1
|
Perez-Gil J, Behrendorff J, Douw A, Vickers CE. The methylerythritol phosphate pathway as an oxidative stress sense and response system. Nat Commun 2024; 15:5303. [PMID: 38906898 PMCID: PMC11192765 DOI: 10.1038/s41467-024-49483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/05/2024] [Indexed: 06/23/2024] Open
Abstract
The methylerythritol phosphate (MEP) pathway is responsible for biosynthesis of the precursors of isoprenoid compounds in eubacteria and plastids. It is a metabolic alternative to the well-known mevalonate pathway for isoprenoid production found in archaea and eukaryotes. Recently, a role for the MEP pathway in oxidative stress detection, signalling, and response has been identified. This role is executed in part through the unusual cyclic intermediate, methylerythritol cyclodiphosphate (MEcDP). We postulate that this response is triggered through the oxygen sensitivity of the MEP pathway's terminal iron-sulfur (Fe-S) cluster enzymes. MEcDP is the substrate of IspG, the first Fe-S cluster enzyme in the pathway; it accumulates under oxidative stress conditions and acts as a signalling molecule. It may also act as an antioxidant. Furthermore, evidence is emerging for a broader and highly nuanced role of the MEP pathway in oxidative stress responses, implemented through a complex system of differential regulation and sensitivity at numerous nodes in the pathway. Here, we explore the evidence for such a role (including the contribution of the Fe-S cluster enzymes and different pathway metabolites, especially MEcDP), the evolutionary implications, and the many questions remaining about the behaviour of the MEP pathway in the presence of oxidative stress.
Collapse
Affiliation(s)
- Jordi Perez-Gil
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Environmental and Biological Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - James Behrendorff
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Environmental and Biological Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Andrew Douw
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Claudia E Vickers
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- School of Environmental and Biological Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
- BioBuilt Solutions, Corinda, QLD, 4075, Australia.
| |
Collapse
|
2
|
Zeng L, Gomez Mendez MF, Guo J, Jiang J, Zhang B, Chen H, Le B, Ke H, Dehesh K. Activation of stress-response genes by retrograde signaling-mediated destabilization of nuclear importin IMPα-9 and its interactor TPR2. MOLECULAR PLANT 2024; 17:884-899. [PMID: 38693693 DOI: 10.1016/j.molp.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Stress-induced retrograde signal transmission from the plastids to the nucleus has long puzzled plant biologists. To address this, we performed a suppressor screen of the ceh1 mutant, which contains elevated 2-C-methyl-d-erythritol-2,4-cyclopyrophosphate (MEcPP) levels, and identified the gain-of-function mutant impα-9, which shows reversed dwarfism and suppressed expression of stress-response genes in the ceh1 background despite heightened MEcPP. Subsequent genetic and biochemical analyses established that the accumulation of MEcPP initiates an upsurge in Arabidopsis SKP1-like 1 (ASK1) abundance, a pivotal component in the proteasome degradation pathway. This increase in ASK1 prompts the degradation of IMPα-9. Moreover, we uncovered a protein-protein interaction between IMPα-9 and TPR2, a transcriptional co-suppressor and found that a reduction in IMPα-9 levels coincides with a decrease in TPR2 abundance. Significantly, the interaction between IMPα-9 and TPR2 was disrupted in impα-9 mutants, highlighting the critical role of a single amino acid alteration in maintaining their association. Disruption of their interaction results in the reversal of MEcPP-associated phenotypes. Chromatin immunoprecipitation coupled with sequencing analyses revealed that TPR2 binds globally to stress-response genes and suggested that IMPα-9 associates with the chromatin. They function together to suppress the expression of stress-response genes under normal conditions, but this suppression is alleviated in response to stress through the degradation of the suppressing machinery. The biological relevance of our discoveries was validated under high light stress, marked by MEcPP accumulation, elevated ASK1 levels, IMPα-9 degredation, reduced TPR2 abundance, and subsequent activation of a network of stress-response genes. In summary, our study collectively unveils fresh insights into plant adaptive mechanisms, highlighting intricate interactions among retrograde signaling, the proteasome, and nuclear transport machinery.
