1
|
Cherian S, Ryu SB, Cornish K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2041-2061. [PMID: 31150158 PMCID: PMC6790360 DOI: 10.1111/pbi.13181] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 05/26/2023]
Abstract
Natural rubber (NR) is a nonfungible and valuable biopolymer, used to manufacture ~50 000 rubber products, including tires and medical gloves. Current production of NR is derived entirely from the para rubber tree (Hevea brasiliensis). The increasing demand for NR, coupled with limitations and vulnerability of H. brasiliensis production systems, has induced increasing interest among scientists and companies in potential alternative NR crops. Genetic/metabolic pathway engineering approaches, to generate NR-enriched genotypes of alternative NR plants, are of great importance. However, although our knowledge of rubber biochemistry has significantly advanced, our current understanding of NR biosynthesis, the biosynthetic machinery and the molecular mechanisms involved remains incomplete. Two spatially separated metabolic pathways provide precursors for NR biosynthesis in plants and their genes and enzymes/complexes are quite well understood. In contrast, understanding of the proteins and genes involved in the final step(s)-the synthesis of the high molecular weight rubber polymer itself-is only now beginning to emerge. In this review, we provide a critical evaluation of recent research developments in NR biosynthesis, in vitro reconstitution, and the genetic and metabolic pathway engineering advances intended to improve NR content in plants, including H. brasiliensis, two other prospective alternative rubber crops, namely the rubber dandelion and guayule, and model species, such as lettuce. We describe a new model of the rubber transferase complex, which integrates these developments. In addition, we highlight the current challenges in NR biosynthesis research and future perspectives on metabolic pathway engineering of NR to speed alternative rubber crop commercial development.
Collapse
Affiliation(s)
- Sam Cherian
- Plant Systems Engineering Research CentreKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeonKorea
- Research & Development CenterDRB Holding Co. LTDBusanKorea
| | - Stephen Beungtae Ryu
- Plant Systems Engineering Research CentreKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeonKorea
- Department of Biosystems and BioengineeringKRIBB School of BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| | - Katrina Cornish
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
- Department of Food, Agricultural and Biological EngineeringThe Ohio State UniversityWoosterOHUSA
| |
Collapse
|
2
|
Cornish K, Scott DJ, Xie W, Mau CJD, Zheng YF, Liu XH, Prestwich GD. Unusual subunits are directly involved in binding substrates for natural rubber biosynthesis in multiple plant species. PHYTOCHEMISTRY 2018; 156:55-72. [PMID: 30195165 DOI: 10.1016/j.phytochem.2018.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/31/2018] [Accepted: 08/17/2018] [Indexed: 05/11/2023]
Abstract
Rubber particles from rubber-producing plant species have many different species-specific proteins bound to their external monolayer biomembranes. To date, identification of those proteins directly involved in enzymatic catalysis of rubber polymerization has not been fully accomplished using solubilization, purification or reconstitution approaches. In an alternative approach, we use several tritiated photoaffinity-labeled benzophenone analogs of the allylic pyrophosphate substrates, required by rubber transferase (RT-ase) to initiate the synthesis of new rubber molecules, to identify the proteins involved in catalysis. Enzymatically-active rubber particles were purified from three phylogenetically-distant rubber producing species, Parthenium argentatum Gray, Hevea brasiliensis Muell. Arg, and Ficus elastica Roxb., each representing a different Superorder of the Dicotyledonae. Geranyl pyrophosphate with the benzophenone in the para position (Bz-GPP(p)) was the most active initiator of rubber biosynthesis in all three species. When rubber particles were exposed to ultra-violet radiation, 95% of RT-ase activity was eliminated in the presence of 50 μΜ Bz-GPP(p), compared to only 50% of activity in the absence of this analog. 3H-Bz-GPP(p) then was used to label and identify the proteins involved in substrate binding and these proteins were characterized electrophoretically. In all three species, three distinct proteins were labeled, one very large protein and two very small proteins, as follows: P. argentatum 287,000, 3,990, and 1,790 Da; H. brasiliensis 241,000, 3,650 and 1,600 Da; F. elastica 360,000, 3,900 and 1,800 Da. The isoelectric points of the P. argentatum proteins were 7.6 for the 287,000 Da, 10.4 for the 3,990 Da and 3.5 for the 1,790 Da proteins, and of the F. elastica proteins were 7.7 for the 360,000 Da, 6,0 for the 3,900 Da, and 11.0 for the 1,800 Da proteins. H. brasiliensis protein pI values were not determined. Additional analysis indicated that the three proteins are components of a membrane-bound complex and that the ratio of each small protein to the large one is 3:1, and the large protein exists as a dimer. Also, the large proteins are membrane bound whereas both small proteins are strongly associated with the large proteins, rather than to the rubber particle proteolipid membrane.
