1
|
Moreira CJS, Escórcio R, Bento A, Bjornson M, Herold L, Tomé AS, Martins C, Fanuel M, Martins I, Bakan B, Zipfel C, Silva Pereira C. Cutin-derived oligomers induce hallmark plant immune responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5146-5161. [PMID: 38824407 PMCID: PMC11350081 DOI: 10.1093/jxb/erae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
The cuticle constitutes the outermost defensive barrier of most land plants. It comprises a polymeric matrix-cutin, surrounded by soluble waxes. Moreover, the cuticle constitutes the first line of defense against pathogen invasion, while also protecting the plant from many abiotic stresses. Aliphatic monomers in cutin have been suggested to act as immune elicitors in plants. This study analyses the potential of cutin oligomers to activate rapid signaling outputs reminiscent of pattern-triggered immunity in the model plant Arabidopsis. Cutin oligomeric mixtures led to Ca2+ influx and mitogen-activated protein kinase activation. Comparable responses were measured for cutin, which was also able to induce a reactive oxygen species burst. Furthermore, cutin oligomer treatment resulted in a unique transcriptional reprogramming profile, having many archetypal features of pattern-triggered immunity. Targeted spectroscopic and spectrometric analyses of the cutin oligomers suggest that the elicitor compounds consist mostly of two up to three 10,16-dihydroxyhexadecanoic acid monomers linked together through ester bonds. This study demonstrates that cutin breakdown products can act as inducers of early plant immune responses. Further investigation is needed to understand how cutin breakdowns are perceived and to explore their potential use in agriculture.
Collapse
Affiliation(s)
- Carlos J S Moreira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Rita Escórcio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Artur Bento
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta Bjornson
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Laura Herold
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Ana S Tomé
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mathieu Fanuel
- PROBE research infrastructure, BIBS Facility, INRAE, Nantes, France
- Research Unit Biopolymers Interaction Assemblies, INRAE, Nantes, France
| | - Isabel Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bénédicte Bakan
- Research Unit Biopolymers Interaction Assemblies, INRAE, Nantes, France
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
2
|
Simões A, Coelhoso IM, Alves VD, Brazinha C. Recovery and Purification of Cutin from Tomato By-Products for Application in Hydrophobic Films. MEMBRANES 2023; 13:261. [PMID: 36984648 PMCID: PMC10059779 DOI: 10.3390/membranes13030261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Tomato pomace is a low-cost, renewable resource that has been studied for the extraction of the biopolyester cutin, which is mainly composed of long-chain hydroxy fatty acids. These are excellent building blocks to produce new hydrophobic biopolymers. In this work, the monomers of cutin were extracted and isolated from tomato pomace and utilized to produce cutin-based films. Several strategies for the depolymerization and isolation of monomeric cutin were explored. Strategies differed in the state of the raw material at the beginning of the extraction process, the existence of a tomato peel dewaxing step, the type of solvent used, the type of alkaline hydrolysis, and the isolation method of cutin monomers. These strategies enabled the production of extracts enriched in fatty acids (16-hydroxyhexadecanoic, hexadecanedioic, stearic, and linoleic, among others). Cutin and chitosan-based films were successfully cast from cutin extracts and commercial chitosan. Films were characterized regarding their thickness (0.103 ± 0.004 mm and 0.106 ± 0.005 mm), color, surface morphology, water contact angle (93.37 ± 0.31° and 95.15 ± 0.53°), and water vapor permeability ((3.84 ± 0.39) × 10-11 mol·m/m2·s·Pa and (4.91 ± 1.33) × 10-11 mol·m/m2·s·Pa). Cutin and chitosan-based films showed great potential to be used in food packaging and provide an application for tomato processing waste.