Collapse
Affiliation(s)
- Liping Zeng
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Maria Fernanda Gomez Mendez
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jingzhe Guo
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jishan Jiang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Bailong Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA; School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Hao Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Brandon Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Haiyan Ke
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
3
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
4
|
Kanojia A, Bhola D, Mudgil Y. Light signaling as cellular integrator of multiple environmental cues in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1485-1503. [PMID: 38076763 PMCID: PMC10709290 DOI: 10.1007/s12298-023-01364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 12/17/2023]
Abstract
Plants being sessile need to rapidly adapt to the constantly changing environment through modifications in their internal clock, metabolism, and gene expression. They have evolved an intricate system to perceive and transfer the signals from the primary environmental factors namely light, temperature and water to regulate their growth development and survival. Over past few decades rigorous research using molecular genetics approaches, especially in model plant Arabidopsis, has resulted in substantial progress in discovering various photoreceptor systems and light signaling components. In parallel several molecular pathways operating in response to other environmental cues have also been elucidated. Interestingly, the studies have shown that expression profiles of genes involved in photomorphogenesis can undergo modulation in response to other cues from the environment. Recently, the photoreceptor, PHYB, has been shown to function as a thermosensor. Downstream components of light signaling pathway like COP1 and PIF have also emerged as integrating hubs for various kinds of signals. All these findings indicate that light signaling components may act as central integrator of various environmental cues to regulate plant growth and development processes. In this review, we present a perspective on cross talk of signaling mechanisms induced in response to myriad array of signals and their integration with the light signaling components. By putting light signals on the central stage, we propose the possibilities of enhancing plant resilience to the changing environment by fine-tuning the genetic manipulation of its signaling components in the future.
Collapse
Affiliation(s)
- Abhishek Kanojia
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - Diksha Bhola
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - Yashwanti Mudgil
- Department of Botany, University of Delhi, New Delhi, 110007 India
| |
Collapse
|
5
|
Griffin JHC, Toledo-Ortiz G. Plant photoreceptors and their signalling components in chloroplastic anterograde and retrograde communication. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7126-7138. [PMID: 35640572 PMCID: PMC9675593 DOI: 10.1093/jxb/erac220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/18/2022] [Indexed: 05/27/2023]
Abstract
The red phytochrome and blue cryptochrome plant photoreceptors play essential roles in promoting genome-wide changes in nuclear and chloroplastic gene expression for photomorphogenesis, plastid development, and greening. While their importance in anterograde signalling has been long recognized, the molecular mechanisms involved remain under active investigation. More recently, the intertwining of the light signalling cascades with the retrograde signals for the optimization of chloroplast functions has been acknowledged. Advances in the field support the participation of phytochromes, cryptochromes, and key light-modulated transcription factors, including HY5 and the PIFs, in the regulation of chloroplastic biochemical pathways that produce retrograde signals, including the tetrapyrroles and the chloroplastic MEP-isoprenoids. Interestingly, in a feedback loop, the photoreceptors and their signalling components are targets themselves of these retrograde signals, aimed at optimizing photomorphogenesis to the status of the chloroplasts, with GUN proteins functioning at the convergence points. High light and shade are also conditions where the photoreceptors tune growth responses to chloroplast functions. Interestingly, photoreceptors and retrograde signals also converge in the modulation of dual-localized proteins (chloroplastic/nuclear) including WHIRLY and HEMERA/pTAC12, whose functions are required for the optimization of photosynthetic activities in changing environments and are proposed to act themselves as retrograde signals.
