1
|
Xu M, Wang YY, Wu Y, Zhou X, Shan Z, Tao K, Qian K, Wang X, Li J, Wu Q, Deng XW, Ling JJ. Green light mediates atypical photomorphogenesis by dual modulation of Arabidopsis phytochromes B and A. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1915-1933. [PMID: 39023402 DOI: 10.1111/jipb.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Although green light (GL) is located in the middle of the visible light spectrum and regulates a series of plant developmental processes, the mechanism by which it regulates seedling development is largely unknown. In this study, we demonstrated that GL promotes atypical photomorphogenesis in Arabidopsis thaliana via the dual regulations of phytochrome B (phyB) and phyA. Although the Pr-to-Pfr conversion rates of phyB and phyA under GL were lower than those under red light (RL) in a fluence rate-dependent and time-dependent manner, long-term treatment with GL induced high Pfr/Pr ratios of phyB and phyA. Moreover, GL induced the formation of numerous small phyB photobodies in the nucleus, resulting in atypical photomorphogenesis, with smaller cotyledon opening angles and longer hypocotyls in seedlings compared to RL. The abundance of phyA significantly decreased after short- and long-term GL treatments. We determined that four major PHYTOCHROME-INTERACTING FACTORs (PIFs: PIF1, PIF3, PIF4, and PIF5) act downstream of phyB in GL-mediated cotyledon opening. In addition, GL plays opposite roles in regulating different PIFs. For example, under continuous GL, the protein levels of all PIFs decreased, whereas the transcript levels of PIF4 and PIF5 strongly increased compared with dark treatment. Taken together, our work provides a detailed molecular framework for understanding the role of the antagonistic regulations of phyB and phyA in GL-mediated atypical photomorphogenesis.
Collapse
Affiliation(s)
- Miqi Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yi-Yuan Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yujie Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiuhong Zhou
- Biotechnology Center, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ziyan Shan
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kunying Tao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kaiqiang Qian
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qingqing Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, and School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, China
| | - Jun-Jie Ling
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
2
|
Hao Y, Zeng Z, Zhang X, Xie D, Li X, Ma L, Liu M, Liu H. Green means go: Green light promotes hypocotyl elongation via brassinosteroid signaling. THE PLANT CELL 2023; 35:1304-1317. [PMID: 36724050 PMCID: PMC10118266 DOI: 10.1093/plcell/koad022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Although many studies have elucidated the mechanisms by which different wavelengths of light (blue, red, far-red, or ultraviolet-B [UV-B]) regulate plant development, whether and how green light regulates plant development remains largely unknown. Previous studies reported that green light participates in regulating growth and development in land plants, but these studies have reported conflicting results, likely due to technical problems. For example, commercial green light-emitting diode light sources emit a little blue or red light. Here, using a pure green light source, we determined that unlike blue, red, far-red, or UV-B light, which inhibits hypocotyl elongation, green light promotes hypocotyl elongation in Arabidopsis thaliana and several other plants during the first 2-3 d after planting. Phytochromes, cryptochromes, and other known photoreceptors do not mediate green-light-promoted hypocotyl elongation, but the brassinosteroid (BR) signaling pathway is involved in this process. Green light promotes the DNA binding activity of BRI1-EMS-SUPPRESSOR 1 (BES1), a master transcription factor of the BR pathway, thus regulating gene transcription to promote hypocotyl elongation. Our results indicate that pure green light promotes elongation via BR signaling and acts as a shade signal to enable plants to adapt their development to a green-light-dominant environment under a canopy.
Collapse
Affiliation(s)
- Yuhan Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200031 Shanghai, P. R. China
| | - Zexian Zeng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200031 Shanghai, P. R. China
- University of Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Xiaolin Zhang
- Department of Light Source and Illuminating Engineering, Fudan University, 2005 Songhu Rd, Shanghai 200433, P. R. China
| | - Dixiang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200031 Shanghai, P. R. China
- University of Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Xu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200031 Shanghai, P. R. China
| | - Libang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200031 Shanghai, P. R. China
- University of Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Muqing Liu
- Department of Light Source and Illuminating Engineering, Fudan University, 2005 Songhu Rd, Shanghai 200433, P. R. China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200031 Shanghai, P. R. China
| |
Collapse
|
3
|
Phytochrome A in plants comprises two structurally and functionally distinct populations — water-soluble phyA′ and amphiphilic phyA″. Biophys Rev 2022; 14:905-921. [DOI: 10.1007/s12551-022-00974-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022] Open
|
4
|
Fiorucci AS, Michaud O, Schmid-Siegert E, Trevisan M, Allenbach Petrolati L, Çaka Ince Y, Fankhauser C. Shade suppresses wound-induced leaf repositioning through a mechanism involving PHYTOCHROME KINASE SUBSTRATE (PKS) genes. PLoS Genet 2022; 18:e1010213. [PMID: 35622862 PMCID: PMC9197076 DOI: 10.1371/journal.pgen.1010213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/14/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Shaded plants challenged with herbivores or pathogens prioritize growth over defense. However, most experiments have focused on the effect of shading light cues on defense responses. To investigate the potential interaction between shade-avoidance and wounding-induced Jasmonate (JA)-mediated signaling on leaf growth and movement, we used repetitive mechanical wounding of leaf blades to mimic herbivore attacks. Phenotyping experiments with combined treatments on Arabidopsis thaliana rosettes revealed that shade strongly inhibits the wound effect on leaf elevation. By contrast, petiole length is reduced by wounding both in the sun and in the shade. Thus, the relationship between the shade and wounding/JA pathways varies depending on the physiological response, implying that leaf