Collapse
Affiliation(s)
- Katrina Cornish
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA; Center of Applied Plant Sciences, Institute of Materials Research, Institute of Humanitarian Engineering, Department of Chemistry and Biochemistry, USA.
| | - Deborah J Scott
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Wenshuang Xie
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Christopher J D Mau
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Yi Feng Zheng
- Department of Medicinal Chemistry, The University of Utah, South 2000 East, Rm. 307, Salt Lake City, UT 84112, USA
| | - Xiao-Hui Liu
- Department of Medicinal Chemistry, The University of Utah, South 2000 East, Rm. 307, Salt Lake City, UT 84112, USA
| | - Glenn D Prestwich
- Department of Medicinal Chemistry, The University of Utah, South 2000 East, Rm. 307, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Comparative Proteomics of Rubber Latex Revealed Multiple Protein Species of REF/SRPP Family Respond Diversely to Ethylene Stimulation among Different Rubber Tree Clones. Int J Mol Sci 2017; 18:ijms18050958. [PMID: 28468331 PMCID: PMC5454871 DOI: 10.3390/ijms18050958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/03/2017] [Accepted: 04/21/2017] [Indexed: 01/26/2023] Open
Abstract
Rubber elongation factor (REF) and small rubber particle protein (SRPP) are two key factors for natural rubber biosynthesis. To further understand the roles of these proteins in rubber formation, six different genes for latex abundant REF or SRPP proteins, including REF138,175,258 and SRPP117,204,243, were characterized from Hevea brasiliensis Reyan (RY) 7-33-97. Sequence analysis showed that REFs have a variable and long N-terminal, whereas SRPPs have a variable and long C-terminal beyond the REF domain, and REF258 has a β subunit of ATPase in its N-terminal. Through two-dimensional electrophoresis (2-DE), each REF/SRPP protein was separated into multiple protein spots on 2-DE gels, indicating they have multiple protein species. The abundance of REF/SRPP proteins was compared between ethylene and control treatments or among rubber tree clones with different levels of latex productivity by analyzing 2-DE gels. The total abundance of each REF/SRPP protein decreased or changed a little upon ethylene stimulation, whereas the abundance of multiple protein species of the same REF/SRPP changed diversely. Among the three rubber tree clones, the abundance of the protein species also differed significantly. Especially, two protein species of REF175 or REF258 were ethylene-responsive only in the high latex productivity clone RY 8-79 instead of in RY 7-33-97 and PR 107. Some individual protein species were positively related to ethylene stimulation and latex productivity. These results suggested that the specific protein species could be more important than others for rubber production and post-translational modifications might play important roles in rubber biosynthesis.