Collapse
|
6
|
Aux/IAA11 Is Required for UV-AB Tolerance and Auxin Sensing in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms232113386. [PMID: 36362171 PMCID: PMC9655273 DOI: 10.3390/ijms232113386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
In order to survive, plants have, over the course of their evolution, developed sophisticated acclimation and defense strategies governed by complex molecular and physiological, and cellular and extracellular, signaling pathways. They are also able to respond to various stimuli in the form of tropisms; for example, phototropism or gravitropism. All of these retrograde and anterograde signaling pathways are controlled and regulated by waves of reactive oxygen species (ROS), electrical signals, calcium, and hormones, e.g., auxins. Auxins are key phytohormones involved in the regulation of plant growth and development. Acclimation responses, which include programmed cell death induction, require precise auxin perception. However, our knowledge of these pathways is limited. The Aux/IAA family of transcriptional corepressors inhibits the growth of the plant under stress conditions, in order to maintain the balance between development and acclimation responses. In this work, we demonstrate the Aux/IAA11 involvement in auxin sensing, survival, and acclimation to UV-AB, and in carrying out photosynthesis under inhibitory conditions. The tested iaa11 mutants were more susceptible to UV-AB, photosynthetic electron transport (PET) inhibitor, and synthetic endogenous auxin. Among the tested conditions, Aux/IAA11 was not repressed by excess light stress, exclusively among its phylogenetic clade. Repression of transcription by Aux/IAA11 could be important for the inhibition of ROS formation or efficiency of ROS scavenging. We also hypothesize that the demonstrated differences in the subcellular localization of the two Aux/IAA11 protein variants might indicate their regulation by alternative splicing. Our results suggest that Aux/IAA11 plays a specific role in chloroplast retrograde signaling, since it is not repressed by high (excess) light stress, exclusively among its phylogenetic clade.
Collapse
|
7
|
Wang JZ, van de Ven W, Xiao Y, He X, Ke H, Yang P, Dehesh K. Reciprocity between a retrograde signal and a putative metalloprotease reconfigures plastidial metabolic and structural states. SCIENCE ADVANCES 2022; 8:eabo0724. [PMID: 35658042 PMCID: PMC9166295 DOI: 10.1126/sciadv.abo0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Reconfiguration of the plastidial proteome in response to environmental cues is central to tailoring adaptive responses. To define the underlying mechanisms and consequences of these reconfigurations, we performed a suppressor screen, using a mutant (ceh1) accumulating high levels of a plastidial retrograde signaling metabolite, MEcPP. We isolated a revertant partially suppressing the dwarf stature and high salicylic acid of ceh1 and identified the mutation in a putative plastidial metalloprotease (VIR3). Biochemical analyses showed increased VIR3 levels in ceh1, accompanied by reduced abundance of VIR3-target enzymes, ascorbate peroxidase, and glyceraldehyde 3-phophate dehydrogenase B. These proteomic shifts elicited increased H2O2, salicylic acid, and MEcPP levels, as well as stromule formation. High light recapitulated VIR3-associated reconfiguration of plastidial metabolic and structural states. These results establish a link between a plastidial stress-inducible retrograde signaling metabolite and a putative metalloprotease and reveal how the reciprocity between the two components modulates plastidial metabolic and structural states, shaping adaptive responses.
Collapse
Affiliation(s)
- Jin-Zheng Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Wilhelmina van de Ven
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Yanmei Xiao
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Xiang He
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Panyu Yang
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Zhang F, Qu L, Gu Y, Xu ZH, Xue HW. Resequencing and genome-wide association studies of autotetraploid potato. MOLECULAR HORTICULTURE 2022; 2:6. [PMID: 37789415 PMCID: PMC10515019 DOI: 10.1186/s43897-022-00027-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/01/2022] [Indexed: 10/05/2023]
Abstract
Potato is the fourth most important food crop in the world. Although with a long history for breeding approaches, genomic information and association between genes and agronomic traits remain largely unknown particularly in autotetraploid potato cultivars, which limit the molecular breeding progression. By resequencing the genome of 108 main cultivar potato accessions with rich genetic diversity and population structure from International Potato Center, with approximate 20-fold coverage, we revealed more than 27 million Single Nucleotide Polymorphisms and ~ 3 million Insertion and Deletions with high quality and accuracy. Domestication analysis and genome-wide association studies (GWAS) identified candidate loci related to photoperiodic flowering time and temperature sensitivity as well as disease resistance, providing informative insights into the selection and domestication of cultivar potato. In addition, GWAS with GWASploy for 25 agronomic traits identified candidate loci by association signals, especially those related to tuber size, small-sized tuber weight and tuber thickness that was also validated by transcriptome analysis. Our study provides a valuable resource that facilitates the elucidation of domestication process as well as the genetic studies and agronomic improvement of autotetraploid potato.