growth and movement can be uncoupled. Using RNA-sequencing, we identified genes with expression patterns matching the hyponastic response (opposite regulation by both stimuli, interaction between treatments with shade dominating the wound signal). Among them were genes from the PKS (Phytochrome Kinase Substrate) family, which was previously studied for its role in phototropism and leaf positioning. Interestingly, we observed reduced shade suppression of the wounding effect in pks2pks4 double mutants while a PKS4 overexpressing line showed constitutively elevated leaves and was less sensitive to wounding. Our results indicate a trait-specific interrelationship between shade and wounding cues on Arabidopsis leaf growth and positioning. Moreover, we identify PKS genes as integrators of external cues in the control of leaf hyponasty further emphasizing the role of these genes in aerial organ positioning. Plants face different types of stressful situations without the ability to relocate to favorable environments. For example, increasing plant density reduces access to sunlight as plants start to shade each other. Foliar shading represents a stress that many plants cope with by changing their morphology. This includes elongation of stem-like structures and repositioning of leaves to favor access to unfiltered sunlight. Plants also defend themselves against various pathogens including herbivores. Defense mechanisms include the production of deterrent chemical and morphological adaptations such as stunted growth and downwards leaf repositioning. Here we studied the morphological response of plants when simultaneously facing shade and herbivore stress. When facing both stresses petiole growth was intermediate between the shade-enhanced and wound-repressed response. In contrast, the shade cue overrides the wounding cue leading to a similar upwards leaf repositioning in the combined treatments or in the response to shade alone. Using gene expression analyses and genetics we identified two members of the Phytochrome Kinase Substrate family as playing a signal integration role when plants simultaneously faced both stresses. This contributes to our understanding of the mechanisms underlying plant morphological adaptations when facing multiple stresses.
Collapse
Affiliation(s)
- Anne-Sophie Fiorucci
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Olivier Michaud
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Martine Trevisan
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Laure Allenbach Petrolati
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Yetkin Çaka Ince
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Christian Fankhauser
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
5
|
Landi M, Agati G, Fini A, Guidi L, Sebastiani F, Tattini M. Unveiling the shade nature of cyanic leaves: A view from the "blue absorbing side" of anthocyanins. PLANT, CELL & ENVIRONMENT 2021; 44:1119-1129. [PMID: 32515010 DOI: 10.1111/pce.13818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/01/2020] [Indexed: 05/02/2023]
Abstract
Anthocyanins have long been suggested as having great potential in offering photoprotection to plants facing high light irradiance. Nonetheless, their effective ability in protecting the photosynthetic apparatus from supernumerary photons has been questioned by some authors, based upon the inexact belief that anthocyanins almost exclusively absorb green photons, which are poorly absorbed by chlorophylls. Here we focus on the blue light absorbing features of anthocyanins, a neglected issue in anthocyanin research. Anthocyanins effectively absorb blue photons: the absorbance of blue relative to green photons increases from tri- to mono-hydroxy B-ring substituted structures, reaching up to 50% of green photons absorption. We offer a comprehensive picture of the molecular events activated by low blue-light availability, extending our previous analysis in purple and green basil, which we suggest to be responsible for the "shade syndrome" displayed by cyanic leaves. While purple leaves display overexpression of genes promoting chlorophyll biosynthesis and light harvesting, in green leaves it is the genes involved in the stability/repair of photosystems that are largely overexpressed. As a corollary, this adds further support to the view of an effective photoprotective role of anthocyanins. We discuss the profound morpho-anatomical adjustments imposed by the epidermal anthocyanin shield, which reflect adjustments in light harvesting capacity under imposed shade and make complex the analysis of the photosynthetic performance of cyanic versus acyanic leaves.
Collapse
Affiliation(s)
- Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Giovanni Agati
- Institute of Applied Physics 'Nello Carrara', Florence, Italy
| | - Alessio Fini
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy University of Milan, Milan, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Florence, Italy
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, National Research Council of Italy, Florence, Italy
| |
Collapse
|
6
|
The ectopic expression of Arabidopsis glucosyltransferase UGT74D1 affects leaf positioning through modulating indole-3-acetic acid homeostasis. Sci Rep 2021; 11:1154. [PMID: 33441983 PMCID: PMC7806859 DOI: 10.1038/s41598-021-81016-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Leaf angle is an important agronomic trait affecting photosynthesis efficiency and crop yield. Although the mechanisms involved in the leaf angle control are intensively studied in monocots, factors contribute to the leaf angle in dicots are largely unknown. In this article, we explored the physiological roles of an Arabidopsis glucosyltransferase, UGT74D1, which have been proved to be indole-3-acetic acid (IAA) glucosyltransferase in vitro. We found that UGT74D1 possessed the enzymatic activity toward IAA glucosylation in vivo and its expression was induced by auxins. The ectopically expressed UGT74D1 obviously reduced the leaf angle with an altered IAA level, auxin distribution and cell size in leaf tissues. The expression of several key genes involved in the leaf shaping and leaf positioning, including PHYTOCHROME KINASE SUBSTRATE (PKS) genes and TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) genes, were dramatically changed by ectopic expression of UGT74D1. In addition, clear transcription changes of YUCCA genes and other auxin related genes can be observed in overexpression lines. Taken together, our data indicate that glucosyltransferase UGT74D1 could affect leaf positioning through modulating auxin homeostasis and regulating transcription of PKS and TCP genes, suggesting a potential new role of UGT74D1 in regulation of leaf angle in dicot Arabidopsis.