Collapse
Affiliation(s)
- Andreia Simões
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Isabel M. Coelhoso
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Carla Brazinha
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
3
|
Escórcio R, Bento A, Tomé AS, Correia VG, Rodrigues R, Moreira CJS, Marion D, Bakan B, Silva Pereira C. Finding a Needle in a Haystack: Producing Antimicrobial Cutin-Derived Oligomers from Tomato Pomace. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:11415-11427. [PMID: 36061097 PMCID: PMC9428892 DOI: 10.1021/acssuschemeng.2c03437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Indexed: 05/14/2023]
Abstract
Agro-industrial residues comprise a rich diversity of plant polymers and bioactive compounds, constituting promising sources for the development of materials, including bioplastics, and food supplements, among other applications. In particular, the polyester cutin is abundant in fruit peel, a plentiful constituent of pomace agro-industrial residues. The potential of diverse fruit pomaces as a source for the development of cutin-derived materials/products has been extensively sought out. This study expands the established knowledge: it sets proof of concept for the production of antimicrobial oligomers from cutin-rich materials isolated in a single step from tomato pomaces generated by two remote agro-industries. Specifically, it first analyzed how the chemical signature (nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS)) of a pomace (and of its major constituents) mirrors that of the corresponding cutin-rich material isolated using an ionic liquid extractant. The cutin-rich materials were then deconstructed (using mild hydrolyses), and the resultant mixtures were chemically characterized and screened for bactericidal activity against Escherichia coli and Staphylococcus aureus. The presence of esterified structures, linear and/or branched, likely comprising dioic acids as a major building block (but not exclusively) is a prerequisite for activity against E. coli but not against S. aureus that was susceptible to monomers as well. Further studies are required to optimize the production of broad bactericidal oligomers from any cutin-rich pomace source, moving ahead toward their circular usage.
Collapse
Affiliation(s)
- Rita Escórcio
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-157 Oeiras, Portugal
| | - Artur Bento
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-157 Oeiras, Portugal
| | - Ana S. Tomé
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-157 Oeiras, Portugal
| | - Vanessa G. Correia
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-157 Oeiras, Portugal
| | - Rúben Rodrigues
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-157 Oeiras, Portugal
| | - Carlos J. S. Moreira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-157 Oeiras, Portugal
| | - Didier Marion
- Research
Unit Biopolymers Interaction Assemblies, INRAE, 44316 Nantes, France
| | - Bénédicte Bakan
- Research
Unit Biopolymers Interaction Assemblies, INRAE, 44316 Nantes, France
| | - Cristina Silva Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
4
|
Bres C, Petit J, Reynoud N, Brocard L, Marion D, Lahaye M, Bakan B, Rothan C. The SlSHN2 transcription factor contributes to cuticle formation and epidermal patterning in tomato fruit. MOLECULAR HORTICULTURE 2022; 2:14. [PMID: 37789465 PMCID: PMC10515250 DOI: 10.1186/s43897-022-00035-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/03/2022] [Indexed: 10/05/2023]
Abstract
Tomato (Solanum lycopersicum) is an established model for studying plant cuticle because of its thick cuticle covering and embedding the epidermal cells of the fruit. In this study, we screened an EMS mutant collection of the miniature tomato cultivar Micro-Tom for fruit cracking mutants and found a mutant displaying a glossy fruit phenotype. By using an established mapping-by-sequencing strategy, we identified the causal mutation in the SlSHN2 transcription factor that is specifically expressed in outer epidermis of growing fruit. The point mutation in the shn2 mutant introduces a K to N amino acid change in the highly conserved 'mm' domain of SHN proteins. The cuticle from shn2 fruit showed a ~ fivefold reduction in cutin while abundance and composition of waxes were barely affected. In addition to alterations in cuticle thickness and properties, epidermal patterning and polysaccharide composition of the cuticle were changed. RNAseq analysis further highlighted the altered expression of hundreds of genes in the fruit exocarp of shn2, including genes associated with cuticle and cell wall formation, hormone signaling and response, and transcriptional regulation. In conclusion, we showed that a point mutation in the transcriptional regulator SlSHN2 causes major changes in fruit cuticle formation and its coordination with epidermal patterning.
Collapse
Affiliation(s)
- Cécile Bres
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Johann Petit
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Nicolas Reynoud
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Lysiane Brocard
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, 33000, Bordeaux, France
| | - Didier Marion
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Marc Lahaye
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Bénédicte Bakan
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Christophe Rothan
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France.
- INRA, UMR 1332 Biologie du Fruit Et Pathologie, 71 Av Edouard Bourlaux, 33140, Villenave d'Ornon, France.
| |
Collapse
|
5
|
Boursiac Y, Protto V, Rishmawi L, Maurel C. Experimental and conceptual approaches to root water transport. PLANT AND SOIL 2022; 478:349-370. [PMID: 36277078 PMCID: PMC9579117 DOI: 10.1007/s11104-022-05427-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/03/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Root water transport, which critically contributes to the plant water status and thereby plant productivity, has been the object of extensive experimental and theoretical studies. However, root systems represent an intricate assembly of cells in complex architectures, including many tissues at distinct developmental stages. Our comprehension of where and how molecular actors integrate their function in order to provide the root with its hydraulic properties is therefore still limited. SCOPE Based on current literature and prospective discussions, this review addresses how root water transport can be experimentally measured, what is known about the underlying molecular actors, and how elementary water transport processes are scaled up in numerical/mathematical models. CONCLUSIONS The theoretical framework and experimental procedures on root water transport that are in use today have been established a few decades ago. However, recent years have seen the appearance of new techniques and models with enhanced resolution, down to a portion of root or to the tissue level. These advances pave the way for a better comprehension of the dynamics of water uptake by roots in the soil.