Collapse
|
4
|
Dai L, Nie Z, Kang G, Li Y, Zeng R. Identification and subcellular localization analysis of two rubber elongation factor isoforms on Hevea brasiliensis rubber particles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:97-106. [PMID: 27915177 DOI: 10.1016/j.plaphy.2016.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
Rubber elongation factor (REF) is the most abundant protein found on the rubber particles or latex from Hevea brasiliensis (the Para rubber tree) and is considered to play important roles in natural rubber (cis-polyisoprene) biosynthesis. 16 BAC (benzyldimethyl-n-hexadecylammonium chloride)/SDS-PAGE separations and mass spectrometric identification had revealed that two REF isoforms shared similar amino acid sequences and common C-terminal sequences. In this study, the gene sequences encoding these two REF isoforms (one is 23.6 kDa in size with 222 amino acid residues and the other is 27.3 kDa in size with 258 amino acid residues) were obtained. Their proteins were relatively enriched by sequential extraction of the rubber particle proteins and separated by 16 BAC/SDS-PAGE. The localization of these isoforms on the surfaces of rubber particles was further verified by western blotting and immunogold electron microscopy, which demonstrated that these two REF isoforms are mainly located on the surfaces of larger rubber particles and that they bind more tightly to rubber particles than the most abundant REF and SRPP (small rubber particle protein).
Collapse
Affiliation(s)
- Longjun Dai
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, PR China; State Key Laboratory Incubation Base, Danzhou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, PR China.
| | - Zhiyi Nie
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, PR China; State Key Laboratory Incubation Base, Danzhou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, PR China.
| | - Guijuan Kang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, PR China; State Key Laboratory Incubation Base, Danzhou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, PR China.
| | - Yu Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, PR China; State Key Laboratory Incubation Base, Danzhou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, PR China.
| | - Rizhong Zeng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, PR China; State Key Laboratory Incubation Base, Danzhou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, PR China.
| |
Collapse
|
5
|
Abstract
Rubber biosynthesis in plants is a fascinating biochemical system, which evolved at the dawn of the dicotyledoneae and is present in at least four of the dictolydonous superorders. Rubber biosynthesis is catalyzed by a membrane complex in a monolayer membrane envelope, requires two distinct substrates and a divalent cation cofactor, and produces a high-molecular-weight isoprenoid polymer. A solid understanding of this system underpins valuable papers in the literature. However, the published literature is rife with unreliable reports in which the investigators have fallen into traps created by the current incomplete understanding of the biochemistry of rubber synthesis. In this chapter, we attempt to guide both new and more established researchers around these pitfalls.
Collapse
|
6
|
Chiang CK, Xie W, McMahan C, Puskas JE. UNRAVELING THE MYSTERY OF NATURAL RUBBER BIOSYNTHESIS. PART I: INVESTIGATION OF THE COMPOSITION AND GROWTH OF IN VITRO NATURAL RUBBER USING HIGH RESOLUTION SIZE EXCLUSION CHROMATOGRAPHY. RUBBER CHEMISTRY AND TECHNOLOGY 2011. [DOI: 10.5254/1.3570528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Monitoring the growth of in vitro natural rubber was accomplished by high resolution size exclusion chromatography, SEC. Washed rubber particles isolated from H. brasiliensis latex, containing the rubber transferase enzyme, were used to catalyze the polymerization of synthetic isopentenyl pyrophosphate monomer in the presence of farnesyl pyrophosphate initiator. The high-resolution SEC was able to detect the formation of new rubber. Changes in the low molecular weight fraction were also detected. Gravimetric analysis revealed ∼30% mass gain after the in vitro synthesis. The overall gel content was found to be reduced, which further supported the formation of new rubber. This is the first report that utilizes high-resolution SEC to monitor the in vitro NR growth without the use of radiolabeling.