Collapse
|
7
|
Kumar R, Pandey MK, Roychoudhry S, Nayyar H, Kepinski S, Varshney RK. Peg Biology: Deciphering the Molecular Regulations Involved During Peanut Peg Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1289. [PMID: 31681383 PMCID: PMC6813228 DOI: 10.3389/fpls.2019.01289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/17/2019] [Indexed: 05/07/2023]
Abstract
Peanut or groundnut is one of the most important legume crops with high protein and oil content. The high nutritional qualities of peanut and its multiple usage have made it an indispensable component of our daily life, in both confectionary and therapeutic food industries. Given the socio-economic significance of peanut, understanding its developmental biology is important in providing a molecular framework to support breeding activities. In peanut, the formation and directional growth of a specialized reproductive organ called a peg, or gynophore, is especially relevant in genetic improvement. Several studies have indicated that peanut yield can be improved by improving reproductive traits including peg development. Therefore, we aim to identify unifying principles for the genetic control, underpinning molecular and physiological basis of peg development for devising appropriate strategy for peg improvement. This review discusses the current understanding of the molecular aspects of peanut peg development citing several studies explaining the key mechanisms. Deciphering and integrating recent transcriptomic, proteomic, and miRNA-regulomic studies provide a new perspective for understanding the regulatory events of peg development that participate in pod formation and thus control yield.
Collapse
Affiliation(s)
- Rakesh Kumar
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K. Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Stefan Kepinski
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
8
|
Sineshchekov V. Two molecular species of phytochrome A with distinct modes of action. FUNCTIONAL PLANT BIOLOGY 2019; 46:118. [DOI: https:/doi.org/10.1071/fp18156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Adaptation of plants to environmental light conditions is achieved via operation of a highly complex photoreceptor apparatus. It includes the phytochrome system comprising phytochromes A and B (phyA and phyB) as the major components. phyA differs from phyB by several properties, including its ability to mediate all three photoresponse modes – the very low and low fluence responses (VLFR and LFR respectively) and the high irradiance responses (HIR), whereas phyB is responsible for LFR. This review discusses the uniqueness of phyA in terms of its structural and functional heterogeneity. The photoreceptor is presented in monocots and dicots by two native molecular species, phyAʹ and phyAʹʹ, differing by spectroscopic, photochemical and phenomenological properties. phyA differentiation into substates includes post-translational phosphorylation of a serine residue(s) at the N-terminal extension of the molecule with phyAʹ being the phosphorylated species and phyAʹʹ, dephosphorylated. They differ also by their mode of action, which depends on the cellular context. The current working hypothesis is that phyAʹ mediates VLFR and phyAʹʹ, HIR and LFR. The content and functional activity of the two pools are regulated by light and by phosphatase/kinase equilibrium and pH in darkness, what contributes to the fine-tuning of the phytochrome system. Detection of the native pools of the cryptogamic plant fern Adiantum capillus-veneris phy1 (phy1ʹ and phy1ʹʹ) similar to those of phyA suggests that the structural and functional heterogeneity of phyA is not a unique phenomenon and may have arisen earlier in the molecular evolution of the phytochrome system than the appearance of the angiosperm phytochromes.
Collapse
|
9
|
Sineshchekov V. Two molecular species of phytochrome A with distinct modes of action. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:118-135. [PMID: 32172754 DOI: 10.1071/fp18156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/17/2018] [Indexed: 06/10/2023]
Abstract
Adaptation of plants to environmental light conditions is achieved via operation of a highly complex photoreceptor apparatus. It includes the phytochrome system comprising phytochromes A and B (phyA and phyB) as the major components. phyA differs from phyB by several properties, including its ability to mediate all three photoresponse modes - the very low and low fluence responses (VLFR and LFR respectively) and the high irradiance responses (HIR), whereas phyB is responsible for LFR. This review discusses the uniqueness of phyA in terms of its structural and functional heterogeneity. The photoreceptor is presented in monocots and dicots by two native molecular species, phyA' and phyA'', differing by spectroscopic, photochemical and phenomenological properties. phyA differentiation into substates includes post-translational phosphorylation of a serine residue(s) at the N-terminal extension of the molecule with phyA' being the phosphorylated species and phyA'', dephosphorylated. They differ also by their mode of action, which depends on the cellular context. The current working hypothesis is that phyA' mediates VLFR and phyA'', HIR and LFR. The content and functional activity of the two pools are regulated by light and by phosphatase/kinase equilibrium and pH in darkness, what contributes to the fine-tuning of the phytochrome system. Detection of the native pools of the cryptogamic plant fern Adiantum capillus-veneris phy1 (phy1' and phy1'') similar to those of phyA suggests that the structural and functional heterogeneity of phyA is not a unique phenomenon and may have arisen earlier in the molecular evolution of the phytochrome system than the appearance of the angiosperm phytochromes.
