1
|
Robles P, Quesada V. Unveiling the functions of plastid ribosomal proteins in plant development and abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:35-45. [PMID: 36041366 DOI: 10.1016/j.plaphy.2022.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Translation of mRNAs into proteins is a universal process and ribosomes are the molecular machinery that carries it out. In eukaryotic cells, ribosomes can be found in the cytoplasm, mitochondria, and also in the chloroplasts of photosynthetic organisms. A number of genetic studies have been performed to determine the function of plastid ribosomal proteins (PRPs). Tobacco has been frequently used as a system to study the ribosomal proteins encoded by the chloroplast genome. In contrast, Arabidopsis thaliana and rice are preferentially used models to study the function of nuclear-encoded PRPs by using direct or reverse genetics approaches. The results of these works have provided a relatively comprehensive catalogue of the roles of PRPs in different plant biology aspects, which highlight that some PRPs are essential, while others are not. The latter ones are involved in chloroplast biogenesis, lateral root formation, leaf morphogenesis, plant growth, photosynthesis or chlorophyll synthesis. Furthermore, small gene families encode some PRPs. In the last few years, an increasing number of findings have revealed a close association between PRPs and tolerance to adverse environmental conditions. Sometimes, the same PRP can be involved in both developmental processes and the response to abiotic stress. The aim of this review is to compile and update the findings hitherto published on the functional analysis of PRPs. The study of the phenotypic effects caused by the disruption of PRPs from different species reveals the involvement of PRPs in different biological processes and highlights the significant impact of plastid translation on plant biology.
Collapse
Affiliation(s)
- Pedro Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
| |
Collapse
|
2
|
Li C, Shang JX, Qiu C, Zhang B, Wang J, Wang S, Sun Y. Plastid-Localized EMB2726 Is Involved in Chloroplast Biogenesis and Early Embryo Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:675838. [PMID: 34367201 PMCID: PMC8343077 DOI: 10.3389/fpls.2021.675838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Embryogenesis is a critical developmental process that establishes the body organization of higher plants. During this process, the biogenesis of chloroplasts from proplastids is essential. A failure in chloroplast development during embryogenesis can cause morphologically abnormal embryos or embryonic lethality. In this study, we isolated a T-DNA insertion mutant of the Arabidopsis gene EMBRYO DEFECTIVE 2726 (EMB2726). Heterozygous emb2726 seedlings produced about 25% albino seeds with embryos that displayed defects at the 32-cell stage and that arrested development at the late globular stage. EMB2726 protein was localized in chloroplasts and was expressed at all stages of development, such as embryogenesis. Moreover, the two translation elongation factor Ts domains within the protein were critical for its function. Transmission electron microscopy revealed that the cells in emb2726 embryos contained undifferentiated proplastids and that the expression of plastid genome-encoded photosynthesis-related genes was dramatically reduced. Expression studies of DR5:GFP, pDRN:DRN-GFP, and pPIN1:PIN1-GFP reporter lines indicated normal auxin biosynthesis but altered polar auxin transport. The expression of pSHR:SHR-GFP and pSCR:SCR-GFP confirmed that procambium and ground tissue precursors were lacking in emb2726 embryos. The results suggest that EMB2726 plays a critical role during Arabidopsis embryogenesis by affecting chloroplast development, possibly by affecting the translation process in plastids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu Sun
- Hebei Key Laboratory of Molecular and Cellular Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
3
|
Westrich LD, Gotsmann VL, Herkt C, Ries F, Kazek T, Trösch R, Armbruster L, Mühlenbeck JS, Ramundo S, Nickelsen J, Finkemeier I, Wirtz M, Storchová Z, Räschle M, Willmund F. The versatile interactome of chloroplast ribosomes revealed by affinity purification mass spectrometry. Nucleic Acids Res 2021; 49:400-415. [PMID: 33330923 PMCID: PMC7797057 DOI: 10.1093/nar/gkaa1192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
In plant cells, chloroplast gene expression is predominantly controlled through post-transcriptional regulation. Such fine-tuning is vital for precisely orchestrating protein complex assembly as for the photosynthesis machinery and for quickly responding to environmental changes. While regulation of chloroplast protein synthesis is of central importance, little is known about the degree and nature of the regulatory network, mainly due to challenges associated with the specific isolation of transient ribosome interactors. Here, we established a ribosome affinity purification method, which enabled us to broadly uncover putative ribosome-associated proteins in chloroplasts. Endogenously tagging of a protein of the large or small subunit revealed not only interactors of the holo complex, but also preferential interactors of the two subunits. This includes known canonical regulatory proteins as well as several new proteins belonging to the categories of protein and RNA regulation, photosystem biogenesis, redox control and metabolism. The sensitivity of the here applied screen was validated for various transiently interacting proteins. We further provided evidence for the existence of a ribosome-associated Nα-acetyltransferase in chloroplasts and its ability to acetylate substrate proteins at their N-terminus. The broad set of ribosome interactors underscores the potential to regulate chloroplast gene expression on the level of protein synthesis.
Collapse
Affiliation(s)
- Lisa Désirée Westrich
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Vincent Leon Gotsmann
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Claudia Herkt
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Tanja Kazek
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Raphael Trösch
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Laura Armbruster
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Jens Stephan Mühlenbeck
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Silvia Ramundo
- Department of Biochemistry and Biophysics, University of California, 600 16th St, N316, San Francisco, CA 94143, USA
| | - Jörg Nickelsen
- Department of Molecular Plant Science, University of Munich, Grosshaderner-Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Zuzana Storchová
- Molecular Genetics, University of Kaiserslautern, Paul-Ehrlich-Str. 24, 67663 Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Paul-Ehrlich-Str. 24, 67663 Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| |
Collapse
|
4
|
Bobik K, Fernandez JC, Hardin SR, Ernest B, Ganusova EE, Staton ME, Burch-Smith TM. The essential chloroplast ribosomal protein uL15c interacts with the chloroplast RNA helicase ISE2 and affects intercellular trafficking through plasmodesmata. THE NEW PHYTOLOGIST 2019; 221:850-865. [PMID: 30192000 DOI: 10.1111/nph.15427] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/24/2018] [Indexed: 05/07/2023]
Abstract
Chloroplasts retain part of their ancestral genomes and the machinery for expression of those genomes. The nucleus-encoded chloroplast RNA helicase INCREASED SIZE EXCLUSION LIMIT2 (ISE2) is required for chloroplast ribosomal RNA processing and chloro-ribosome assembly. To further elucidate ISE2's role in chloroplast translation, two independent approaches were used to identify its potential protein partners. Both a yeast two-hybrid screen and a pull-down assay identified plastid ribosomal protein L15, uL15c (formerly RPL15), as interacting with ISE2. The interaction was confirmed in vivo by co-immunoprecipitation. Interestingly, we found that rpl15 null mutants do not complete embryogenesis, indicating that RPL15 is an essential gene for autotrophic growth of Arabidopsis thaliana. Arabidopsis and Nicotiana benthamiana plants with reduced expression of RPL15 developed chlorotic leaves, had reduced photosynthetic capacity and exhibited defective chloroplast development. Processing of chloroplast ribosomal RNAs and assembly of ribosomal subunits were disrupted by reduced expression of RPL15. Chloroplast translation was also decreased, reducing accumulation of chloroplast-encoded proteins, in such plants compared to wild-type plants. Notably, knockdown of RPL15 expression increased intercellular trafficking, a phenotype also observed in plants with reduced ISE2 expression. This finding provides further evidence for chloroplast function in modulating intercellular trafficking via plasmodesmata.
Collapse
Affiliation(s)
- Krzysztof Bobik
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jessica C Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sara R Hardin
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ben Ernest
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Elena E Ganusova
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Margaret E Staton
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
5
|
Saługa M, Ochyra R, Żarnowiec J, Ronikier M. Do Antarctic populations represent local or widespread phylogenetic and ecological lineages? Complicated fate of bipolar moss concepts with Drepanocladus longifolius as a case study. ORG DIVERS EVOL 2018. [DOI: 10.1007/s13127-018-0372-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Zhan Y, Marchand CH, Maes A, Mauries A, Sun Y, Dhaliwal JS, Uniacke J, Arragain S, Jiang H, Gold ND, Martin VJJ, Lemaire SD, Zerges W. Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii. PLoS One 2018; 13:e0185039. [PMID: 29481573 PMCID: PMC5826530 DOI: 10.1371/journal.pone.0185039] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/29/2018] [Indexed: 01/19/2023] Open
Abstract
Organelles are intracellular compartments which are themselves compartmentalized. Biogenic and metabolic processes are localized to specialized domains or microcompartments to enhance their efficiency and suppress deleterious side reactions. An example of intra-organellar compartmentalization is the pyrenoid in the chloroplasts of algae and hornworts. This microcompartment enhances the photosynthetic CO2-fixing activity of the Calvin-Benson cycle enzyme Rubisco, suppresses an energetically wasteful oxygenase activity of Rubisco, and mitigates limiting CO2 availability in aquatic environments. Hence, the pyrenoid is functionally analogous to the carboxysomes in cyanobacteria. However, a comprehensive analysis of pyrenoid functions based on its protein composition is lacking. Here we report a proteomic characterization of the pyrenoid in the green alga Chlamydomonas reinhardtii. Pyrenoid-enriched fractions were analyzed by quantitative mass spectrometry. Contaminant proteins were identified by parallel analyses of pyrenoid-deficient mutants. This pyrenoid proteome contains 190 proteins, many of which function in processes that are known or proposed to occur in pyrenoids: e.g. the carbon concentrating mechanism, starch metabolism or RNA metabolism and translation. Using radioisotope pulse labeling experiments, we show that pyrenoid-associated ribosomes could be engaged in the localized synthesis of the large subunit of Rubisco. New pyrenoid functions are supported by proteins in tetrapyrrole and chlorophyll synthesis, carotenoid metabolism or amino acid metabolism. Hence, our results support the long-standing hypothesis that the pyrenoid is a hub for metabolism. The 81 proteins of unknown function reveal candidates for new participants in these processes. Our results provide biochemical evidence of pyrenoid functions and a resource for future research on pyrenoids and their use to enhance agricultural plant productivity. Data are available via ProteomeXchange with identifier PXD004509.