Collapse
Affiliation(s)
| | | | | | - Judit E. Puskas
- 1Department Of Polymer Science, University Of Akron, Akron, OH
| |
Collapse
|
7
|
In vitro synthesis of high molecular weight rubber by Hevea small rubber particles. J Biosci Bioeng 2010; 109:107-14. [DOI: 10.1016/j.jbiosc.2009.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/07/2009] [Accepted: 08/10/2009] [Indexed: 11/21/2022]
|
8
|
van Beilen JB, Poirier Y. Guayule and Russian dandelion as alternative sources of natural rubber. Crit Rev Biotechnol 2008; 27:217-31. [PMID: 18085463 DOI: 10.1080/07388550701775927] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Natural rubber, obtained almost exclusively from the Para rubber tree (Hevea brasiliensis), is a unique biopolymer of strategic importance that, in many of its most significant applications, cannot be replaced by synthetic rubber alternatives. Several pressing motives lead to the search for alternative sources of natural rubber. These include increased evidence of allergenic reactions to Hevea rubber, the danger that the fungal pathogen Microcyclus ulei, causative agent of South American Leaf Blight (SALB), might spread to Southeast Asia, which would severely disrupt rubber production, potential shortages of supply due to increasing demand and changes in land use, and a general trend towards the replacement of petroleum-derived chemicals with renewables. Two plant species have received considerable attention as potential alternative sources of natural rubber: the Mexican shrub Guayule (Parthenium argentatum Gray) and the Russian dandelion (Taraxacum koksaghyz). This review will summarize the current production methods and applications of natural rubber (dry rubber and latex), the threats to the production of natural rubber from the rubber tree, and describe the current knowledge of the production of natural rubber from guayule and Russian dandelion.
Collapse
Affiliation(s)
- Jan B van Beilen
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
9
|
Establishment of new crops for the production of natural rubber. Trends Biotechnol 2007; 25:522-9. [DOI: 10.1016/j.tibtech.2007.08.009] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 07/19/2007] [Accepted: 08/09/2007] [Indexed: 11/20/2022]
|
10
|
da Costa BMT, Keasling JD, Cornish K. Regulation of rubber biosynthetic rate and molecular weight in Hevea brasiliensis by metal cofactor. Biomacromolecules 2005; 6:279-89. [PMID: 15638531 DOI: 10.1021/bm049606w] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal ion cofactors are necessary for prenyltransferase enzymes. Magnesium and manganese can be used as metal ion cofactor by rubber transferase (a cis-prenyltransferase) associated with purified rubber particles. The rubber initiation rate, biosynthetic rate, and molecular weight produced in vitro from Hevea brasiliensis rubber transferase is regulated by metal ion concentration. In addition, varies significantly with [Mg(2+)]. decreases from 8000 +/- 600 microM at [Mg(2+)] = 4 mM to 68 +/- 10 microM at [Mg(2+)] = 8 mM and increases back to 970 +/- 70 microM at [Mg(2+)] = 30 mM. The highest affinity of rubber transferase for IPP.Mg occurred when [Mg(2+)] = A(max) (metal concentration that gives highest IPP incorporation rate). A metal ion is required for rubber biosynthesis, but an excess of metal ions interacts with the rubber transferase inhibiting its activity. The results suggest that H. brasiliensis could use [Mg(2+)] as a regulatory mechanism for rubber biosynthesis and molecular weight in vivo.
Collapse
Affiliation(s)
- Bernardo M T da Costa
- Department of Chemical Engineering, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
11
|
Kim IJ, Ryu SB, Kwak YS, Kang H. A novel cDNA from Parthenium argentatum Gray enhances the rubber biosynthetic activity in vitro. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:377-385. [PMID: 14718497 DOI: 10.1093/jxb/erh039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Natural rubber (cis-1,4-polyisoprene) is an isoprenoid compound produced exclusively in plants by the action of rubber transferase. Despite a keen interest in revealing the mechanisms of rubber chain elongation and chain length determination, the molecular nature of rubber transferase has not yet been identified. A recent report has revealed that a 24 kDa protein tightly associated with the small rubber particles of Hevea brasiliensis, therefore designated small rubber particle protein (SRPP), plays a positive role in rubber biosynthesis. Since guayule (Parthenium argentatum Gray) produces natural rubber similar in size to H. brasiliensis, it is of critical interest to investigate whether guayule contains a similar protein to the SRPP. A cDNA clone has been isolated in guayule that shares a sequence homology with the SRPP, thus designated guayule homologue of SRPP (GHS), and the catalytic function of the protein was characterized. Sequence analysis revealed that the GHS is highly homologous in several conserved regions to the SRPP (50% identity). In vitro functional analysis of the recombinant protein overexpressed in E. coli revealed that the GHS plays a positive role in isopentenyl diphosphate incorporation into high molecular weight rubbers as SRPP does. These results indicate that guayule and Hevea rubber trees contain a protein that is similar in its amino acid sequence and plays a role in isopentenyl diphosphate incorporation in vitro, implying that it contributes to the enhancement of rubber biosynthetic activity in rubber trees.