Collapse
Affiliation(s)
- V Sineshchekov
- Biology Department, M.V. Lomonosov Moscow State University, Moscow, Russia. Email
| |
Collapse
|
10
|
Christie JM, Suetsugu N, Sullivan S, Wada M. Shining Light on the Function of NPH3/RPT2-Like Proteins in Phototropin Signaling. PLANT PHYSIOLOGY 2018; 176:1015-1024. [PMID: 28720608 PMCID: PMC5813532 DOI: 10.1104/pp.17.00835] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 05/05/2023]
Abstract
NRL proteins coordinate different aspects of phototropin signaling through signaling processes that are conserved in land plants and algae.
Collapse
Affiliation(s)
- John M Christie
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Noriyuki Suetsugu
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Stuart Sullivan
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Masamitsu Wada
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
11
|
Sheerin DJ, Hiltbrunner A. Molecular mechanisms and ecological function of far-red light signalling. PLANT, CELL & ENVIRONMENT 2017; 40:2509-2529. [PMID: 28102581 DOI: 10.1111/pce.12915] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 05/18/2023]
Abstract
Land plants possess the ability to sense and respond to far-red light (700-760 nm), which serves as an important environmental cue. Due to the nature of far-red light, it is not absorbed by chlorophyll and thus is enriched in canopy shade and will also penetrate deeper into soil than other visible wavelengths. Far-red light responses include regulation of seed germination, suppression of hypocotyl growth, induction of flowering and accumulation of anthocyanins, which depend on one member of the phytochrome photoreceptor family, phytochrome A (phyA). Here, we review the current understanding of the underlying molecular mechanisms of how plants sense far-red light through phyA and the physiological responses to this light quality. Light-activated phytochromes act on two primary pathways within the nucleus; suppression of the E3 ubiquitin ligase complex CUL4/DDB1COP1/SPA and inactivation of the PHYTOCHROME INTERACTING FACTOR (PIF) family of bHLH transcription factors. These pathways integrate with other signal transduction pathways, including phytohormones, for tissue and developmental stage specific responses. Unlike other phytochromes that mediate red-light responses, phyA is transported from the cytoplasm to the nucleus in far-red light by the shuttle proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). However, additional mechanisms must exist that shift the action of phyA to far-red light; current hypotheses are discussed.
Collapse
Affiliation(s)
- David J Sheerin
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
12
|
Razzak A, Ranade SS, Strand Å, García-Gil MR. Differential response of Scots pine seedlings to variable intensity and ratio of red and far-red light. PLANT, CELL & ENVIRONMENT 2017; 40:1332-1340. [PMID: 28108999 DOI: 10.1111/pce.12921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
We investigated the response to increasing intensity of red (R) and far-R (FR) light and to a decrease in R:FR ratio in Pinus sylvestris L. (Scots pine) seedling. The results showed that FR high-irradiance response for hypocotyl elongation may be present in Scots pine and that this response is enhanced by increasing light intensity. However, both hypocotyl inhibition and pigment accumulation were more strongly affected by the R light compared with FR light. This is in contrast to previous reports in Arabidopsis thaliana (L.) Heynh. In the angiosperm, A. thaliana R light shows an overall milder effect on inhibition of hypocotyl elongation and on pigment biosynthesis compared with FR suggesting conifers and angiosperms respond very differently to the different light regimes. Scots pine shade avoidance syndrome with longer hypocotyls, shorter cotyledons and lower chlorophyll content in response to shade conditions resembles the response observed in A. thaliana. However, anthocyanin accumulation increased with shade in Scots pine, which again differs from what is known in angiosperms. Overall, the response of seedling development and physiology to R and FR light in Scots pine indicates that the regulatory mechanism for light response may differ between gymnosperms and angiosperms.
Collapse
Affiliation(s)
- Abdur Razzak
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 87, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, Umeå, SE-901 87, Sweden
| | - Sonali Sachin Ranade
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 87, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, Umeå, SE-901 87, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, Umeå, SE-901 87, Sweden
| | - M R García-Gil
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 87, Sweden
| |
Collapse
|
13
|
Sellaro R, Pacín M, Casal JJ. Meta-Analysis of the Transcriptome Reveals a Core Set of Shade-Avoidance Genes in Arabidopsis. Photochem Photobiol 2017; 93:692-702. [DOI: 10.1111/php.12729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Romina Sellaro
- IFEVA; Facultad de Agronomía; Universidad de Buenos Aires and CONICET; Buenos Aires Argentina
| | - Manuel Pacín
- IFEVA; Facultad de Agronomía; Universidad de Buenos Aires and CONICET; Buenos Aires Argentina
| | - Jorge J. Casal
- IFEVA; Facultad de Agronomía; Universidad de Buenos Aires and CONICET; Buenos Aires Argentina
- Fundación Instituto Leloir; Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET; Buenos Aires Argentina
| |
Collapse
|
14
|
Maslova SP, Golovko TK. [Tropisms in underground shoots — stolons and rhizomes]. ZHURNAL OBSHCHEI BIOLOGII 2017; 78:47-60. [PMID: 30024677 DOI: 10.1134/s207908641803009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Indexed: 05/24/2023]
Abstract
In the review, the problem of plant movements (photo- and gravitropism) is discussed. The contemporary data on physiological and molecular mechanisms of tropisms in underground shoots and roots are presented. Special attention is paid to diagravitropism phenomenon in underground shoots (stolons and rhizomes) that grow in perpendicular direction to the Earth's gravitational axis. The role of phytochrome control in maintaining the horizontal growth of stolons and rhizomes is demonstrated, and physiological mechanisms of photo- and diagravitropism are discussed. It is shown that switching of an underground shoot tip from diatropic to ortotropic (vertical) growth is dependent on the carbohydrate and phytohor-mone balance. The perspectives are outlined for further exploratory studies on mechanisms of growth orientation and morphogenesis of underground diagravitropic shoots.