Collapse
Affiliation(s)
- Yu Zhan
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Christophe H. Marchand
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Alexandre Maes
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Adeline Mauries
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Yi Sun
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - James S. Dhaliwal
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - James Uniacke
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Simon Arragain
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Heng Jiang
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Nicholas D. Gold
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Vincent J. J. Martin
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
- * E-mail: (SDL); (WZ)
| | - William Zerges
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
- * E-mail: (SDL); (WZ)
| |
Collapse
|
7
|
Nakata MT, Sato M, Wakazaki M, Sato N, Kojima K, Sekine A, Nakamura S, Shikanai T, Toyooka K, Tsukaya H, Horiguchi G. Plastid translation is essential for lateral root stem cell patterning in Arabidopsis thaliana. Biol Open 2018; 7:bio028175. [PMID: 29367414 PMCID: PMC5861355 DOI: 10.1242/bio.028175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022] Open
Abstract
The plastid evolved from a symbiotic cyanobacterial ancestor and is an essential organelle for plant life, but its developmental roles in roots have been largely overlooked. Here, we show that plastid translation is connected to the stem cell patterning in lateral root primordia. The RFC3 gene encodes a plastid-localized protein that is a conserved bacterial ribosomal protein S6 of β/γ proteobacterial origin. The rfc3 mutant developed lateral roots with disrupted stem cell patterning and associated with decreased leaf photosynthetic activity, reduced accumulation of plastid rRNAs in roots, altered root plastid gene expression, and changes in expression of several root stem cell regulators. These results suggest that deficiencies in plastid function affect lateral root stem cells. Treatment with the plastid translation inhibitor spectinomycin phenocopied the defective stem cell patterning in lateral roots and altered plastid gene expression observed in the rfc3 mutant. Additionally, when prps17 defective in a plastid ribosomal protein was treated with low concentrations of spectinomycin, it also phenocopied the lateral root phenotypes of rfc3 The spectinomycin treatment and rfc3 mutation also negatively affected symplasmic connectivity between primary root and lateral root primordia. This study highlights previously unrecognized functions of plastid translation in the stem cell patterning in lateral roots.
Collapse
Affiliation(s)
- Miyuki T Nakata
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Mayuko Sato
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mayumi Wakazaki
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Nozomi Sato
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Koji Kojima
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Akihiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Shiori Nakamura
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Toshiharu Shikanai
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kiminori Toyooka
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hirokazu Tsukaya
- Graduate school of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Gorou Horiguchi
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
8
|
Isolation of Plastid Ribosomes. Methods Mol Biol 2016. [PMID: 27730617 DOI: 10.1007/978-1-4939-6533-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Plastid ribosomes are responsible for a large part of the protein synthesis in plant leaves, green algal cells, and the vast majority in the thalli of red algae. Plastid translation is necessary not only for photosynthesis but also for development/differentiation of plants and algae. While some isolated plastid ribosomes from a few green lineages have been characterized by biochemical and proteomic approaches, in-depth proteomics including analyses of posttranslational modifications and processing, comparative proteomics of plastid ribosomes isolated from the cells grown under different conditions, and those from different taxa are still to be carried out. Establishment of isolation methods for pure plastid ribosomes from a wider range of species would be beneficial to study the relationship between structure, function, and evolution of plastid ribosomes. Here I describe methodologies and provide example protocols for extraction and isolation of plastid ribosomes from a unicellular green alga (Chlamydomonas reinhardtii), a land plant (Arabidopsis thaliana), and a marine red macroalga (Pyropia yezoensis).
Collapse
|
9
|
Siniauskaya MG, Danilenko NG, Lukhanina NV, Shymkevich AM, Davydenko OG. Expression of the chloroplast genome: Modern concepts and experimental approaches. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079059716050117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Nesbit AD, Whippo C, Hangarter RP, Kehoe DM. Translation initiation factor 3 families: what are their roles in regulating cyanobacterial and chloroplast gene expression? PHOTOSYNTHESIS RESEARCH 2015; 126:147-59. [PMID: 25630975 DOI: 10.1007/s11120-015-0074-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/02/2015] [Indexed: 05/09/2023]
Abstract
Initiation is a key control point for the regulation of translation in prokaryotes and prokaryotic-like translation systems such as those in plant chloroplasts. Genome sequencing and biochemical studies are increasingly demonstrating differences in many aspects of translation between well-studied microbes such as Escherichia coli and lesser studied groups such as cyanobacteria. Analyses of chloroplast translation have revealed its prokaryotic origin but also uncovered many unique aspects that do not exist in E. coli. Recently, a novel form of posttranscriptional regulation by light color was discovered in the filamentous cyanobacterium Fremyella diplosiphon that requires a putative stem-loop and involves the use of two different prokaryotic translation initiation factor 3s (IF3s). Multiple (up to five) putative IF3s have now been found to be encoded in 22 % of sequenced cyanobacterial genomes and 26 % of plant nuclear genomes. The lack of similar light-color regulation of gene expression in most of these species suggests that IF3s play roles in regulating gene expression in response to other environmental and developmental cues. In the plant Arabidopsis, two nuclear-encoded IF3s have been shown to localize to the chloroplasts, and the mRNA levels encoding these vary significantly in certain organ and tissue types and during several phases of development. Collectively, the accumulated data suggest that in about one quarter of photosynthetic prokaryotes and eukaryotes, IF3 gene families are used to regulate gene expression in addition to their traditional roles in translation initiation. Models for how this might be accomplished in prokaryotes versus eukaryotic plastids are presented.
Collapse
Affiliation(s)
- April D Nesbit
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Biology/Chemistry, Purdue University North Central, 1401 S. US 421, Westville, IN, 46391, USA
| | - Craig Whippo
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Natural Science, Dickinson State University, Dickinson, ND, 58601, USA
| | - Roger P Hangarter
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
- Indiana Molecular Biology Institute, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
11
|
Gu L, Jung HJ, Kim BM, Xu T, Lee K, Kim YO, Kang H. A chloroplast-localized S1 domain-containing protein SRRP1 plays a role in Arabidopsis seedling growth in the presence of ABA. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:34-41. [PMID: 26513458 DOI: 10.1016/j.jplph.2015.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 05/07/2023]
Abstract
Although the roles of S1 domain-containing proteins have been characterized in diverse cellular processes in the cytoplasm, the functional roles of a majority of S1 domain-containing proteins targeted to the chloroplast are largely unknown. Here, we characterized the function of a nuclear-encoded chloroplast-targeted protein harboring two S1 domains, designated SRRP1 (for S1 RNA-binding ribosomal protein 1), in Arabidopsis thaliana. Subcellular localization analysis of SRRP1-GFP fusion proteins revealed that SRRP1 is localized to the chloroplast. The T-DNA tagged loss-of-function srrp1 mutants displayed poorer seedling growth and less cotyledon greening than the wild-type plants on MS medium supplemented with abscisic acid (ABA), suggesting that SRRP1 plays a role in seedling growth in the presence of ABA. Splicing of the trnL intron and processing of 5S rRNA in chloroplasts were altered in the mutant plants. Importantly, SRRP1 complemented the growth-defective phenotypes of an RNA chaperone-deficient Escherichia coli mutant at low temperatures and had nucleic acid-melting ability, indicating that SRRP1 possesses RNA chaperone activity. Taken together, these results suggest that SRRP1, the chloroplast-localized S1 domain-containing protein, harboring RNA chaperone activity affects the splicing and processing of chloroplast transcripts and plays a role in Arabidopsis seedling growth in the presence of ABA.
Collapse
Affiliation(s)
- Lili Gu
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hyun Ju Jung
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Bo Mi Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Tao Xu
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea; College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yeon-Ok Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
12
|
Han JH, Lee K, Lee KH, Jung S, Jeon Y, Pai HS, Kang H. A nuclear-encoded chloroplast-targeted S1 RNA-binding domain protein affects chloroplast rRNA processing and is crucial for the normal growth of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:277-89. [PMID: 26031782 DOI: 10.1111/tpj.12889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 05/22/2023]
Abstract
Despite the fact that a variety of nuclear-encoded RNA-binding proteins (RBPs) are targeted to the chloroplast and play essential roles during post-transcriptional RNA metabolism in the chloroplast, the physiological roles of the majority of chloroplast-targeted RBPs remain elusive. Here, we investigated the functional role of a nuclear-encoded S1 domain-containing RBP, designated SDP, in the growth and development of Arabidopsis thaliana. Confocal analysis of the SDP-green fluorescent protein revealed that SDP was localized to the chloroplast. The loss-of-function sdp mutant displayed retarded seed germination and pale-green phenotypes, and grew smaller than the wild-type plants. Chlorophyll a content and photosynthetic activity of the sdp mutant were much lower than those of wild-type plants, and the structures of the chloroplast and the prolamellar body were abnormal in the sdp mutant. The processing of rRNAs in the chloroplast was defective in the sdp mutant, and SDP was able to bind chloroplast 23S, 16S, 5S and 4.5S rRNAs. Notably, SDP possesses RNA chaperone activity. Transcript levels of the nuclear genes involved in chlorophyll biosynthesis were altered in the sdp mutant. Collectively, these results suggest that chloroplast-targeted SDP harboring RNA chaperone activity affects rRNA processing, chloroplast biogenesis and photosynthetic activity, which is crucial for normal growth of Arabidopsis.