Collapse
Affiliation(s)
- In Jeong Kim
- Kumho Life and Environmental Science Laboratory, 1 Oryong-Dong, Buk-Gu, Gwangju, 500-712, Korea
| | | | | | | |
Collapse
|
12
|
Mau CJD, Garneau S, Scholte AA, Van Fleet JE, Vederas JC, Cornish K. Protein farnesyltransferase inhibitors interfere with farnesyl diphosphate binding by rubber transferase. ACTA ACUST UNITED AC 2003; 270:3939-45. [PMID: 14511375 DOI: 10.1046/j.1432-1033.2003.03775.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rubber transferase, a cis-prenyltransferase, catalyzes the addition of thousands of isopentenyl diphosphate (IPP) molecules to an allylic diphosphate initiator, such as farnesyl diphosphate (FPP, 1), in the presence of a divalent metal cofactor. In an effort to characterize the catalytic site of rubber transferase, the effects of two types of protein farnesyltransferase inhibitors, several chaetomellic acid A analogs (2, 4-7) and alpha-hydroxyfarnesylphosphonic acid (3), on the ability of rubber transferase to add IPP to the allylic diphosphate initiator were determined. Both types of compounds inhibited the activity of rubber transferases from Hevea brasiliensis and Parthenium argentatum, but there were species-specific differences in the inhibition of rubber transferases by these compounds. Several shorter analogs of chaetomellic acid A did not inhibit rubber transferase activity, even though the analogs contained chemical features that are present in an elongating rubber molecule. These results indicate that the initiator-binding site in rubber transferase shares similar features to FPP binding sites in other enzymes.
Collapse
Affiliation(s)
- Christopher J D Mau
- USDA, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| | | | | | | | | | | |
Collapse
|
13
|
Singh AP, Wi SG, Chung GC, Kim YS, Kang H. The micromorphology and protein characterization of rubber particles in Ficus carica, Ficus benghalensis and Hevea brasiliensis. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:985-992. [PMID: 12598569 DOI: 10.1093/jxb/erg107] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rubber biosynthesis takes place on the surface of rubber particles. These particles are surrounded by a monolayer membrane in which the rubber transferase is anchored. In order to gain better insight into whether rubber particles from different plant species share common structural characteristics, the micromorphology of rubber particles from Ficus carica, Ficus benghalensis, and Hevea brasiliensis was examined by electron microscopy. Rubber particles of all three species were spherical in shape, and the size of rubber particles of H. brasiliensis was much smaller than those of F. carica and F. benghalensis. In addition, investigations were undertaken to compare the cross-reactivity of the antibody raised against either the H. brasiliensis small rubber particle protein (SRPP) which is suggested to be involved in rubber biosynthesis, or the cis-prenyltransferase (CPT) which has an activity similar to rubber transferase. Both western analysis and TEM-immunogold labelling studies showed that rubber particles of F. carica and F. benghalensis do not contain the SRPP. None of the rubber particles in F. carica, F. benghalensis and H. brasiliensis contained the CPT, suggesting that the CPT itself could not catalyse the formation of high molecular weight rubber. These results indicate that rubber particles in the three different plant species investigated share some degree of similarity in architecture, and that the SRPP and CPT themselves are not the core proteins necessary for rubber biosynthesis.