Collapse
|
15
|
González CV, Fanzone ML, Cortés LE, Bottini R, Lijavetzky DC, Ballaré CL, Boccalandro HE. Fruit-localized photoreceptors increase phenolic compounds in berry skins of field-grown Vitis vinifera L. cv. Malbec. PHYTOCHEMISTRY 2015; 110:46-57. [PMID: 25514818 DOI: 10.1016/j.phytochem.2014.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 05/02/2023]
Abstract
Sunlight exposure has multiple effect on fruits, as it affects the light climate perceived by fruit photoreceptors and fruit tissue temperature. In grapes (Vitis vinifera L.), light exposure can have a strong effect on fruit quality and commercial value; however, the mechanisms of light action are not well understood. The role of fruit-localized photoreceptors in the control of berry quality traits was evaluated under field conditions in a commercial vineyard in Mendoza (Argentina). Characterization of the diurnal dynamics of the fruit light environment in a vertical trellis system indicated that clusters were shaded by leaves during most of the photoperiod. Supplementation of the fruit light environment from 20 days before veraison until technological harvest showed that red (R, 660 nm) and blue (B, 470 nm) light strongly increased total phenolic compound levels at harvest in the berry skins without affecting sugar content, acidity or berry size. Far-red (FR, 730 nm) and green (G, 560 nm) light supplementation had relatively small effects. The stimulation of berry phytochromes and cryptochromes favored accumulation of flavonoid and non-flavonoid compounds, including anthocyanins, flavonols, flavanols, phenolic acids and stilbenes. These results demonstrate that the chemical composition of grape berries is modulated by the light quality received by the clusters under field conditions, and that fruit photoreceptors are not saturated even in areas of high insolation and under management systems that are considered to result in a relatively high exposure of fruits to solar radiation. Therefore, manipulation of the light environment or the light sensitivity of fruits could have significant effects on critical grape quality traits.
Collapse
Affiliation(s)
- Carina Verónica González
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Almirante Brown 500, 5505 Chacras de Coria, Luján de Cuyo, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad Universitaria, Parque General San Martín, 5500 Mendoza, Argentina.
| | - Martín Leandro Fanzone
- Laboratorio de Aromas y Sustancias Naturales, Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martin 3853, 5507, Mayor Drummond, Luján de Cuyo, Mendoza, Argentina.
| | - Leandro Emanuel Cortés
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Almirante Brown 500, 5505 Chacras de Coria, Luján de Cuyo, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad Universitaria, Parque General San Martín, 5500 Mendoza, Argentina.
| | - Rubén Bottini
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Almirante Brown 500, 5505 Chacras de Coria, Luján de Cuyo, Mendoza, Argentina.
| | - Diego Claudio Lijavetzky
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Almirante Brown 500, 5505 Chacras de Coria, Luján de Cuyo, Mendoza, Argentina.
| | - Carlos Luis Ballaré
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Universidad de Buenos Aires, and Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, C1417DSE Buenos Aires, Argentina.
| | - Hernán Esteban Boccalandro
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Almirante Brown 500, 5505 Chacras de Coria, Luján de Cuyo, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad Universitaria, Parque General San Martín, 5500 Mendoza, Argentina
| |
Collapse
|
16
|
Casal JJ, Candia AN, Sellaro R. Light perception and signalling by phytochrome A. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2835-45. [PMID: 24220656 DOI: 10.1093/jxb/ert379] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In etiolated seedlings, phytochrome A (phyA) mediates very-low-fluence responses (VLFRs), which initiate de-etiolation at the interphase between the soil and above-ground environments, and high-irradiance responses (HIR), which complete de-etiolation under dense canopies and require more sustained activation with far-red light. Light-activated phyA is transported to the nucleus by FAR-RED ELONGATED HYPOCOTYL1 (FHY1). The nuclear pool of active phyA increases under prolonged far-red light of relatively high fluence rates. This condition maximizes the rate of FHY1-phyA complex assembly and disassembly, allowing FHY1 to return to the cytoplasm to translocate further phyA to the nucleus, to replace phyA degraded in the proteasome. The core signalling pathways downstream of nuclear phyA involve the negative regulation of CONSTITUTIVE PHOTOMORPHOGENIC 1, which targets for degradation transcription factors required for photomorphogenesis, and PHYTOCHROME-INTERACTING FACTORs, which are transcription factors that repress photomorphogenesis. Under sustained far-red light activation, released FHY1 can also be recruited with active phyA to target gene promoters as a transcriptional activator, and nuclear phyA signalling activates a positive regulatory loop involving BELL-LIKE HOMEODOMAIN 1 that reinforces the HIR.