Collapse
Affiliation(s)
- Ji Hoon Han
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 500-757, Korea
| | - Kwanuk Lee
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 500-757, Korea
| | - Kwang Ho Lee
- Department of Wood Science and Landscape Architecture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Korea
| | - Sunyo Jung
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Young Jeon
- Department of Systems Biology, Yonsei University, Seoul, 120-749, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, 120-749, Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 500-757, Korea
| |
Collapse
|
13
|
Lim K, Kobayashi I, Nakai K. Alterations in rRNA-mRNA interaction during plastid evolution. Mol Biol Evol 2014; 31:1728-40. [PMID: 24710516 DOI: 10.1093/molbev/msu120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Translation initiation depends on the recognition of mRNA by a ribosome. For this to occur, prokaryotes primarily use the Shine-Dalgarno (SD) interaction, where the 3'-tail of small subunit rRNA (core motif: 3'CCUCC) forms base pairs with a complementary signal sequence in the 5'-untranslated region of mRNA. Here, we examined what happened to SD interactions during the evolution of a cyanobacterial endosymbiont into modern plastids (including chloroplasts). Our analysis of available complete plastid genome sequences revealed that the majority of plastids retained SD interactions but with varying levels of usage. Parallel losses of SD interactions took place in plastids of Chlorophyta, Euglenophyta, and Chromerida/Apicomplexa lineages, presumably related to their extensive reductive evolution. Interestingly, we discovered that the classical SD interaction (3'CCUCC/5'GGAGG [rRNA/mRNA]) was replaced by an altered SD interaction (3'CCCU/5'GGGA or 3'CUUCC/5'GAAGG) through coordinated changes in the sequences of the core rRNA motif and its paired mRNA signal. These changes in plastids of Chlorophyta and Euglenophyta proceeded through intermediate stages that allowed both the classical and altered SD interactions. This coevolution between the rRNA motif and the mRNA signal demonstrates unexpected plasticity in the translation initiation machinery.
Collapse
Affiliation(s)
- Kyungtaek Lim
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo, JapanThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo, JapanThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kenta Nakai
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo, JapanThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
14
|
Novis PM, Smissen R, Buckley TR, Gopalakrishnan K, Visnovsky G. Inclusion of chloroplast genes that have undergone expansion misleads phylogenetic reconstruction in the Chlorophyta. AMERICAN JOURNAL OF BOTANY 2013; 100:2194-2209. [PMID: 24148615 DOI: 10.3732/ajb.1200584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Chlorophytes comprise a substantial proportion of green plant diversity. However, sister-group relationships and circumscription of the classes Chlorophyceae, Trebouxiophyceae, and Ulvophyceae have been problematic to resolve. Some analyses support a sister relationship between the trebouxiophycean Leptosira and chlorophyceans, potentially altering the circumscription of two classes, also supported by a shared fragmentation in the chloroplast gene rpoB. We sought to determine whether the latter is a synapomorphy or whether the supporting analyses are vulnerable to systematic bias. METHODS We sequenced a portion of rpoB spanning the fragmented region in strains for which it had not previously been sampled: four Chlorophyceae, six counterclockwise (CCW) group (ulvophyceans and trebouxiophyceans) and one streptophyte. We then explored the effect of subsampling proteins and taxa on phylogenetic reconstruction from a data set of 41 chloroplast proteins. KEY RESULTS None of the CCW or streptophyte strains possessed the split in rpoB, including inferred near relatives of Leptosira, but it was found in all chlorophycean strains. We reconstructed alternative phylogenies (Leptosira + Chlorophyceae and Leptosira + Chlorellales) using two different protein groups (Rpo and Rps), both subject to coding-region expansion. A conserved region of RpoB remained suitable for analysis of more recent divergences. CONCLUSIONS The Rps sequences can explain earlier findings linking Leptosira with the Chlorophyceae and should be excluded from phylogenetic analyses attempting to resolve deep nodes because their expansion violates the assumptions of substitution models. We reaffirm that Leptosira is a trebouxiophycean and that fragmentation of rpoB has occurred at least twice in chlorophyte evolution.
Collapse
Affiliation(s)
- Phil M Novis
- Allan Herbarium, Landcare Research, P.O. Box 69040, Lincoln 7640, New Zealand
| | | | | | | | | |
Collapse
|
15
|
Lyska D, Meierhoff K, Westhoff P. How to build functional thylakoid membranes: from plastid transcription to protein complex assembly. PLANTA 2013; 237:413-28. [PMID: 22976450 PMCID: PMC3555230 DOI: 10.1007/s00425-012-1752-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/10/2012] [Indexed: 05/06/2023]
Abstract
Chloroplasts are the endosymbiotic descendants of cyanobacterium-like prokaryotes. Present genomes of plant and green algae chloroplasts (plastomes) contain ~100 genes mainly encoding for their transcription-/translation-machinery, subunits of the thylakoid membrane complexes (photosystems II and I, cytochrome b (6) f, ATP synthase), and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Nevertheless, proteomic studies have identified several thousand proteins in chloroplasts indicating that the majority of the plastid proteome is not encoded by the plastome. Indeed, plastid and host cell genomes have been massively rearranged in the course of their co-evolution, mainly through gene loss, horizontal gene transfer from the cyanobacterium/chloroplast to the nucleus of the host cell, and the emergence of new nuclear genes. Besides structural components of thylakoid membrane complexes and other (enzymatic) complexes, the nucleus provides essential factors that are involved in a variety of processes inside the chloroplast, like gene expression (transcription, RNA-maturation and translation), complex assembly, and protein import. Here, we provide an overview on regulatory factors that have been described and characterized in the past years, putting emphasis on mechanisms regulating the expression and assembly of the photosynthetic thylakoid membrane complexes.
Collapse
Affiliation(s)
- Dagmar Lyska
- Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
| | | | | |
Collapse
|
16
|
Hsieh SI, Castruita M, Malasarn D, Urzica E, Erde J, Page MD, Yamasaki H, Casero D, Pellegrini M, Merchant SS, Loo JA. The proteome of copper, iron, zinc, and manganese micronutrient deficiency in Chlamydomonas reinhardtii. Mol Cell Proteomics 2012; 12:65-86. [PMID: 23065468 DOI: 10.1074/mcp.m112.021840] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trace metals such as copper, iron, zinc, and manganese play important roles in several biochemical processes, including respiration and photosynthesis. Using a label-free, quantitative proteomics strategy (MS(E)), we examined the effect of deficiencies in these micronutrients on the soluble proteome of Chlamydomonas reinhardtii. We quantified >10(3) proteins with abundances within a dynamic range of 3 to 4 orders of magnitude and demonstrated statistically significant changes in ~200 proteins in each metal-deficient growth condition relative to nutrient-replete media. Through analysis of Pearson's coefficient, we also examined the correlation between protein abundance and transcript abundance (as determined via RNA-Seq analysis) and found moderate correlations under all nutritional states. Interestingly, in a subset of transcripts known to significantly change in abundance in metal-replete and metal-deficient conditions, the correlation to protein abundance is much stronger. Examples of new discoveries highlighted in this work include the accumulation of O(2) labile, anaerobiosis-related enzymes (Hyd1, Pfr1, and Hcp2) in copper-deficient cells; co-variation of Cgl78/Ycf54 and coprogen oxidase; the loss of various stromal and lumenal photosynthesis-related proteins, including plastocyanin, in iron-limited cells; a large accumulation (from undetectable amounts to over 1,000 zmol/cell) of two COG0523 domain-containing proteins in zinc-deficient cells; and the preservation of photosynthesis proteins in manganese-deficient cells despite known losses in photosynthetic function in this condition.