Collapse
Affiliation(s)
- Feng Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
| | - Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yincong Gu
- Shanghai OEbiotech, Shanghai, 201210, China
| | - Zhi-Hong Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
9
|
Ge S, He L, Jin L, Xia X, Li L, Ahammed GJ, Qi Z, Yu J, Zhou Y. Light-dependent activation of HY5 promotes mycorrhizal symbiosis in tomato by systemically regulating strigolactone biosynthesis. THE NEW PHYTOLOGIST 2022; 233:1900-1914. [PMID: 34839530 DOI: 10.1111/nph.17883] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 11/18/2021] [Indexed: 05/25/2023]
Abstract
Light quality affects mutualisms between plant roots and arbuscular mycorrhizal fungi (AMFs), which modify nutrient acquisition in plants. However, the mechanisms by which light systemically modulates root colonization by AMFs and phosphate uptake in roots remain unclear. We used a range of approaches, including grafting techniques, protein immunoblot analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, and dual-luciferase assays, to unveil the molecular basis of light signal transmission from shoot to root that mediates arbuscule development and phosphate uptake in tomato. The results show that shoot phytochrome B (phyB) triggers shoot-derived mobile ELONGATED HYPOCOTYL5 (HY5) protein accumulation in roots, and HY5 further positively regulates transcription of strigolactone (SL) synthetic genes, thus forming a shoot phyB-dependent systemic signaling pathway that regulates the synthesis and accumulation of SLs in roots. Further experiments with carotenoid cleavage dioxygenase 7 mutants and supplementary red light confirm that SLs are indispensable in the red-light-regulated mycorrhizal symbiosis in roots. Our results reveal a phyB-HY5-SLs systemic signaling cascade that facilitates mycorrhizal symbiosis and phosphate utilization in plants. The findings provide new prospects for the potential application of AMFs and light manipulation to effectively improve nutrient utilization and minimize the use of chemical fertilizers and associated pollution.
Collapse
Affiliation(s)
- Shibei Ge
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Liqun He
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Lijuan Jin
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Lan Li
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Zhenyu Qi
- Agricultural Experiment Station, Zhejiang University, Hangzhou, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| |
Collapse
|
10
|
Zeng L, Wang JZ, He X, Ke H, Lemos M, Gray WM, Dehesh K. A plastidial retrograde signal potentiates biosynthesis of systemic stress response activators. THE NEW PHYTOLOGIST 2022; 233:1732-1749. [PMID: 34859454 PMCID: PMC8776617 DOI: 10.1111/nph.17890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 05/26/2023]
Abstract
Plants employ an array of intricate and hierarchical signaling cascades to perceive and transduce informational cues to synchronize and tailor adaptive responses. Systemic stress response (SSR) is a recognized complex signaling and response network quintessential to plant's local and distal responses to environmental triggers; however, the identity of the initiating signals has remained fragmented. Here, we show that both biotic (aphids and viral pathogens) and abiotic (high light and wounding) stresses induce accumulation of the plastidial-retrograde-signaling metabolite methylerythritol cyclodiphosphate (MEcPP), leading to reduction of the phytohormone auxin and the subsequent decreased expression of the phosphatase PP2C.D1. This enables phosphorylation of mitogen-activated protein kinases 3/6 and the consequential induction of the downstream events ultimately, resulting in biosynthesis of the two SSR priming metabolites pipecolic acid and N-hydroxy-pipecolic acid. This work identifies plastids as a major initiation site, and the plastidial retrograde signal MEcPP as an initiator of a multicomponent signaling cascade potentiating the biosynthesis of SSR activators, in response to biotic and abiotic triggers.
