperature. The protein levels of CCA1α and CCA1β peak in the morning, but the detection of CCA1β is dependent on immunoprecipitation enrichment at 22 °C. Higher temperature of 37 °C promotes CCA1β protein production and causes its retention to be detectable in the cytoplasm. Overall, our results indicate that two splice variants of the CCA1 protein respond to environmental light and temperature signals and may, therefore, maintain the circadian rhythms and give individuals the ability to adapt to environment.
Collapse
Affiliation(s)
- Shijia Zhang
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Huili Liu
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaojing Li
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lingbao Wang
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
19
|
Zhao H, Xu D, Tian T, Kong F, Lin K, Gan S, Zhang H, Li G. Molecular and functional dissection of EARLY-FLOWERING 3 (ELF3) and ELF4 in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110786. [PMID: 33487361 DOI: 10.1016/j.plantsci.2020.110786] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/31/2020] [Accepted: 11/28/2020] [Indexed: 05/18/2023]
Abstract
The circadian clock is an endogenous timekeeper system that generates biological rhythms of approximately 24 h in most organisms. EARLY FLOWERING 3 (ELF3) and ELF4 were initially identified as negative regulators of flowering time in Arabidopsis thaliana. They were then found to play crucial roles in the circadian clock by integrating environmental light and ambient temperature signals and transmitting them to the central oscillator, thereby regulating various downstream cellular and physiological processes. At dusk, ELF3 acts as a scaffold, interacting with ELF4 and the transcription factor LUX ARRHYTHMO (PHYTOCLOCK1) to form an EVENING COMPLEX (EC). This complex represses the transcription of multiple circadian clock-related genes, thus inhibiting hypocotyl elongation and flowering. Subsequent studies have expanded knowledge about the regulatory roles of the EC in thermomorphogenesis and shade responses. In addition, ELF3 and ELF4 also form multiple complexes with other proteins including chromatin remodeling factors, histone deacetylase, and transcription factors, thus enabling the transcriptional repression of diverse targets. In this review, we summarize the recent advances in elucidating the regulatory mechanisms of ELF3 and ELF4 in plants and discuss directions for future research on ELF3 and ELF4.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China; College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Di Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Tian Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Fanying Kong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Ke Lin
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China; Department of Biology Science and Technology, Taishan University, Tai'an, 271000, China
| | - Shuo Gan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Haisen Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China.
| |
Collapse
|
20
|
The Transcriptional Network in the Arabidopsis Circadian Clock System. Genes (Basel) 2020; 11:genes11111284. [PMID: 33138078 PMCID: PMC7692566 DOI: 10.3390/genes11111284] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
The circadian clock is the biological timekeeping system that governs the approximately 24-h rhythms of genetic, metabolic, physiological and behavioral processes in most organisms. This oscillation allows organisms to anticipate and adapt to day–night changes in the environment. Molecular studies have indicated that a transcription–translation feedback loop (TTFL), consisting of transcriptional repressors and activators, is essential for clock function in Arabidopsis thaliana (Arabidopsis). Omics studies using next-generation sequencers have further revealed that transcription factors in the TTFL directly regulate key genes implicated in clock-output pathways. In this review, the target genes of the Arabidopsis clock-associated transcription factors are summarized. The Arabidopsis clock transcriptional network is partly conserved among angiosperms. In addition, the clock-dependent transcriptional network structure is discussed in the context of plant behaviors for adapting to day–night cycles.
Collapse
|
21
|
Maric A, Mas P. Chromatin Dynamics and Transcriptional Control of Circadian Rhythms in Arabidopsis. Genes (Basel) 2020; 11:E1170. [PMID: 33036236 PMCID: PMC7601625 DOI: 10.3390/genes11101170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Circadian rhythms pervade nearly all aspects of plant growth, physiology, and development. Generation of the rhythms relies on an endogenous timing system or circadian clock that generates 24-hour oscillations in multiple rhythmic outputs. At its bases, the plant circadian function relies on dynamic interactive networks of clock components that regulate each other to generate rhythms at specific phases during the day and night. From the initial discovery more than 13 years ago of a parallelism between the oscillations in chromatin status and the transcriptional rhythms of an Arabidopsis clock gene, a number of studies have later expanded considerably our view on the circadian epigenome and transcriptome landscapes. Here, we describe the most recent identification of chromatin-related factors that are able to directly interact with Arabidopsis clock proteins to shape the transcriptional waveforms of circadian gene expression and clock outputs. We discuss how changes in chromatin marks associate with transcript initiation, elongation, and the rhythms of nascent RNAs, and speculate on future interesting research directions in the field.
Collapse
Affiliation(s)
- Aida Maric
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
- Consejo Superior de Investigaciones Científicas (CSIC), 08028 Barcelona, Spain
| |
Collapse
|
22
|
Probst AV, Desvoyes B, Gutierrez C. Similar yet critically different: the distribution, dynamics and function of histone variants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5191-5204. [PMID: 32392582 DOI: 10.1093/jxb/eraa230] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 05/23/2023]
Abstract
Organization of the genetic information into chromatin plays an important role in the regulation of all DNA template-based reactions. The incorporation of different variant versions of the core histones H3, H2A, and H2B, or the linker histone H1 results in nucleosomes with unique properties. Histone variants can differ by only a few amino acids or larger protein domains and their incorporation may directly affect nucleosome stability and higher order chromatin organization or indirectly influence chromatin function through histone variant-specific binding partners. Histone variants employ dedicated histone deposition machinery for their timely and locus-specific incorporation into chromatin. Plants have evolved specific histone variants with unique expression patterns and features. In this review, we discuss our current knowledge on histone variants in Arabidopsis, their mode of deposition, variant-specific post-translational modifications, and genome-wide distribution, as well as their role in defining different chromatin states.
Collapse
Affiliation(s)
- Aline V Probst
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| |
Collapse
|
23
|
Cortés Llorca L, Li R, Yon F, Schäfer M, Halitschke R, Robert CAM, Kim SG, Baldwin IT. ZEITLUPE facilitates the rhythmic movements of Nicotiana attenuata flowers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:308-322. [PMID: 32130751 DOI: 10.1111/tpj.14732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/31/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Circadian organ movements are ubiquitous in plants. These rhythmic outputs are thought to be regulated by the circadian clock and auxin signalling, but the underlying mechanisms have not been clarified. Flowers of Nicotiana attenuata change their orientation during the daytime through a 140° arc to balance the need for pollinators and the protection of their reproductive organs. This rhythmic trait is under the control of the circadian clock and results from bending and re-straightening movements of the pedicel, stems that connect flowers to the inflorescence. Using an explant system that allowed pedicel growth and curvature responses to be characterized with high spatial and temporal resolution, we demonstrated that this movement is organ autonomous and mediated by auxin. Changes in the growth curvature of the pedicel are accompanied by an auxin gradient and dorsiventral asymmetry in auxin-dependent transcriptional responses; application of auxin transport inhibitors influenced the normal movements of this organ. Silencing the expression of the circadian clock component ZEITLUPE (ZTL) arrested changes in the growth curvature of the pedicel and altered auxin signalling and responses. IAA19-like, an Aux/IAA transcriptional repressor that is circadian regulated and differentially expressed between opposite tissues of the pedicel, and therefore possibly involved in the regulation of changes in organ curvature, physically interacted with ZTL. Together, these results are consistent with a direct link between the circadian clock and the auxin signalling pathway in the regulation of this rhythmic floral movement.
Collapse
Affiliation(s)
- Lucas Cortés Llorca
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Felipe Yon
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Christelle A M Robert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| |
Collapse
|