Collapse
Affiliation(s)
- J J Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, 1417 Buenos Aires, Argentina Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, C1405BWE Buenos Aires, Argentina
| | - A N Candia
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, 1417 Buenos Aires, Argentina
| | - R Sellaro
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, 1417 Buenos Aires, Argentina
| |
Collapse
|
17
|
Yamamoto K, Suzuki T, Aihara Y, Haga K, Sakai T, Nagatani A. The phototropic response is locally regulated within the topmost light-responsive region of the Arabidopsis thaliana seedling. PLANT & CELL PHYSIOLOGY 2014; 55:497-506. [PMID: 24334375 DOI: 10.1093/pcp/pct184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phototropism is caused by differential cell elongation between the irradiated and shaded sides of plant organs, such as the stem. It is widely accepted that an uneven auxin distribution between the two sides crucially participates in this response. Plant-specific blue-light photoreceptors, phototropins (phot1 and phot2), mediate this response. In grass coleoptiles, the sites of light perception and phototropic bending are spatially separated. However, these sites are less clearly distinguished in dicots. Furthermore, the exact placement of the action of each phototropic signaling factor remains unknown. Here, we investigated the spatial aspects of phototropism using spotlight irradiation with etiolated Arabidopsis seedlings. The results demonstrated that the topmost part of about 1.1 mm of the hypocotyl constituted the light-responsive region in which both light perception and actual bending occurred. In addition, cotyledons and the shoot apex were dispensable for the response. Hence, the response was more region autonomous in dicots than in monocots. We next examined the elongation rates, the levels of phot1 and the auxin-reporter gene expression along the hypocotyl during the phototropic response. The light-responsive region was more active than the non-responsive region with respect to all of those parameters.
Collapse
Affiliation(s)
- Kazuhiko Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Kami C, Allenbach L, Zourelidou M, Ljung K, Schütz F, Isono E, Watahiki MK, Yamamoto KT, Schwechheimer C, Fankhauser C. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:393-403. [PMID: 24286493 DOI: 10.1111/tpj.12395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/24/2013] [Accepted: 11/20/2013] [Indexed: 05/05/2023]
Abstract
Phototropism allows plants to orient their photosynthetic organs towards the light. In Arabidopsis, phototropins 1 and 2 sense directional blue light such that phot1 triggers phototropism in response to low fluence rates, while both phot1 and phot2 mediate this response under higher light conditions. Phototropism results from asymmetric growth in the hypocotyl elongation zone that depends on an auxin gradient across the embryonic stem. How phototropin activation leads to this growth response is still poorly understood. Members of the phytochrome kinase substrate (PKS) family may act early in this pathway, because PKS1, PKS2 and PKS4 are needed for a normal phototropic response and they associate with phot1 in vivo. Here we show that PKS proteins are needed both for phot1- and phot2-mediated phototropism. The phototropic response is conditioned by the developmental asymmetry of dicotyledonous seedlings, such that there is a faster growth reorientation when cotyledons face away from the light compared with seedlings whose cotyledons face the light. The molecular basis for this developmental effect on phototropism is unknown; here we show that PKS proteins play a role at the interface between development and phototropism. Moreover, we present evidence for a role of PKS genes in hypocotyl gravi-reorientation that is independent of photoreceptors. pks mutants have normal levels of auxin and normal polar auxin transport, however they show altered expression patterns of auxin marker genes. This situation suggests that PKS proteins are involved in auxin signaling and/or lateral auxin redistribution.
Collapse
Affiliation(s)
- Chitose Kami
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Choi H, Jeong S, Kim DS, Na HJ, Ryu JS, Lee SS, Nam HG, Lim PO, Woo HR. The homeodomain-leucine zipper ATHB23, a phytochrome B-interacting protein, is important for phytochrome B-mediated red light signaling. PHYSIOLOGIA PLANTARUM 2014; 150:308-320. [PMID: 23964902 DOI: 10.1111/ppl.12087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/14/2013] [Accepted: 06/19/2013] [Indexed: 06/02/2023]
Abstract
Phytochromes are red (R)/far-red (FR) photoreceptors that are central to the regulation of plant growth and development. Although it is well known that photoactivated phytochromes are translocated into the nucleus where they interact with a variety of nuclear proteins and ultimately regulate genome-wide transcription, the mechanisms by which these photoreceptors function are not completely understood. In an effort to enhance our understanding of phytochrome-mediated light signaling networks, we attempted to identify novel proteins interacting with phytochrome B (phyB). Using affinity purification in Arabidopsis phyB overexpressor, coupled with mass spectrometry analysis, 16 proteins that interact with phyB in vivo were identified. Interactions between phyB and six putative phyB-interacting proteins were confirmed by bimolecular fluorescence complementation (BiFC) analysis. Involvement of these proteins in phyB-mediated signaling pathways was also revealed by physiological analysis of the mutants defective in each phyB-interacting protein. We further characterized the athb23 mutant impaired in the homeobox protein 23 (ATHB23) gene. The athb23 mutant displayed altered hypocotyl growth under R light, as well as defects in phyB-dependent seed germination and phyB-mediated cotyledon expansion. Taken together, these results suggest that the ATHB23 transcription factor is a novel component of the phyB-mediated R light signaling pathway.