Collapse
Affiliation(s)
- Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Jin-Zheng Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Xiang He
- Current address: Laboratory of Allergy and Inflammation, Chengdu third people’s hospital branch of National Clinical Research Center for Respiratory Disease, Chengdu 610031, China
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Mark Lemos
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Calderon RH, Strand Å. How retrograde signaling is intertwined with the evolution of photosynthetic eukaryotes. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102093. [PMID: 34390927 DOI: 10.1016/j.pbi.2021.102093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 05/20/2023]
Abstract
Chloroplasts and mitochondria evolved from free-living prokaryotic organisms that entered the eukaryotic cell through endosymbiosis. The gradual conversion from endosymbiont to organelle during the course of evolution was accompanied by the development of a communication system between the host and the endosymbiont, referred to as retrograde signaling or organelle-to-nucleus signaling. In higher plants, plastid-to-nucleus signaling involves multiple signaling pathways necessary to coordinate plastid function and cellular responses to developmental and environmental stimuli. Phylogenetic reconstructions using sequence information from evolutionarily diverse photosynthetic eukaryotes have begun to provide information about how retrograde signaling pathways were adopted and modified in different lineages over time. A tight communication system was likely a major facilitator of plants conquest of the land because it would have enabled the algal ancestors of land plants to better allocate their cellular resources in response to high light and desiccation, the major stressor for streptophyte algae in a terrestrial habitat. In this review, we aim to give an evolutionary perspective on plastid-to-nucleus signaling.
Collapse
Affiliation(s)
- Robert H Calderon
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87 Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87 Umeå, Sweden.
| |
Collapse
|
12
|
Phua SY, De Smet B, Remacle C, Chan KX, Van Breusegem F. Reactive oxygen species and organellar signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5807-5824. [PMID: 34009340 DOI: 10.1093/jxb/erab218] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/14/2021] [Indexed: 05/07/2023]
Abstract
The evolution of photosynthesis and its associated metabolic pathways has been crucial to the successful establishment of plants, but has also challenged plant cells in the form of production of reactive oxygen species (ROS). Intriguingly, multiple forms of ROS are generated in virtually every plant cell compartment through diverse pathways. As a result, a sophisticated network of ROS detoxification and signaling that is simultaneously tailored to individual organelles and safeguards the entire cell is necessary. Here we take an organelle-centric view on the principal sources and sinks of ROS across the plant cell and provide insights into the ROS-induced organelle to nucleus retrograde signaling pathways needed for operational readjustments during environmental stresses.
Collapse
Affiliation(s)
- Su Yin Phua
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Barbara De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems, Université de Liège, Liège,Belgium
| | - Kai Xun Chan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| |
Collapse
|
13
|
Wu GZ, Bock R. GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins adjust nuclear gene expression to plastid biogenesis. THE PLANT CELL 2021; 33:457-474. [PMID: 33955483 PMCID: PMC8136882 DOI: 10.1093/plcell/koaa048] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
Communication between cellular compartments is vital for development and environmental adaptation. Signals emanating from organelles, so-called retrograde signals, coordinate nuclear gene expression with the developmental stage and/or the functional status of the organelle. Plastids (best known in their green photosynthesizing differentiated form, the chloroplasts) are the primary energy-producing compartment of plant cells, and the site for the biosynthesis of many metabolites, including fatty acids, amino acids, nucleotides, isoprenoids, tetrapyrroles, vitamins, and phytohormone precursors. Signals derived from plastids regulate the accumulation of a large set of nucleus-encoded proteins, many of which localize to plastids. A set of mutants defective in retrograde signaling (genomes uncoupled, or gun) was isolated over 25 years ago. While most GUN genes act in tetrapyrrole biosynthesis, resolving the molecular function of GUN1, the proposed integrator of multiple retrograde signals, has turned out to be particularly challenging. Based on its amino acid sequence, GUN1 was initially predicted to be a plastid-localized nucleic acid-binding protein. Only recently, mechanistic information on the function of GUN1 has been obtained, pointing to a role in plastid protein homeostasis. This review article summarizes our current understanding of GUN-related retrograde signaling and provides a critical appraisal of the various proposed roles for GUNs and their respective pathways.