Collapse
Affiliation(s)
- Scott I Hsieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yu HD, Yang XF, Chen ST, Wang YT, Li JK, Shen Q, Liu XL, Guo FQ. Downregulation of chloroplast RPS1 negatively modulates nuclear heat-responsive expression of HsfA2 and its target genes in Arabidopsis. PLoS Genet 2012; 8:e1002669. [PMID: 22570631 PMCID: PMC3342936 DOI: 10.1371/journal.pgen.1002669] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/08/2012] [Indexed: 12/11/2022] Open
Abstract
Heat stress commonly leads to inhibition of photosynthesis in higher plants. The transcriptional induction of heat stress-responsive genes represents the first line of inducible defense against imbalances in cellular homeostasis. Although heat stress transcription factor HsfA2 and its downstream target genes are well studied, the regulatory mechanisms by which HsfA2 is activated in response to heat stress remain elusive. Here, we show that chloroplast ribosomal protein S1 (RPS1) is a heat-responsive protein and functions in protein biosynthesis in chloroplast. Knockdown of RPS1 expression in the rps1 mutant nearly eliminates the heat stress-activated expression of HsfA2 and its target genes, leading to a considerable loss of heat tolerance. We further confirm the relationship existed between the downregulation of RPS1 expression and the loss of heat tolerance by generating RNA interference-transgenic lines of RPS1. Consistent with the notion that the inhibited activation of HsfA2 in response to heat stress in the rps1 mutant causes heat-susceptibility, we further demonstrate that overexpression of HsfA2 with a viral promoter leads to constitutive expressions of its target genes in the rps1 mutant, which is sufficient to reestablish lost heat tolerance and recovers heat-susceptible thylakoid stability to wild-type levels. Our findings reveal a heat-responsive retrograde pathway in which chloroplast translation capacity is a critical factor in heat-responsive activation of HsfA2 and its target genes required for cellular homeostasis under heat stress. Thus, RPS1 is an essential yet previously unknown determinant involved in retrograde activation of heat stress responses in higher plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Cardi T, Giegé P, Kahlau S, Scotti N. Expression Profiling of Organellar Genes. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Coragliotti AT, Beligni MV, Franklin SE, Mayfield SP. Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii chloroplast. Mol Biotechnol 2011; 48:60-75. [PMID: 21113690 PMCID: PMC3068253 DOI: 10.1007/s12033-010-9348-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an effort to develop microalgae as a robust system for the production of valuable proteins, we analyzed some of the factors affecting recombinant protein expression in the chloroplast of the green alga Chlamydomonas reinhardtii. We monitored mRNA accumulation, protein synthesis, and protein turnover for three codon-optimized transgenes including GFP, bacterial luciferase, and a large single chain antibody. GFP and luciferase proteins were quite stable, while the antibody was less so. Measurements of protein synthesis, in contrast, clearly showed that translation of the three chimeric mRNAs was greatly reduced when compared to endogenous mRNAs under control of the same atpA promoter/UTR. Only in a few conditions this could be explained by limited mRNA availability since, in most cases, recombinant mRNAs accumulated quite well when compared to the atpA mRNA. In vitro toeprint and in vivo polysome analyses suggest that reduced ribosome association might contribute to limited translational efficiency. However, when recombinant polysome levels and protein synthesis are analyzed as a whole, it becomes clear that other steps, such as inefficient protein elongation, are likely to have a considerable impact. Taken together, our results point to translation as the main step limiting the expression of heterologous proteins in the C. reinhardtii chloroplast.
Collapse
Affiliation(s)
- Anna T Coragliotti
- The Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
21
|
Wang J, Wang Y, Wang Z, Liu L, Zhu XG, Ma X. Synchronization of cytoplasmic and transferred mitochondrial ribosomal protein gene expression in land plants is linked to Telo-box motif enrichment. BMC Evol Biol 2011; 11:161. [PMID: 21668973 PMCID: PMC3212954 DOI: 10.1186/1471-2148-11-161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 06/13/2011] [Indexed: 02/08/2023] Open
Abstract
Background Chloroplasts and mitochondria evolved from the endosymbionts of once free-living eubacteria, and they transferred most of their genes to the host nuclear genome during evolution. The mechanisms used by plants to coordinate the expression of such transferred genes, as well as other genes in the host nuclear genome, are still poorly understood. Results In this paper, we use nuclear-encoded chloroplast (cpRPGs), as well as mitochondrial (mtRPGs) and cytoplasmic (euRPGs) ribosomal protein genes to study the coordination of gene expression between organelles and the host. Results show that the mtRPGs, but not the cpRPGs, exhibit strongly synchronized expression with euRPGs in all investigated land plants and that this phenomenon is linked to the presence of a telo-box DNA motif in the promoter regions of mtRPGs and euRPGs. This motif is also enriched in the promoter regions of genes involved in DNA replication. Sequence analysis further indicates that mtRPGs, in contrast to cpRPGs, acquired telo-box from the host nuclear genome. Conclusions Based on our results, we propose a model of plant nuclear genome evolution where coordination of activities in mitochondria and chloroplast and other cellular functions, including cell cycle, might have served as a strong selection pressure for the differential acquisition of telo-box between mtRPGs and cpRPGs. This research also highlights the significance of physiological needs in shaping transcriptional regulatory evolution.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
22
|
Terashima M, Specht M, Hippler M. The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Curr Genet 2011; 57:151-68. [PMID: 21533645 DOI: 10.1007/s00294-011-0339-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 01/12/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has emerged to be an important model organism for the study of oxygenic eukaryotic photosynthesis as well as other processes occurring in the chloroplast. However, the chloroplast proteome in C. reinhardtii has only recently been comprehensively characterized, made possible by proteomics emerging as an accessible and powerful tool over the last decade. In this review, we introduce a compiled list of 996 experimentally chloroplast-localized proteins for C. reinhardtii, stemming largely from our previous proteomic dataset comparing chloroplasts and mitochondria samples to localize proteins. In order to get a taste of some cellular functions taking place in the C. reinhardtii chloroplast, we will focus this review particularly on metabolic differences between chloroplasts of C. reinhardtii and higher plants. Areas that will be covered are photosynthesis, chlorophyll biosynthesis, carbon metabolism, fermentative metabolism, ferredoxins and ferredoxin-interacting proteins.
Collapse
Affiliation(s)
- Mia Terashima
- Department of Biology, Institute of Plant Biology and Biotechnology, University of Münster, Hindenburgplatz 55, 48143, Münster, Germany
| | | | | |
Collapse
|
23
|
Abstract
Proteomics of chloroplast ribosomes in spinach and Chlamydomonas revealed unique protein composition and structures of plastid ribosomes. These studies have suggested the presence of some ribosomal proteins unique to plastid ribosomes which may be involved in plastid-unique translation regulation. Considering the strong background of genetic analysis and molecular biology in Arabidopsis, the in-depth proteomic characterization of Arabidopsis plastid ribosomes would facilitate further understanding of plastid translation in higher plants. Here, I describe simple and rapid methods for the preparation of plastid ribosomes from Chlamydomonas and Arabidopsis using sucrose gradients. I also describe purity criteria and methods for yield estimation of the purified plastid ribosomes and subunits, methods for the preparation of plastid ribosomal proteins, as well as the identification of some Arabidopsis plastid ribosomal proteins by matrix-assisted laser desorption/ionization mass spectrometry.
Collapse
|
24
|
Brouard JS, Otis C, Lemieux C, Turmel M. The exceptionally large chloroplast genome of the green alga Floydiella terrestris illuminates the evolutionary history of the Chlorophyceae. Genome Biol Evol 2010; 2:240-56. [PMID: 20624729 PMCID: PMC2997540 DOI: 10.1093/gbe/evq014] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Chlorophyceae, an advanced class of chlorophyte green algae, comprises five lineages that form two major clades (Chlamydomonadales + Sphaeropleales and Oedogoniales + Chaetopeltidales + Chaetophorales). The four complete chloroplast DNA (cpDNA) sequences currently available for chlorophyceans uncovered an extraordinarily fluid genome architecture as well as many structural features distinguishing this group from other green algae. We report here the 521,168-bp cpDNA sequence from a member of the Chaetopeltidales (Floydiella terrestris), the sole chlorophycean lineage not previously sampled for chloroplast genome analysis. This genome, which contains 97 conserved genes and 26 introns (19 group I and 7 group II introns), is the largest chloroplast genome ever sequenced. Intergenic regions account for 77.8% of the genome size and are populated by short repeats. Numerous genomic features are shared with the cpDNA of the chaetophoralean Stigeoclonium helveticum, notably the absence of a large inverted repeat and the presence of unique gene clusters and trans-spliced group II introns. Although only one of the Floydiella group I introns encodes a homing endonuclease gene, our finding of five free-standing reading frames having similarity with such genes suggests that chloroplast group I introns endowed with mobility were once more abundant in the Floydiella lineage. Parsimony analysis of structural genomic features and phylogenetic analysis of chloroplast sequence data unambiguously resolved the Oedogoniales as sister to the Chaetopeltidales and Chaetophorales. An evolutionary scenario of the molecular events that shaped the chloroplast genome in the Chlorophyceae is presented.
Collapse
Affiliation(s)
- Jean-Simon Brouard
- Département de biochimie et de microbiologie, Université Laval, Québec, QC, Canada
| | | | | | | |
Collapse
|
25
|
Terashima M, Specht M, Naumann B, Hippler M. Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 2010; 9:1514-32. [PMID: 20190198 DOI: 10.1074/mcp.m900421-mcp200] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The versatile metabolism of the green alga Chlamydomonas reinhardtii is reflected in its complex response to anaerobic conditions. The anaerobic response is also remarkable in the context of renewable energy because C. reinhardtii is able to produce hydrogen under anaerobic conditions. To identify proteins involved during anaerobic acclimation as well as to localize proteins and pathways to the powerhouses of the cell, chloroplasts and mitochondria from C. reinhardtii in aerobic and anaerobic (induced by 8 h of argon bubbling) conditions were isolated and analyzed using comparative proteomics. A total of 2315 proteins were identified. Further analysis based on spectral counting clearly localized 606 of these proteins to the chloroplast, including many proteins of the fermentative metabolism. Comparative quantitative analyses were performed with the chloroplast-localized proteins using stable isotopic labeling of amino acids ([(13)C(6)]arginine/[(12)C(6)]arginine in an arginine auxotrophic strain). The quantitative data confirmed proteins previously characterized as induced at the transcript level as well as identified several new proteins of unknown function induced under anaerobic conditions. These proteins of unknown function provide new candidates for further investigation, which could bring insights for the engineering of hydrogen-producing alga strains.