Collapse
Affiliation(s)
- Hyunmo Choi
- Academy of New Biology for Plant Senescence and Life History, Institute for Basic Science, DGIST, Daegu, Republic of Korea; Department of Life Sciences, POSTECH, Pohang, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xia H, Zhao C, Hou L, Li A, Zhao S, Bi Y, An J, Zhao Y, Wan S, Wang X. Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genomics 2013; 14:517. [PMID: 23895441 PMCID: PMC3765196 DOI: 10.1186/1471-2164-14-517] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 07/23/2013] [Indexed: 12/12/2022] Open
Abstract
Background After the zygote divides few times, the development of peanut pre-globular embryo and fruit is arrested under white or red light. Embryo development could be resumed in dark condition after gynophore is buried in soil. It is interesting to study the mechanisms of gynophore development and pod formation in peanut. Results In this study, transcriptome analysis of peanut gynophore was performed using Illumina HiSeq™ 2000 to understand the mechanisms of geocarpy. More than 13 million short sequences were assembled into 72527 unigenes with average size of 394 bp. A large number of genes that were not identified previously in peanut EST projects were identified in this study, including most genes involved in plant circadian rhythm, intra-cellular transportation, plant spliceosome, eukaryotes basal transcription factors, genes encoding ribosomal proteins, brassinosteriod biosynthesis, light-harvesting chlorophyll protein complex, phenylpropanoid biosynthesis and TCA cycle. RNA-seq based gene expression profiling results showed that before and after gynophore soil penetration, the transcriptional level of a large number of genes changed significantly. Genes encoding key enzymes for hormone metabolism, signaling, photosynthesis, light signaling, cell division and growth, carbon and nitrogen metabolism as well as genes involved in stress responses were high lighted. Conclusions Transcriptome analysis of peanut gynophore generated a large number of unigenes which provide useful information for gene cloning and expression study. Digital gene expression study suggested that gynophores experience global changes and reprogram from light to dark grown condition to resume embryo and fruit development.
Collapse
|
21
|
Goyal A, Szarzynska B, Fankhauser C. Phototropism: at the crossroads of light-signaling pathways. TRENDS IN PLANT SCIENCE 2013; 18:393-401. [PMID: 23562459 DOI: 10.1016/j.tplants.2013.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/28/2013] [Accepted: 03/08/2013] [Indexed: 05/11/2023]
Abstract
Phototropism enables plants to orient growth towards the direction of light and thereby maximizes photosynthesis in low-light environments. In angiosperms, blue-light photoreceptors called phototropins are primarily involved in sensing the direction of light. Phytochromes and cryptochromes (sensing red/far-red and blue light, respectively) also modulate asymmetric hypocotyl growth, leading to phototropism. Interactions between different light-signaling pathways regulating phototropism occur in cryptogams and angiosperms. In this review, we focus on the molecular mechanisms underlying the co-action between photosensory systems in the regulation of hypocotyl phototropism in Arabidopsis thaliana. Recent studies have shown that phytochromes and cryptochromes enhance phototropism by controlling the expression of important regulators of phototropin signaling. In addition, phytochromes may also regulate growth towards light via direct interaction with the phototropins.
Collapse
Affiliation(s)
- Anupama Goyal
- Centre for Integrative Genomics, University of Lausanne, Genopode Building, CH 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
22
|
Bolle C, Huep G, Kleinbölting N, Haberer G, Mayer K, Leister D, Weisshaar B. GABI-DUPLO: a collection of double mutants to overcome genetic redundancy in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:157-171. [PMID: 23573814 DOI: 10.1111/tpj.12197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 03/28/2013] [Accepted: 04/04/2013] [Indexed: 05/08/2023]
Abstract
Owing to duplication events in its progenitor, more than 90% of the genes in the Arabidopsis thaliana genome are members of multigene families. A set of 2108 gene families, each consisting of precisely two unlinked paralogous genes, was identified in the nuclear genome of A. thaliana on the basis of sequence similarity. A systematic method for the creation of double knock-out lines for such gene pairs, designated as DUPLO lines, was established and 200 lines are now publicly available. Their initial phenotypic characterisation led to the identification of seven lines with defects that emerge only in the adult stage. A further six lines display seedling lethality and 23 lines were lethal before germination. Another 14 lines are known to show phenotypes under non-standard conditions or at the molecular level. Knock-out of gene pairs with very similar coding sequences or expression profiles is more likely to produce a mutant phenotype than inactivation of gene pairs with dissimilar profiles or sequences. High coding sequence similarity and highly similar expression profiles are only weakly correlated, implying that promoter and coding regions of these gene pairs display different degrees of diversification.
Collapse
Affiliation(s)
- Cordelia Bolle
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, D-82152, Planegg-Martinsried, Germany
| | - Gunnar Huep
- Genome Research, Department of Biology, Bielefeld University, 33594, Bielefeld, Germany
| | - Nils Kleinbölting
- Genome Research, Department of Biology, Bielefeld University, 33594, Bielefeld, Germany
| | - Georg Haberer
- MIPS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Klaus Mayer
- MIPS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, D-82152, Planegg-Martinsried, Germany
| | - Bernd Weisshaar
- Genome Research, Department of Biology, Bielefeld University, 33594, Bielefeld, Germany
| |
Collapse
|
23
|
Hohm T, Preuten T, Fankhauser C. Phototropism: translating light into directional growth. AMERICAN JOURNAL OF BOTANY 2013; 100:47-59. [PMID: 23152332 DOI: 10.3732/ajb.1200299] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phototropism allows plants to align their photosynthetic tissues with incoming light. The direction of incident light is sensed by the phototropin family of blue light photoreceptors (phot1 and phot2 in Arabidopsis), which are light-activated protein kinases. The kinase activity of phototropins and phosphorylation of residues in the activation loop of their kinase domains are essential for the phototropic response. These initial steps trigger the formation of the auxin gradient across the hypocotyl that leads to asymmetric growth. The molecular events between photoreceptor activation and the growth response are only starting to be elucidated. In this review, we discuss the major steps leading from light perception to directional growth concentrating on Arabidopsis. In addition, we highlight links that connect these different steps enabling the phototropic response.