Collapse
Affiliation(s)
- Guo-Zhang Wu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
14
|
Jiang J, Dehesh K. Plastidial retrograde modulation of light and hormonal signaling: an odyssey. THE NEW PHYTOLOGIST 2021; 230:931-937. [PMID: 33452833 DOI: 10.1111/nph.17192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The transition from an engulfed autonomous unicellular photosynthetic bacterium to a semiautonomous endosymbiont plastid was accompanied by the transfer of genetic material from the endosymbiont to the nuclear genome of the host, followed by the establishment of plastid-to-nucleus (retrograde) signaling. The retrograde coordinated activities of the two subcellular genomes ensure chloroplast biogenesis and function as the photosynthetic hub and sensing and signaling center that tailors growth-regulating and adaptive processes. This review specifically focuses on the current knowledge of selected stress-induced retrograde signals, genomes uncoupled 1 (GUN1), methylerythritol cyclodiphosphate (MEcPP), apocarotenoid and β-cyclocitral, and 3'-phosphoadenosine 5'-phosphate (PAP), which evolved to establish the photoautotrophic lifestyle and are instrumental in the integration of light and hormonal signaling networks to ultimately fashion adaptive responses in an ever-changing environment.
Collapse
Affiliation(s)
- Jishan Jiang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
15
|
Yang F, Xiao K, Pan H, Liu J. Chloroplast: The Emerging Battlefield in Plant-Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:637853. [PMID: 33747017 PMCID: PMC7966814 DOI: 10.3389/fpls.2021.637853] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 05/08/2023]
Abstract
Higher plants and some algae convert the absorbed light into chemical energy through one of the most important organelles, chloroplast, for photosynthesis and store it in the form of organic compounds to supply their life activities. However, more and more studies have shown that the role of chloroplasts is more than a factory for photosynthesis. In the process of light conversion to chemical energy, any damage to the components of chloroplast may affect the photosynthesis efficiency and promote the production of by-products, reactive oxygen species, that are mainly produced in the chloroplasts. Substantial evidence show that chloroplasts are also involved in the battle of plants and microbes. Chloroplasts are important in integrating a variety of external environmental stimuli and regulate plant immune responses by transmitting signals to the nucleus and other cell compartments through retrograde signaling pathways. Besides, chloroplasts can also regulate the biosynthesis and signal transduction of phytohormones, including salicylic acid and jasmonic acid, to affect the interaction between the plants and microbes. Since chloroplasts play such an important role in plant immunity, correspondingly, chloroplasts have become the target of pathogens. Different microbial pathogens target the chloroplast and affect its functions to promote their colonization in the host plants.
Collapse
Affiliation(s)
| | | | | | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
16
|
Gommers CMM, Ruiz-Sola MÁ, Ayats A, Pereira L, Pujol M, Monte E. GENOMES UNCOUPLED1-independent retrograde signaling targets the ethylene pathway to repress photomorphogenesis. PLANT PHYSIOLOGY 2021; 185:67-76. [PMID: 33631804 PMCID: PMC8133597 DOI: 10.1093/plphys/kiaa015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
When germinating in the light, Arabidopsis (Arabidopsis thaliana) seedlings undergo photomorphogenic development, characterized by short hypocotyls, greening, and expanded cotyledons. Stressed chloroplasts emit retrograde signals to the nucleus that induce developmental responses and repress photomorphogenesis. The nuclear targets of these retrograde signals are not yet fully known. Here, we show that lincomycin-treated seedlings (which lack developed chloroplasts) show strong phenotypic similarities to seedlings treated with ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid, as both signals inhibit cotyledon separation in the light. We show that the lincomycin-induced phenotype partly requires a functioning ET signaling pathway, but could not detect increased ET emissions in response to the lincomycin treatment. The two treatments show overlap in upregulated gene transcripts, downstream of transcription factors ETHYLENE INSENSITIVE3 and EIN3-LIKE1. The induction of the ET signaling pathway is triggered by an unknown retrograde signal acting independently of GENOMES UNCOUPLED1. Our data show how two apparently different stress responses converge to optimize photomorphogenesis.