Collapse
Affiliation(s)
- Mia Terashima
- Institute of Plant Biochemistry and Biotechnology, University of Münster, Hindenburgplatz 55, 48143 Münster, Germany
| | | | | | | |
Collapse
|
26
|
Sharma MR, Dönhöfer A, Barat C, Marquez V, Datta PP, Fucini P, Wilson DN, Agrawal RK. PSRP1 is not a ribosomal protein, but a ribosome-binding factor that is recycled by the ribosome-recycling factor (RRF) and elongation factor G (EF-G). J Biol Chem 2009; 285:4006-4014. [PMID: 19965869 DOI: 10.1074/jbc.m109.062299] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plastid-specific ribosomal proteins (PSRPs) have been proposed to play roles in the light-dependent regulation of chloroplast translation. Here we demonstrate that PSRP1 is not a bona fide ribosomal protein, but rather a functional homologue of the Escherichia coli cold-shock protein pY. Three-dimensional Cryo-electron microscopic (Cryo-EM) reconstructions reveal that, like pY, PSRP1 binds within the intersubunit space of the 70S ribosome, at a site overlapping the positions of mRNA and A- and P-site tRNAs. PSRP1 induces conformational changes within ribosomal components that comprise several intersubunit bridges, including bridge B2a, thereby stabilizes the ribosome against dissociation. We find that the presence of PSRP1/pY lowers the binding of tRNA to the ribosome. Furthermore, similarly to tRNAs, PSRP1/pY is recycled from the ribosome by the concerted action of the ribosome-recycling factor (RRF) and elongation factor G (EF-G). These results suggest a novel function for EF-G and RRF in the post-stress return of PSRP1/pY-inactivated ribosomes to the actively translating pool.
Collapse
Affiliation(s)
- Manjuli R Sharma
- From the Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509
| | - Alexandra Dönhöfer
- the Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany; Gene Center and Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Chandana Barat
- From the Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509
| | - Viter Marquez
- the Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany; Gene Center and Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Partha P Datta
- From the Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509
| | - Paola Fucini
- the Cluster of Excellence for Macromolecular Complexes, Institut fur Organische Chemie und Chemische Biologie, J. W. Goethe-Universitaet Frankfurt am Main, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and
| | - Daniel N Wilson
- the Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany; Gene Center and Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| | - Rajendra K Agrawal
- From the Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509; the Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12201.
| |
Collapse
|
27
|
Wagner V, Boesger J, Mittag M. Sub-proteome analysis in the green flagellate alga Chlamydomonas reinhardtii. J Basic Microbiol 2009; 49:32-41. [PMID: 19253330 DOI: 10.1002/jobm.200800292] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the past years, research on the flagellate unicellular alga Chlamydomonas reinhardtii has entered a new era based on the availability of its complete genome. Since this green alga can be grown relatively easy in a short time-range, sufficient biological material is available to efficiently establish biochemical purification procedures of sub-cellular fractions. Combined with the available genome sequences, this paved the way to perform analysis of specific sub-proteomes by mass spectrometry. In this review, several approaches that provided comprehensive lists of components of certain sub-cellular compartments and their biological relevance will be described. These include proteins of chloroplast ribosomes, of flagella, of the eyespot as well as posttranslational and environmentally modified sub-proteomes. The power of such proteome approaches lies in the identification of novel components and modifications of a given sub-proteome that have not been discovered before. Information is usually gained at a large scale and is very valuable to further understand biological processes of a given cellular sub-compartment. But clearly the arduous task has then to be performed to further analyze the function of specific proteins/genes by RNA interference technology, mutant analyses or methods for identifying the protein interaction network within a sub-proteome.
Collapse
Affiliation(s)
- Volker Wagner
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
28
|
Rogalski M, Schöttler MA, Thiele W, Schulze WX, Bock R. Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. THE PLANT CELL 2008; 20:2221-37. [PMID: 18757552 PMCID: PMC2553612 DOI: 10.1105/tpc.108.060392] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/22/2008] [Accepted: 08/04/2008] [Indexed: 05/18/2023]
Abstract
Plastid genomes contain a conserved set of genes encoding components of the translational apparatus. While knockout of plastid translation is lethal in tobacco (Nicotiana tabacum), it is not known whether each individual component of the plastid ribosome is essential. Here, we used reverse genetics to test whether several plastid genome-encoded ribosomal proteins are essential. We found that, while ribosomal proteins Rps2, Rps4, and Rpl20 are essential for cell survival, knockout of the gene encoding ribosomal protein Rpl33 did not affect plant viability and growth under standard conditions. However, when plants were exposed to low temperature stress, recovery of Rpl33 knockout plants was severely compromised, indicating that Rpl33 is required for sustaining sufficient plastid translation capacity in the cold. These findings uncover an important role for plastid translation in plant tolerance to chilling stress.
Collapse
Affiliation(s)
- Marcelo Rogalski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
29
|
Beligni MV, Mayfield SP. Arabidopsis thaliana mutants reveal a role for CSP41a and CSP41b, two ribosome-associated endonucleases, in chloroplast ribosomal RNA metabolism. PLANT MOLECULAR BIOLOGY 2008; 67:389-401. [PMID: 18398686 DOI: 10.1007/s11103-008-9328-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 03/19/2008] [Indexed: 05/04/2023]
Abstract
A proteomic analysis of Chlamydomonas reinhardtii 70S ribosomes identified two proteins, RAP38 and RAP41, which associate in stoichiometric amounts with intact ribosomes. In this work we show results that suggest the Arabidopsis thaliana homologs, CSP41b and CSP41a, participate in ribosomal RNA metabolism. Csp41a-1 and csp41b-1 single mutants show little phenotype, while the loss of both proteins is lethal. Plants homozygous for the csp41b-1 mutation and heterozygous for the csp41a-1 mutation (csp41b-1/csp41a-1*) fail to accumulate CSP41b and show a marked reduction in the levels of CSP41a. These mutants have reduced chlorophyll content, grow slower and over-accumulate 23S precursor rRNAs compared to their wild-type (WT) siblings, whereas other rRNAs or mRNAs are unaffected. Chloroplast polysome assembly is reduced in csp41b-1/csp41a-1* mutants, which also contain increased amounts of pre-ribosomal particles compared to mature 70S ribosomes. Our results also indicate that CSP41b associates with pre-ribosomal particles in vivo. In vitro, the pattern of 23S precursors and mature rRNAs is altered upon incubation with recombinant CSP41a and CSP41b. Taken together, these results suggest that CSP41a and CSP41b have a role in chloroplast ribosomal RNA metabolism, most likely acting in the final steps of 23S rRNA maturation.
Collapse
Affiliation(s)
- María Verónica Beligni
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
30
|
Manuell AL, Quispe J, Mayfield SP. Structure of the chloroplast ribosome: novel domains for translation regulation. PLoS Biol 2008; 5:e209. [PMID: 17683199 PMCID: PMC1939882 DOI: 10.1371/journal.pbio.0050209] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 06/01/2007] [Indexed: 02/05/2023] Open
Abstract
Gene expression in chloroplasts is controlled primarily through the regulation of translation. This regulation allows coordinate expression between the plastid and nuclear genomes, and is responsive to environmental conditions. Despite common ancestry with bacterial translation, chloroplast translation is more complex and involves positive regulatory mRNA elements and a host of requisite protein translation factors that do not have counterparts in bacteria. Previous proteomic analyses of the chloroplast ribosome identified a significant number of chloroplast-unique ribosomal proteins that expand upon a basic bacterial 70S-like composition. In this study, cryo-electron microscopy and single-particle reconstruction were used to calculate the structure of the chloroplast ribosome to a resolution of 15.5 Å. Chloroplast-unique proteins are visualized as novel structural additions to a basic bacterial ribosome core. These structures are located at optimal positions on the chloroplast ribosome for interaction with mRNAs during translation initiation. Visualization of these chloroplast-unique structures on the ribosome, combined with mRNA cross-linking, allows us to propose a model for translation initiation in chloroplasts in which chloroplast-unique ribosomal proteins interact with plastid-specific translation factors and RNA elements to facilitate regulated translation of chloroplast mRNAs. Translation of mRNA into protein is the main step for the regulation of gene expression in the chloroplast, the photosynthetic organelle of plant cells. Translation is conducted by the ribosome, a large macromolecular machine composed of RNA and protein. Studies have shown that the composition of the chloroplast ribosome is similar to that of bacterial ribosomes, but also that chloroplast ribosomes contain a number of unique proteins. We present the three-dimensional structure of the chloroplast ribosome, as calculated using cryo-electron microscopy and single-particle reconstruction. Chloroplast-unique structures are clearly visible on our ribosome map, and expand upon a basic bacterial ribosome-like core. The role of these chloroplast-unique ribosomal proteins in regulating translation of chloroplast mRNAs, including light-regulated translation, is suggested by the location of these structures on the ribosome. Biochemical data confirm a predicted function in chloroplast translation for some of the unique proteins. Our model for translation in the chloroplast incorporates decades of biochemical and genetic studies with the structure presented here, and should help guide future studies to understand the molecular mechanisms of translation regulation in the chloroplast. Cryo-electron microscopy and single-particle reconstruction were used to calculate the structure of the chloroplast ribosome. Chloroplast-unique proteins are visualized as novel structural additions to a basic bacterial ribosome core.
Collapse
Affiliation(s)
- Andrea L Manuell
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joel Quispe
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, California, United States of America
| | - Stephen P Mayfield
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Bogorad L. Evolution of early eukaryotic cells: genomes, proteomes, and compartments. PHOTOSYNTHESIS RESEARCH 2008; 95:11-21. [PMID: 17912611 DOI: 10.1007/s11120-007-9236-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 08/21/2007] [Indexed: 05/17/2023]
Abstract
Eukaryotes arose from an endosymbiotic association of an alpha-proteobacterium-like organism (the ancestor of mitochondria) with a host cell (lacking mitochondria or plastids). Plants arose by the addition of a cyanobacterium-like endosymbiont (the ancestor of plastids) to the two-member association. Each member of the association brought a unique internal environment and a unique genome. Analyses of recently acquired genomic sequences with newly developed algorithms have revealed (a) that the number of endosymbiont genes that remain in eukaryotic cells-principally in the nucleus-is surprisingly large, (b) that protein products of a large number of genes (or their descendents) that entered the association in the genome of the host are now directed to an organelle derived from an endosymbiont, and (c) that protein products of genes traceable to endosymbiont genomes are directed to the nucleo-cytoplasmic compartment. Consideration of these remarkable findings has led to the present suggestion that contemporary eukaryotic cells evolved through continual chance relocation and testing of genes as well as combinations of gene products and biochemical processes in each unique cell compartment derived from a member of the eukaryotic association. Most of these events occurred during about 300 million years, or so, before contemporary forms of eukaryotic cells appear in the fossil record; they continue today.