Collapse
Affiliation(s)
- Adya P Singh
- Department of Forest Products and Technology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757 Korea
| | | | | | | | | |
Collapse
|
14
|
Kang H, Kang MY, Han KH. Identification of natural rubber and characterization of rubber biosynthetic activity in fig tree. PLANT PHYSIOLOGY 2000; 123:1133-1142. [PMID: 10889262 PMCID: PMC59076 DOI: 10.1104/pp.123.3.1133] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/1999] [Accepted: 03/14/2000] [Indexed: 05/23/2023]
Abstract
Natural rubber was extracted from the fig tree (Ficus carica) cultivated in Korea as part of a survey of rubber producing plants. Fourier transform infrared and (13)C nuclear magnetic resonance analysis of samples prepared by successive extraction with acetone and benzene confirmed that the benzene-soluble residues are natural rubber, cis-1,4-polyisoprene. The rubber content in the latex of fig tree was about 4%, whereas the rubber content in the bark, leaf, and fruit was 0.3%, 0.1%, and 0.1%, respectively. Gel-permeation chromatography revealed that the molecular size of the natural rubber from fig tree is about 190 kD. Similar to rubber tree (Hevea brasiliensis) and guayule (Parthenium argentatum Gray), rubber biosynthesis in fig tree is tightly associated with rubber particles. The rubber transferase in rubber particles exhibited a higher affinity for farnesyl pyrophosphate than for isopentenyl pyrophosphate, with apparent K(m) values of 2.8 and 228 microM, respectively. Examination of latex serum from fig tree by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed major proteins of 25 and 48 kD in size, and several proteins with molecular mass below 20 and above 100 kD. Partial N-terminal amino acid sequencing and immunochemical analyses revealed that the 25- and 48-kD proteins were novel and not related to any other suggested rubber transferases. The effect of EDTA and Mg(2+) ion on in vitro rubber biosynthesis in fig tree and rubber tree suggested that divalent metal ion present in the latex serum is an important factor in determining the different rubber biosynthetic activities in fig tree and rubber tree.
Collapse
Affiliation(s)
- H Kang
- Kumho Life and Environmental Science Laboratory, 1 Oryong-dong, Puk-gu, Kwangju, 500-712 Korea.
| | | | | |
Collapse
|
15
|
Pan Z, Durst F, Werck-Reichhart D, Gardner HW, Camara B, Cornish K, Backhaus RA. The major protein of guayule rubber particles is a cytochrome P450. Characterization based on cDNA cloning and spectroscopic analysis of the solubilized enzyme and its reaction products. J Biol Chem 1995; 270:8487-94. [PMID: 7721745 DOI: 10.1074/jbc.270.15.8487] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Guayule plants accumulate large quantities of rubber within parenchyma cells of their stembark tissues. This rubber is packed within discrete organelles called rubber particles composed primarily of a lipophilic, cis-polyisoprene core, small amounts of lipids, and several proteins, the most abundant of which is the M(r) 53,000 rubber particle protein (RPP). We have cloned and sequenced a full-length cDNA for RPP and show that it has 65% amino acid identity and 85% similarity to a cytochrome P450 known as allene oxide synthase (AOS), recently identified from flaxseed. RPP contains the same unusual heme-binding region and possesses a similar defective I-helix region as AOS, suggesting an equivalent biochemical function. Spectral analysis of solubilized RPP verifies it as a P450, and enzymatic assays reveal that it also metabolizes 13(S)-hydroperoxy-(9Z,11E)-octadecadienoic acid into the expected ketol fatty acids at rates comparable with flaxseed AOS. RPP is unusual in that it lacks the amino-terminal membrane anchor and the established organelle targeting sequences found on other conventional P450s. Together, these factors place RPP in the CYP74 family of P450s and establish it as the first P450 localized in rubber particles and the first eukaryotic P450 to be identified outside endoplasmic reticulum, mitochondria, or plastids.
Collapse
Affiliation(s)
- Z Pan
- Department of Botany, Arizona State University, Tempe 85287-1601, USA
| | | | | | | | | | | | | |
Collapse
|