Collapse
Affiliation(s)
- Charlotte M M Gommers
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics (CSIC- IRTA-UAB-UB), Barcelona, Spain
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - María Águila Ruiz-Sola
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics (CSIC- IRTA-UAB-UB), Barcelona, Spain
| | - Alba Ayats
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics (CSIC- IRTA-UAB-UB), Barcelona, Spain
| | - Lara Pereira
- Plant and Animal Genomics Program, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
- Present address: Center for Applied Genetic Technologies, University of Georgia, Athens, USA
| | - Marta Pujol
- Plant and Animal Genomics Program, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Elena Monte
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics (CSIC- IRTA-UAB-UB), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Author for communication: (E.M.)
| |
Collapse
|
17
|
Swift RP, Rajaram K, Elahi R, Liu HB, Prigge ST. Roles of Ferredoxin-Dependent Proteins in the Apicoplast of Plasmodium falciparum Parasites. mBio 2021; 13:e0302321. [PMID: 35164549 PMCID: PMC8844926 DOI: 10.1128/mbio.03023-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form a redox system that is hypothesized to play a central role in the maintenance and function of the apicoplast organelle of malaria parasites. The Fd/FNR system provides reducing power to various iron-sulfur cluster (FeS)-dependent proteins in the apicoplast and is believed to help to maintain redox balance in the organelle. While the Fd/FNR system has been pursued as a target for antimalarial drug discovery, Fd, FNR, and the FeS proteins presumably reliant on their reducing power play an unknown role in parasite survival and apicoplast maintenance. To address these questions, we generated genetic deletions of these proteins in a parasite line containing an apicoplast bypass system. Through these deletions, we discovered that Fd, FNR, and certain FeS proteins are essential for parasite survival but found that none are required for apicoplast maintenance. Additionally, we addressed the question of how Fd and its downstream FeS proteins obtain FeS cofactors by deleting the FeS transfer proteins SufA and NfuApi. While individual deletions of these proteins revealed their dispensability, double deletion resulted in synthetic lethality, demonstrating a redundant role in providing FeS clusters to Fd and other essential FeS proteins. Our data support a model in which the reducing power from the Fd/FNR system to certain downstream FeS proteins is essential for the survival of blood-stage malaria parasites but not for organelle maintenance, while other FeS proteins are dispensable for this stage of parasite development. IMPORTANCE Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form one of the few known redox systems in the apicoplast of malaria parasites and provide reducing power to iron-sulfur (FeS) cluster proteins within the organelle. While the Fd/FNR system has been explored as a drug target, the essentiality and roles of this system and the identity of its downstream FeS proteins have not been determined. To answer these questions, we generated deletions of these proteins in an apicoplast metabolic bypass line (PfMev) and determined the minimal set of proteins required for parasite survival. Moving upstream of this pathway, we also generated individual and dual deletions of the two FeS transfer proteins that deliver FeS clusters to Fd and downstream FeS proteins. We found that both transfer proteins are dispensable, but double deletion displayed a synthetic lethal phenotype, demonstrating their functional redundancy. These findings provide important insights into apicoplast biochemistry and drug development.