Collapse
Affiliation(s)
- Lawrence Bogorad
- Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA.
| |
Collapse
|
32
|
Uniacke J, Zerges W. Photosystem II assembly and repair are differentially localized in Chlamydomonas. THE PLANT CELL 2007; 19:3640-54. [PMID: 18055604 PMCID: PMC2174875 DOI: 10.1105/tpc.107.054882] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 11/07/2007] [Accepted: 11/08/2007] [Indexed: 05/19/2023]
Abstract
Many proteins of the photosynthesis complexes are encoded by the genome of the chloroplast and synthesized by bacterium-like ribosomes within this organelle. To determine where proteins are synthesized for the de novo assembly and repair of photosystem II (PSII) in the chloroplast of Chlamydomonas reinhardtii, we used fluorescence in situ hybridization, immunofluorescence staining, and confocal microscopy. These locations were defined as having colocalized chloroplast mRNAs encoding PSII subunits and proteins of the chloroplast translation machinery specifically under conditions of PSII subunit synthesis. The results revealed that the synthesis of the D1 subunit for the repair of photodamaged PSII complexes occurs in regions of the chloroplast with thylakoids, consistent with the current model. However, for de novo PSII assembly, PSII subunit synthesis was detected in discrete regions near the pyrenoid, termed T zones (for translation zones). In two PSII assembly mutants, unassembled D1 subunits and incompletely assembled PSII complexes localized around the pyrenoid, where we propose that they mark an intermediate compartment of PSII assembly. These results reveal a novel chloroplast compartment that houses de novo PSII biogenesis and the regulated transport of newly assembled PSII complexes to thylakoid membranes throughout the chloroplast.
Collapse
Affiliation(s)
- James Uniacke
- Biology Department, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | | |
Collapse
|
33
|
Marín-Navarro J, Manuell AL, Wu J, P Mayfield S. Chloroplast translation regulation. PHOTOSYNTHESIS RESEARCH 2007; 94:359-74. [PMID: 17661159 DOI: 10.1007/s11120-007-9183-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 04/19/2007] [Indexed: 05/16/2023]
Abstract
Chloroplast gene expression is primarily controlled during the translation of plastid mRNAs. Translation is regulated in response to a variety of biotic and abiotic factors, and requires a coordinate expression with the nuclear genome. The translational apparatus of chloroplasts is related to that of bacteria, but has adopted novel mechanisms in order to execute the specific roles that this organelle performs within a eukaryotic cell. Accordingly, plastid ribosomes contain a number of chloroplast-unique proteins and domains that may function in translational regulation. Chloroplast translation regulation involves cis-acting RNA elements (located in the mRNA 5' UTR) as well as a set of corresponding trans-acting protein factors. While regulation of chloroplast translation is primarily controlled at the initiation steps through these RNA-protein interactions, elongation steps are also targets for modulating chloroplast gene expression. Translation of chloroplast mRNAs is regulated in response to light, and the molecular mechanisms underlying this response involve changes in the redox state of key elements related to the photosynthetic electron chain, fluctuations of the ADP/ATP ratio and the generation of a proton gradient. Photosynthetic complexes also experience assembly-related autoinhibition of translation to coordinate the expression of different subunits of the same complex. Finally, the localization of all these molecular events among the different chloroplast subcompartments appear to be a crucial component of the regulatory mechanisms of chloroplast gene expression.
Collapse
Affiliation(s)
- Julia Marín-Navarro
- Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
34
|
Rochaix JD. The Role of Nucleus- and Chloroplast-Encoded Factors in the Synthesis of the Photosynthetic Apparatus. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-1-4020-4061-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
35
|
Translation and translational regulation in chloroplasts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0234] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Xu C, Garrett WM, Sullivan J, Caperna TJ, Natarajan S. Separation and identification of soybean leaf proteins by two-dimensional gel electrophoresis and mass spectrometry. PHYTOCHEMISTRY 2006; 67:2431-40. [PMID: 17046036 DOI: 10.1016/j.phytochem.2006.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/17/2006] [Accepted: 09/01/2006] [Indexed: 05/12/2023]
Abstract
To establish a proteomic reference map for soybean leaves, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 260 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS. Fifty-three of these protein spots were identified by searching NCBInr and SwissProt databases using the Mascot search engine. Sixty-seven spots that were not identified by MALDI-TOF-MS analysis were analyzed with liquid chromatography tandem mass spectrometry (LC-MS/MS), and 66 of these spots were identified by searching against the NCBInr, SwissProt and expressed sequence tag (EST) databases. We have identified a total of 71 unique proteins. The majority of the identified leaf proteins are involved in energy metabolism. The results indicate that 2D-PAGE, combined with MALDI-TOF-MS and LC-MS/MS, is a sensitive and powerful technique for separation and identification of soybean leaf proteins. A summary of the identified proteins and their putative functions is discussed.
Collapse
Affiliation(s)
- Chenping Xu
- Department of Natural Resource Sciences and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
37
|
Mutsuda M, Sugiura M. Translation initiation of cyanobacterial rbcS mRNAs requires the 38-kDa ribosomal protein S1 but not the Shine-Dalgarno sequence: development of a cyanobacterial in vitro translation system. J Biol Chem 2006; 281:38314-21. [PMID: 17046824 DOI: 10.1074/jbc.m604647200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Little is known about the biochemical mechanism of translation in cyanobacteria though substantial studies have been made on photosynthesis, nitrogen fixation, circadian rhythm, and genome structure. To analyze the mechanism of cyanobacterial translation, we have developed an in vitro translation system from Synechococcus cells using a psbAI-lacZ fusion mRNA as a model template. This in vitro system supports accurate translation from the authentic initiation site of a variety of Synechococcus mRNAs. In Synechococcus cells, rbcL and rbcS encoding the large and small subunits, respectively, of ribulose-1,5-bisphosphate carboxylase/oxygenase are co-transcribed as a dicistronic mRNA, and the downstream rbcS mRNA possesses two possible initiation codons separated by three nucleotides. Using this in vitro system and mutated mRNAs, we demonstrated that translation starts exclusively from the upstream AUG codon. Although there are Shine-Dalgarno-like sequences in positions similar to those of the functional Shine-Dalgarno elements in Escherichia coli, mutation analysis indicated that these sequences are not required for translation. Assays with deletions within the 5'-untranslated region showed that a pyrimidine-rich sequence in the -46 to -15 region is necessary for efficient translation. Synechococcus cells contain two ribosomal protein S1 homologues of 38 and 33 kDa in size. UV cross-linking and immunoprecipitation experiments suggested that the 38-kDa S1 is involved in efficient translation via associating with the pyrimidine-rich sequence. The present in vitro translation system will be a powerful tool to analyze the basic mechanism of translation in cyanobacteria.
Collapse
|
38
|
Gillet S, Decottignies P, Chardonnet S, Le Maréchal P. Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. PHOTOSYNTHESIS RESEARCH 2006; 89:201-11. [PMID: 17103236 DOI: 10.1007/s11120-006-9108-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
A proteomic approach including two-dimensional electrophoresis and MALDI-TOF analysis has been developed to identify the soluble proteins of the unicellular photosynthetic algae Chlamydomonas reinhardtii. We first described the partial 2D-picture of soluble proteome obtained from whole cells grown on acetate. Then we studied the effects of the exposure of these cells to 150 muM cadmium (Cd). The most drastic effect was the decrease in abundance of both large and small subunits of the ribulose-1,5-bisphosphate carboxylase/oxygenase, in correlation with several other enzymes involved in photosynthesis, Calvin cycle and chlorophyll biosynthesis. Other down-regulated processes were fatty acid biosynthesis, aminoacid and protein biosynthesis. On the other hand, proteins involved in glutathione synthesis, ATP metabolism, response to oxidative stress and protein folding were up-regulated in the presence of cadmium. In addition, we observed that most of the cadmium-sensitive proteins were also regulated via two major cellular thiol redox systems, thioredoxin and glutaredoxin.
Collapse
Affiliation(s)
- Sylvie Gillet
- IBBMC, CNRS UMR 8619, Bat 430, Univ Paris-Sud, Orsay cedex, 91405, France
| | | | | | | |
Collapse
|
39
|
Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reissenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G. Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. THE PLANT CELL 2006; 18:1908-30. [PMID: 16798888 PMCID: PMC1533972 DOI: 10.1105/tpc.106.041749] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Flagellate green algae have developed a visual system, the eyespot apparatus, which allows the cell to phototax. To further understand the molecular organization of the eyespot apparatus and the phototactic movement that is controlled by light and the circadian clock, a detailed understanding of all components of the eyespot apparatus is needed. We developed a procedure to purify the eyespot apparatus from the green model alga Chlamydomonas reinhardtii. Its proteomic analysis resulted in the identification of 202 different proteins with at least two different peptides (984 in total). These data provide new insights into structural components of the eyespot apparatus, photoreceptors, retina(l)-related proteins, members of putative signaling pathways for phototaxis and chemotaxis, and metabolic pathways within an algal visual system. In addition, we have performed a functional analysis of one of the identified putative components of the phototactic signaling pathway, casein kinase 1 (CK1). CK1 is also present in the flagella and thus is a promising candidate for controlling behavioral responses to light. We demonstrate that silencing CK1 by RNA interference reduces its level in both flagella and eyespot. In addition, we show that silencing of CK1 results in severe disturbances in hatching, flagellum formation, and circadian control of phototaxis.