Collapse
Affiliation(s)
- Yann Boursiac
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Virginia Protto
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Louai Rishmawi
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
6
|
Bock P, Felhofer M, Mayer K, Gierlinger N. A Guide to Elucidate the Hidden Multicomponent Layered Structure of Plant Cuticles by Raman Imaging. FRONTIERS IN PLANT SCIENCE 2021; 12:793330. [PMID: 34975980 PMCID: PMC8718554 DOI: 10.3389/fpls.2021.793330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 05/29/2023]
Abstract
The cuticle covers almost all plant organs as the outermost layer and serves as a transpiration barrier, sunscreen, and first line of defense against pathogens. Waxes, fatty acids, and aromatic components build chemically and structurally diverse layers with different functionality. So far, electron microscopy has elucidated structure, while isolation, extraction, and analysis procedures have revealed chemistry. With this method paper, we close the missing link by demonstrating how Raman microscopy gives detailed information about chemistry and structure of the native cuticle on the microscale. We introduce an optimized experimental workflow, covering the whole process of sample preparation, Raman imaging experiment, data analysis, and interpretation and show the versatility of the approach on cuticles of a spruce needle, a tomato peel, and an Arabidopsis stem. We include laser polarization experiments to deduce the orientation of molecules and multivariate data analysis to separate cuticle layers and verify their molecular composition. Based on the three investigated cuticles, we discuss the chemical and structural diversity and validate our findings by comparing models based on our spectroscopic data with the current view of the cuticle. We amend the model by adding the distribution of cinnamic acids and flavonoids within the cuticle layers and their transition to the epidermal layer. Raman imaging proves as a non-destructive and fast approach to assess the chemical and structural variability in space and time. It might become a valuable tool to tackle knowledge gaps in plant cuticle research.
Collapse
Affiliation(s)
| | | | | | - Notburga Gierlinger
- Department of Nanobiotechnology, Institute of Biophysics, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
7
|
Bento A, Moreira CJS, Correia VG, Escórcio R, Rodrigues R, Tomé AS, Geneix N, Petit J, Bakan B, Rothan C, Mykhaylyk OO, Silva Pereira C. Quantification of Structure-Property Relationships for Plant Polyesters Reveals Suberin and Cutin Idiosyncrasies. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:15780-15792. [PMID: 34868742 PMCID: PMC8634382 DOI: 10.1021/acssuschemeng.1c04733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Indexed: 05/13/2023]
Abstract
Polyesters, as they exist in planta, are promising materials with which to begin the development of "green" replacements. Cutin and suberin, polyesters found ubiquitously in plants, are prime candidates. Samples enriched for plant polyesters, and in which their native backbones were largely preserved, were studied to identify "natural" structural features; features that influence critical physical properties. Quantitative nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and X-ray scattering methods were used to quantify structure-property relationships in these polymeric materials. The degree of esterification, namely, the presence of acylglycerol linkages in suberin and of secondary esters in cutin, and the existence of mid-chain epoxide groups defining the packing of the aliphatic chains were observed. This packing determines polymer crystallinity, the resulting crystal structure, and the melting temperature. To evaluate the strength of this rule, tomato cutin from the same genotype, studying wild-type plants and two well-characterized mutants, was analyzed. The results show that cutin's material properties are influenced by the amount of unbound aliphatic hydroxyl groups and by the length of the aliphatic chain. Collectively, the acquired data can be used as a tool to guide the selection of plant polyesters with precise structural features, and hence physicochemical properties.