Collapse
Affiliation(s)
- Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Moreau S, van Aubel G, Janky R, Van Cutsem P. Chloroplast Electron Chain, ROS Production, and Redox Homeostasis Are Modulated by COS-OGA Elicitation in Tomato ( Solanum lycopersicum) Leaves. FRONTIERS IN PLANT SCIENCE 2020; 11:597589. [PMID: 33381134 PMCID: PMC7768011 DOI: 10.3389/fpls.2020.597589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
The stimulation of plant innate immunity by elicitors is an emerging technique in agriculture that contributes more and more to residue-free crop protection. Here, we used RNA-sequencing to study gene transcription in tomato leaves treated three times with the chitooligosaccharides-oligogalacturonides (COS-OGA) elicitor FytoSave® that induces plants to fend off against biotrophic pathogens. Results showed a clear upregulation of sequences that code for chloroplast proteins of the electron transport chain, especially Photosystem I (PSI) and ferredoxin. Concomitantly, stomatal conductance decreased by half, reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] content and reactive oxygen species production doubled, but fresh and dry weights were unaffected. Chlorophyll, β-carotene, violaxanthin, and neoxanthin contents decreased consistently upon repeated elicitations. Fluorescence measurements indicated a transient decrease of the effective PSII quantum yield and a non-photochemical quenching increase but only after the first spraying. Taken together, this suggests that plant defense induction by COS-OGA induces a long-term acclimation mechanism and increases the role of the electron transport chain of the chloroplast to supply electrons needed to mount defenses targeted to the apoplast without compromising biomass accumulation.
Collapse
Affiliation(s)
- Sophie Moreau
- Research Unit in Plant Cellular and Molecular Biology, Biology Department, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Géraldine van Aubel
- Research Unit in Plant Cellular and Molecular Biology, Biology Department, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
- FytoFend S.A., Isnes, Belgium
| | | | - Pierre Van Cutsem
- Research Unit in Plant Cellular and Molecular Biology, Biology Department, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
- FytoFend S.A., Isnes, Belgium
| |
Collapse
|
19
|
Azim MF, Burch-Smith TM. Organelles-nucleus-plasmodesmata signaling (ONPS): an update on its roles in plant physiology, metabolism and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:48-59. [PMID: 33197746 DOI: 10.1016/j.pbi.2020.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 05/03/2023]
Abstract
Plasmodesmata allow movement of metabolites and signaling molecules between plant cells and are, therefore, critical players in plant development and physiology, and in responding to environmental signals and stresses. There is emerging evidence that plasmodesmata are controlled by signaling originating from other organelles, primarily the chloroplasts and mitochondria. These signals act in the nucleus to alter expression of genetic pathways that control both trafficking via plasmodesmata and the plasmodesmatal pores themselves. This control circuit was dubbed organelle-nucleus-plasmodesmata signaling (ONPS). Here we discuss how ONPS arose during plant evolution and highlight the discovery of an ONPS-like module for regulating stomata. We also consider recent findings that illuminate details of the ONPS circuit and its roles in plant physiology, metabolism, and defense.
Collapse
Affiliation(s)
- Mohammad F Azim
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
20
|
Mielecki J, Gawroński P, Karpiński S. Retrograde Signaling: Understanding the Communication between Organelles. Int J Mol Sci 2020; 21:E6173. [PMID: 32859110 PMCID: PMC7503960 DOI: 10.3390/ijms21176173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding how cell organelles and compartments communicate with each other has always been an important field of knowledge widely explored by many researchers. However, despite years of investigations, one point-and perhaps the only point that many agree on-is that our knowledge about cellular-signaling pathways still requires expanding. Chloroplasts and mitochondria (because of their primary functions in energy conversion) are important cellular sensors of environmental fluctuations and feedback they provide back to the nucleus is important for acclimatory responses. Under stressful conditions, it is important to manage cellular resources more efficiently in order to maintain a proper balance between development, growth and stress responses. For example, it can be achieved through regulation of nuclear and organellar gene expression. If plants are unable to adapt to stressful conditions, they will be unable to efficiently produce energy for growth and development-and ultimately die. In this review, we show the importance of retrograde signaling in stress responses, including the induction of cell death and in organelle biogenesis. The complexity of these pathways demonstrates how challenging it is to expand the existing knowledge. However, understanding this sophisticated communication may be important to develop new strategies of how to improve adaptability of plants in rapidly changing environments.
Collapse
Affiliation(s)
| | | | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.M.); (P.G.)
| |
Collapse
|
21
|
Favero DS. A Chloroplast-Derived Signal Attenuates Growth in Red Light by Acting on the phyB-PIF Pathway. PLANT PHYSIOLOGY 2020; 183:1408-1409. [PMID: 32747485 PMCID: PMC7401120 DOI: 10.1104/pp.20.00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|