Collapse
Affiliation(s)
- Melanie Schmidt
- Institute of Biology, Friedrich-Alexander-University, D-91058 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Förster B, Mathesius U, Pogson BJ. Comparative proteomics of high light stress in the model algaChlamydomonas reinhardtii. Proteomics 2006; 6:4309-20. [PMID: 16800035 DOI: 10.1002/pmic.200500907] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
High light (HL) stress adversely affects growth, productivity and viability of photosynthetic organisms. The green alga Chlamydomonas reinhardtii is a model system to study photosynthesis and light stress. Comparative proteomics of wild-type and two very high light (VHL)-resistant mutants, VHL(R)-S4 and VHL(R)-S9, revealed complex alterations in response to excess light. A two-dimensional reference map of the soluble subproteome was constructed representing about 1500 proteins. A total of 83 proteins from various metabolic pathways were identified by peptide mass fingerprinting. Quantitative comparisons of 444 proteins showed 105 significantly changed proteins between wild type and mutants under different light conditions. Commonly, more proteins were decreased than increased, but different proteins were affected in each genotype. Proteins uniquely altered in either VHL(R) mutant may be involved in VHL resistance. Such candidate proteins similarly altered without light stress, thus possibly contributing to "pre-adaptation" of mutants to VHL, included decreased levels of a DEAD box RNA helicase (VHL(R)-S4) and NAB1 and RB38 proteins (VHL(R)-S9), and increased levels of an oxygen evolving enhancer 1 (OEE1) isoform and an unknown protein (VHL(R)-S4). Changes from increased levels in HL to decreased levels in excess light, included OEE1 (VHL(R)-S9) or the reverse change for NAB1, RB38, beta-carbonic anhydrase and an ABC transporter-like protein (VHL(R)-S4).
Collapse
Affiliation(s)
- Britta Förster
- ARC Centre of Excellence in Plant Energy Biology, School of Biochemistry and Molecular Biology, The Australian National University, Canberra, Australia
| | | | | |
Collapse
|
41
|
Wagner V, Gessner G, Heiland I, Kaminski M, Hawat S, Scheffler K, Mittag M. Analysis of the phosphoproteome of Chlamydomonas reinhardtii provides new insights into various cellular pathways. EUKARYOTIC CELL 2006; 5:457-68. [PMID: 16524901 PMCID: PMC1398068 DOI: 10.1128/ec.5.3.457-468.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The unicellular flagellated green alga Chlamydomonas reinhardtii has emerged as a model organism for the study of a variety of cellular processes. Posttranslational control via protein phosphorylation plays a key role in signal transduction, regulation of gene expression, and control of metabolism. Thus, analysis of the phosphoproteome of C. reinhardtii can significantly enhance our understanding of various regulatory pathways. In this study, we have grown C. reinhardtii cultures in the presence of an inhibitor of Ser/Thr phosphatases to increase the phosphoprotein pool. Phosphopeptides from these cells were enriched by immobilized metal-ion affinity chromatography and analyzed by nano-liquid chromatography-electrospray ionization-mass spectrometry (MS) with MS-MS as well as neutral-loss-triggered MS-MS-MS spectra. In this way, we were able to identify 360 phosphopeptides from 328 different phosphoproteins of C. reinhardtii, thus providing new insights into a variety of cellular processes, including metabolic and signaling pathways. Comparative analysis of the phosphoproteome also yielded new functional information on proteins controlled by redox regulation (thioredoxin target proteins) and proteins of the chloroplast 70S ribosome, the centriole, and especially the flagella, for which 32 phosphoproteins were identified. The high yield of phosphoproteins of the latter correlates well with the presence of several flagellar kinases and indicates that phosphorylation/dephosphorylation represents one of the key regulatory mechanisms of eukaryotic cilia. Our data also provide new insights into certain cilium-related mammalian diseases.
Collapse
Affiliation(s)
- Volker Wagner
- Institut für Allgemeine Botanik, Friedrich-Schiller-Universität Jena, Am Planetarium 1, 07743 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
de Cambiaire JC, Otis C, Lemieux C, Turmel M. The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands. BMC Evol Biol 2006; 6:37. [PMID: 16638149 PMCID: PMC1513399 DOI: 10.1186/1471-2148-6-37] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 04/25/2006] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC) remains uncertain. The five complete chloroplast DNA (cpDNA) sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features. The two single-copy regions, which are separated from one another by the large inverted repeat (IR), have similar sizes, rather than unequal sizes, and differ radically in both gene contents and gene organizations relative to the single-copy regions of prasinophyte and ulvophyte cpDNAs. To gain insights into the various changes that underwent the chloroplast genome during the evolution of chlorophycean green algae, we have sequenced the cpDNA of Scenedesmus obliquus, a member of a distinct chlorophycean lineage. RESULTS The 161,452 bp IR-containing genome of Scenedesmus features single-copy regions of similar sizes, encodes 96 genes, i.e. only two additional genes (infA and rpl12) relative to its Chlamydomonas homologue and contains seven group I and two group II introns. It is clearly more compact than the four UTC algal cpDNAs that have been examined so far, displays the lowest proportion of short repeats among these algae and shows a stronger bias in clustering of genes on the same DNA strand compared to Chlamydomonas cpDNA. Like the latter genome, Scenedesmus cpDNA displays only a few ancestral gene clusters. The two chlorophycean genomes share 11 gene clusters that are not found in previously sequenced trebouxiophyte and ulvophyte cpDNAs as well as a few genes that have an unusual structure; however, their single-copy regions differ considerably in gene content. CONCLUSION Our results underscore the remarkable plasticity of the chlorophycean chloroplast genome. Owing to this plasticity, only a sketchy portrait could be drawn for the chloroplast genome of the last common ancestor of Scenedesmus and Chlamydomonas.
Collapse
Affiliation(s)
| | - Christian Otis
- Département de biochimie et de microbiologie, Université Laval, Québec, Canada
| | - Claude Lemieux
- Département de biochimie et de microbiologie, Université Laval, Québec, Canada
| | - Monique Turmel
- Département de biochimie et de microbiologie, Université Laval, Québec, Canada
| |
Collapse
|
43
|
Manuell AL, Yamaguchi K, Haynes PA, Milligan RA, Mayfield SP. Composition and structure of the 80S ribosome from the green alga Chlamydomonas reinhardtii: 80S ribosomes are conserved in plants and animals. J Mol Biol 2005; 351:266-79. [PMID: 16005888 DOI: 10.1016/j.jmb.2005.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/31/2005] [Accepted: 06/07/2005] [Indexed: 11/29/2022]
Abstract
We have conducted a proteomic analysis of the 80S cytosolic ribosome from the eukaryotic green alga Chlamydomonas reinhardtii, and accompany this with a cryo-electron microscopy structure of the ribosome. Proteins homologous to all but one rat 40S subunit protein, including a homolog of RACK1, and all but three rat 60S subunit proteins were identified as components of the C. reinhardtii ribosome. Expressed Sequence Tag (EST) evidence and annotation of the completed C. reinhardtii genome identified genes for each of the four proteins not identified by proteomic analysis, showing that algae potentially have a complete set of orthologs to mammalian 80S ribosomal proteins. Presented at 25A, the algal 80S ribosome is very similar in structure to the yeast 80S ribosome, with only minor distinguishable differences. These data show that, although separated by billions of years of evolution, cytosolic ribosomes from photosynthetic organisms are highly conserved with their yeast and animal counterparts.
Collapse
Affiliation(s)
- Andrea L Manuell
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
44
|
Naumann B, Stauber EJ, Busch A, Sommer F, Hippler M. N-terminal Processing of Lhca3 Is a Key Step in Remodeling of the Photosystem I-Light-harvesting Complex Under Iron Deficiency in Chlamydomonas reinhardtii. J Biol Chem 2005; 280:20431-41. [PMID: 15774469 DOI: 10.1074/jbc.m414486200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron deficiency induces a remodeling of the photosynthetic apparatus in Chlamydomonas reinhardtii. In this study we showed that a key mechanistic event in the remodeling process of photosystem I (PSI) and its associated light-harvesting proteins (LHCI) is the N-terminal processing of Lhca3. N-terminal processing of Lhca3 is documented independently by two-dimensional gel electrophoresis and tandem mass spectrometric (MS/MS) analysis as well as by quantitative comparative MS/MS peptide profiling using isotopic labeling of proteins. Dynamic remodeling of the LHCI complex under iron deficiency is further exemplified by depletion of Lhca5 and up-regulation of Lhca4 and Lhca9 polypeptides in respect to photosystem I. Most importantly, the induction of N-terminal processing of Lhca3 by progression of iron deficiency correlates with the functional drop in excitation energy transfer efficiency between LHCI and PSI as assessed by low temperature fluorescence emission spectroscopy. Using an RNA interference (RNAi) strategy, we showed that the truncated form of Lhca3 is essential for the structural stability of LHCI. Depletion of Lhca3 by RNAi strongly impacted the efficiency of excitation energy transfer between PSI and LHCI, as is the case for iron deficiency. However, in contrast to iron deficiency, comparative MS/MS peptide profiling using isotopic labeling of proteins demonstrated that RNAi depletion of Lhca3 caused strong reduction of almost all Lhca proteins in isolated PSI particles.