Collapse
Affiliation(s)
- Artur Bento
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Carlos J. S. Moreira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Vanessa G. Correia
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Rita Escórcio
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Rúben Rodrigues
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Ana S. Tomé
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | | | - Johann Petit
- UMR
1332 BFP, INRAE, Univ. Bordeaux, F-33140 Villenave d’Ornon, France
| | | | - Christophe Rothan
- UMR
1332 BFP, INRAE, Univ. Bordeaux, F-33140 Villenave d’Ornon, France
| | - Oleksandr O. Mykhaylyk
- Soft
Matter Analytical Laboratory, Dainton Building, Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Cristina Silva Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
8
|
Petit J, Bres C, Reynoud N, Lahaye M, Marion D, Bakan B, Rothan C. Unraveling Cuticle Formation, Structure, and Properties by Using Tomato Genetic Diversity. FRONTIERS IN PLANT SCIENCE 2021; 12:778131. [PMID: 34912361 PMCID: PMC8667768 DOI: 10.3389/fpls.2021.778131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/02/2021] [Indexed: 05/29/2023]
Abstract
The tomato (Solanum lycopersicum) fruit has a thick, astomatous cuticle that has become a model for the study of cuticle formation, structure, and properties in plants. Tomato is also a major horticultural crop and a long-standing model for research in genetics, fruit development, and disease resistance. As a result, a wealth of genetic resources and genomic tools have been established, including collections of natural and artificially induced genetic diversity, introgression lines of genome fragments from wild relatives, high-quality genome sequences, phenotype and gene expression databases, and efficient methods for genetic transformation and editing of target genes. This mini-review reports the considerable progresses made in recent years in our understanding of cuticle by using and generating genetic diversity for cuticle-associated traits in tomato. These include the synthesis of the main cuticle components (cutin and waxes), their role in the structure and properties of the cuticle, their interaction with other cell wall polymers as well as the regulation of cuticle formation. It also addresses the opportunities offered by the untapped germplasm diversity available in tomato and the current strategies available to exploit them.
Collapse
Affiliation(s)
- Johann Petit
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon, France
| | - Cécile Bres
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon, France
| | - Nicolas Reynoud
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | - Marc Lahaye
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | - Didier Marion
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | - Bénédicte Bakan
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | | |
Collapse
|
9
|
Sasani N, Bock P, Felhofer M, Gierlinger N. Raman imaging reveals in-situ microchemistry of cuticle and epidermis of spruce needles. PLANT METHODS 2021; 17:17. [PMID: 33557869 PMCID: PMC7871409 DOI: 10.1186/s13007-021-00717-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The cuticle is a protective layer playing an important role in plant defense against biotic and abiotic stresses. So far cuticle structure and chemistry was mainly studied by electron microscopy and chemical extraction. Thus, analysing composition involved sample destruction and the link between chemistry and microstructure remained unclear. In the last decade, Raman imaging showed high potential to link plant anatomical structure with microchemistry and to give insights into orientation of molecules. In this study, we use Raman imaging and polarization experiments to study the native cuticle and epidermal layer of needles of Norway spruce, one of the economically most important trees in Europe. The acquired hyperspectral dataset is the basis to image the chemical heterogeneity using univariate (band integration) as well as multivariate data analysis (cluster analysis and non-negative matrix factorization). RESULTS Confocal Raman microscopy probes the cuticle together with the underlying epidermis in the native state and tracks aromatics, lipids, carbohydrates and minerals with a spatial resolution of 300 nm. All three data analysis approaches distinguish a waxy, crystalline layer on top, in which aliphatic chains and coumaric acid are aligned perpendicular to the surface. Also in the lipidic amorphous cuticle beneath, strong signals of coumaric acid and flavonoids are detected. Even the unmixing algorithm results in mixed endmember spectra and confirms that lipids co-locate with aromatics. The underlying epidermal cell walls are devoid of lipids but show strong aromatic Raman bands. Especially the upper periclinal thicker cell wall is impregnated with aromatics. At the interface between epidermis and cuticle Calcium oxalate crystals are detected in a layer-like fashion. Non-negative matrix factorization gives the purest component spectra, thus the best match with reference spectra and by this promotes band assignments and interpretation of the visualized chemical heterogeneity. CONCLUSIONS Results sharpen our view about the cuticle as the outermost layer of plants and highlight the aromatic impregnation throughout. In the future, developmental studies tracking lipid and aromatic pathways might give new insights into cuticle formation and comparative studies might deepen our understanding why some trees and their needle and leaf surfaces are more resistant to biotic and abiotic stresses than others.
Collapse
Affiliation(s)
- Nadia Sasani
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria
| | - Peter Bock
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria
| | - Martin Felhofer
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria
| | - Notburga Gierlinger
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria.
| |
Collapse
|