Collapse
Affiliation(s)
- Bianca Naumann
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
45
|
Kucho KI, Okamoto K, Tabata S, Fukuzawa H, Ishiura M. Identification of novel clock-controlled genes by cDNA macroarray analysis in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2005; 57:889-906. [PMID: 15952072 DOI: 10.1007/s11103-005-3248-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 03/05/2005] [Indexed: 05/02/2023]
Abstract
Circadian rhythms are self-sustaining oscillations whose period length under constant conditions is about 24 h. Circadian rhythms are widespread and involve functions as diverse as human sleep-wake cycles and cyanobacterial nitrogen fixation. In spite of a long research history, knowledge about clock-controlled genes is limited in Chlamydomonas reinhardtii. Using a cDNA macroarray containing 10 368 nuclear-encoded genes, we examined global circadian regulation of transcription in Chlamydomonas. We identified 269 candidates for circadianly expressed gene. Northern blot analysis confirmed reproducible and sustainable rhythmicity for 12 genes. Most genes exhibited peak expression at the transition point between day and night. One hundred and eighteen genes were assigned predicted annotations. The functions of the cycling genes were diverse and included photosynthesis, respiration, cellular structure, and various metabolic pathways. Surprisingly, 18 genes encoding chloroplast ribosomal proteins showed a coordinated circadian pattern of expression and peaked just at the beginning of subjective day. The co-regulation of genes bearing a similar function was also observed in genes involved in cellular structure. They peaked at the end of the subjective night, which is when the regeneration of cell walls and flagella in daughter cells occurs. Expression of the chlamyopsin gene, which encodes an opsin-type photoreceptor, also exhibited circadian rhythm.
Collapse
Affiliation(s)
- Ken-Ichi Kucho
- Center for Gene Research, , Nagoya University, Furo-cho, 464-8602, Nagoya, Chikusa-ku, Japan
| | | | | | | | | |
Collapse
|
46
|
Manuell A, Beligni MV, Yamaguchi K, Mayfield SP. Regulation of chloroplast translation: interactions of RNA elements, RNA-binding proteins and the plastid ribosome. Biochem Soc Trans 2005; 32:601-5. [PMID: 15270686 DOI: 10.1042/bst0320601] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chloroplast gene expression is primarily controlled during the translation of plastid mRNAs into proteins, and genetic studies have identified cis-acting RNA elements and trans-acting protein factors required for chloroplast translation. Biochemical analysis has identified both general and specific mRNA-binding proteins as components of the regulation of chloroplast translation, and has revealed that chloroplast translation is related to bacterial translation but is more complex. Utilizing proteomic and bioinformatic analyses, we have identified the proteins that function in chloroplast translation, including a complete set of chloroplast ribosomal proteins, and homologues of the 70 S initiation, elongation and termination factors. These analyses show that the translational apparatus of chloroplasts is related to that of bacteria, but has adopted a number of eukaryotic mechanisms to facilitate and regulate chloroplast translation.
Collapse
Affiliation(s)
- A Manuell
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
47
|
Chang IF, Szick-Miranda K, Pan S, Bailey-Serres J. Proteomic characterization of evolutionarily conserved and variable proteins of Arabidopsis cytosolic ribosomes. PLANT PHYSIOLOGY 2005; 137:848-62. [PMID: 15734919 PMCID: PMC1065386 DOI: 10.1104/pp.104.053637] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/16/2004] [Accepted: 11/23/2004] [Indexed: 05/18/2023]
Abstract
Analysis of 80S ribosomes of Arabidopsis (Arabidopsis thaliana) by use of high-speed centrifugation, sucrose gradient fractionation, one- and two-dimensional gel electrophoresis, liquid chromatography purification, and mass spectrometry (matrix-assisted laser desorption/ionization time-of-flight and electrospray ionization) identified 74 ribosomal proteins (r-proteins), of which 73 are orthologs of rat r-proteins and one is the plant-specific r-protein P3. Thirty small (40S) subunit and 44 large (60S) subunit r-proteins were confirmed. In addition, an ortholog of the mammalian receptor for activated protein kinase C, a tryptophan-aspartic acid-domain repeat protein, was found to be associated with the 40S subunit and polysomes. Based on the prediction that each r-protein is present in a single copy, the mass of the Arabidopsis 80S ribosome was estimated as 3.2 MD (1,159 kD 40S; 2,010 kD 60S), with the 4 single-copy rRNAs (18S, 26S, 5.8S, and 5S) contributing 53% of the mass. Despite strong evolutionary conservation in r-protein composition among eukaryotes, Arabidopsis 80S ribosomes are variable in composition due to distinctions in mass or charge of approximately 25% of the r-proteins. This is a consequence of amino acid sequence divergence within r-protein gene families and posttranslational modification of individual r-proteins (e.g. amino-terminal acetylation, phosphorylation). For example, distinct types of r-proteins S15a and P2 accumulate in ribosomes due to evolutionarily divergence of r-protein genes. Ribosome variation is also due to amino acid sequence divergence and differential phosphorylation of the carboxy terminus of r-protein S6. The role of ribosome heterogeneity in differential mRNA translation is discussed.
Collapse
Affiliation(s)
- Ing-Feng Chang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124, USA.
| | | | | | | |
Collapse
|
48
|
van Wijk KJ. Plastid proteomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:963-77. [PMID: 15707834 DOI: 10.1016/j.plaphy.2004.10.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 10/25/2004] [Indexed: 05/23/2023]
Abstract
Plastids are essential organelles present in virtually all cells in plants and in green algae. The proteomes of plastids, and in particular of chloroplasts, have received significant amounts of attention in recent years. Various fractionation and mass spectrometry (MS) techniques have been applied to catalogue the chloroplast proteome and its membrane compartments. Neural network and hidden Markov models, in combination with experimentally derived filters, were used to try to predict the chloroplast subproteomes. Some of the many protein-protein interaction, as well as post-translational modifications have been characterized. Nevertheless, our understanding of the chloroplast proteome and its dynamics is very incomplete. Rapid improvements and wide-scale implementation of MS and new tools for comparative proteomics will undoubtedly accelerate this understanding in the near future. Proteomics studies often generate a large amount of data and these data are only meaningful if they can be easily accessed via the 'world-wide-web' and connected to other types of biological information. The plastid proteome data base (PPDB at http://www.ppdb.tc.cornell.edu/) and other web resources are discussed. This review will briefly summarize recent experimental and theoretical efforts, attempt to translate these data into the functions of the chloroplast and outline expectations and possibilities for (comparative) chloroplast proteomics.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Department of Plant Biology, Emerson Hall 332, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
49
|
Beligni MV, Yamaguchi K, Mayfield SP. Chloroplast elongation factor ts pro-protein is an evolutionarily conserved fusion with the s1 domain-containing plastid-specific ribosomal protein-7. THE PLANT CELL 2004; 16:3357-69. [PMID: 15548736 PMCID: PMC535878 DOI: 10.1105/tpc.104.026708] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 09/30/2004] [Indexed: 05/20/2023]
Abstract
The components of chloroplast translation are similar to those of prokaryotic translation but contain some additional unique features. Proteomic analysis of the Chlamydomonas reinhardtii chloroplast ribosome identified an S1-like protein, plastid-specific ribosomal protein-7 (PSRP-7), as a stoichiometric component of the 30S subunit. Here, we report that PSRP-7 is part of a polyprotein that contains PSRP-7 on its amino end and two translation elongation factor Ts (EF-Ts) domains at the carboxy end. We named this polyprotein PETs (for polyprotein of EF-Ts). Pets is a single-copy gene containing the only chloroplast PSRP-7 and EF-Ts sequences found in the C. reinhardtii genome. The pets precursor transcript undergoes alternative splicing to generate three mRNAs with open reading frames (ORFs) of 1.68, 1.8, and 3 kb. A 110-kD pro-protein is translated from the 3-kb ORF, and the majority of this protein is likely posttranslationally processed into the 65-kD protein PSRP-7 and a 55-kD EF-Ts. PETs homologs are found in Arabidopsis thaliana and rice (Oryza sativa). The conservation of the 110-kD PETs polyprotein in the plant kingdom suggests that PSRP-7 and EF-Ts function together in some aspects of chloroplast translation and that the PETs pro-protein may have a novel function as a whole.
Collapse
Affiliation(s)
- María Verónica Beligni
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
50
|
Warnock DE, Fahy E, Taylor SW. Identification of protein associations in organelles, using mass spectrometry-based proteomics. MASS SPECTROMETRY REVIEWS 2004; 23:259-280. [PMID: 15133837 DOI: 10.1002/mas.10077] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent literature that highlights the power of using mass spectrometry (MS) for protein identification from preparations of highly purified organelles and other large subcellular structures is covered in this review with an emphasis on techniques that preserve the integrity of the functional protein complexes. Recent advances in distinguishing contaminant proteins from "bonafide" organelle-localized proteins and the affinity capture of protein complexes are reviewed, as well as bioinformatic strategies to predict protein organellar localization and to integrate protein-protein interaction maps obtained from MS-affinity capture methods with data obtained from other techniques. Those developments demonstrate that a revolution in cellular biology, fueled by technical advances in MS-based proteomic techniques, is well underway.
Collapse
Affiliation(s)
- Dale E Warnock
- MitoKor, Inc., 11494 Sorrento Valley Road, San Diego, California 92121, USA
| | | | | |
Collapse
|