Collapse
Affiliation(s)
- Tim Hohm
- Department of Medical Genetics, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | | | | |
Collapse
|
24
|
Sakai T, Haga K. Molecular genetic analysis of phototropism in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:1517-34. [PMID: 22864452 PMCID: PMC3439871 DOI: 10.1093/pcp/pcs111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant life is strongly dependent on the environment, and plants regulate their growth and development in response to many different environmental stimuli. One of the regulatory mechanisms involved in these responses is phototropism, which allows plants to change their growth direction in response to the location of the light source. Since the study of phototropism by Darwin, many physiological studies of this phenomenon have been published. Recently, molecular genetic analyses of Arabidopsis have begun to shed light on the molecular mechanisms underlying this response system, including phototropin blue light photoreceptors, phototropin signaling components, auxin transporters, auxin action mechanisms and others. This review highlights some of the recent progress that has been made in further elucidating the phototropic response, with particular emphasis on mutant phenotypes.
Collapse
Affiliation(s)
- Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181 Japan.
| | | |
Collapse
|
25
|
Phytochrome Kinase Substrate 4 is phosphorylated by the phototropin 1 photoreceptor. EMBO J 2012; 31:3457-67. [PMID: 22781128 DOI: 10.1038/emboj.2012.186] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/11/2012] [Indexed: 11/08/2022] Open
Abstract
Phototropism allows plants to redirect their growth towards the light to optimize photosynthesis under reduced light conditions. Phototropin 1 (phot1) is the primary low blue light-sensing receptor triggering phototropism in Arabidopsis. Light-induced autophosphorylation of phot1, an AGC-class protein kinase, constitutes an essential step for phototropism. However, apart from the receptor itself, substrates of phot1 kinase activity are less clearly established. Phototropism is also influenced by the cryptochromes and phytochromes photoreceptors that do not provide directional information but influence the process through incompletely characterized mechanisms. Here, we show that Phytochrome Kinase Substrate 4 (PKS4), a known element of phot1 signalling, is a substrate of phot1 kinase activity in vitro that is phosphorylated in a phot1-dependent manner in vivo. PKS4 phosphorylation is transient and regulated by a type 2-protein phosphatase. Moreover, phytochromes repress the accumulation of the light-induced phosphorylated form of PKS4 showing a convergence of photoreceptor activity on this signalling element. Our physiological analyses suggest that PKS4 phosphorylation is not essential for phototropism but is part of a negative feedback mechanism.
Collapse
|
26
|
Brenner WG, Ramireddy E, Heyl A, Schmülling T. Gene regulation by cytokinin in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2012; 3:8. [PMID: 22639635 PMCID: PMC3355611 DOI: 10.3389/fpls.2012.00008] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/06/2012] [Indexed: 05/18/2023]
Abstract
The plant hormone cytokinin realizes at least part of its signaling output through the regulation of gene expression. A great part of the early transcriptional regulation is mediated by type-B response regulators, which are transcription factors of the MYB family. Other transcription factors, such as the cytokinin response factors of the AP2/ERF family, have also been shown to be involved in this process. Additional transcription factors mediate distinct parts of the cytokinin response through tissue- and cell-specific downstream transcriptional cascades. In Arabidopsis, only a single cytokinin response element, to which type-B response regulators bind, has been clearly proven so far, which has 5'-GAT(T/C)-3' as a core sequence. This motif has served to construct a synthetic cytokinin-sensitive two-component system response element, which is useful for monitoring the cellular cytokinin status. Insight into the extent of transcriptional regulation has been gained by genome-wide gene expression analyses following cytokinin treatment and from plants having an altered cytokinin content or signaling. This review presents a meta analysis of such microarray data resulting in a core list of cytokinin response genes. Genes encoding type-A response regulators displayed the most stable response to cytokinin, but a number of cytokinin metabolism genes (CKX4, CKX5, CYP735A2, UGT76C2) also belong to them, indicating homeostatic mechanisms operating at the transcriptional level. The cytokinin core response genes are also the target of other hormones as well as biotic and abiotic stresses, documenting crosstalk of the cytokinin system with other hormonal and environmental signaling pathways. The multiple links of cytokinin to diverse functions, ranging from control of meristem activity, hormonal crosstalk, nutrient acquisition, and various stress responses, are also corroborated by a compilation of genes that have been repeatedly found by independent gene expression profiling studies. Such functions are, at least in part, supported by genetic studies.
Collapse
Affiliation(s)
- Wolfram G. Brenner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Eswar Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Alexander Heyl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
- *Correspondence: Alexander Heyl and Thomas Schmülling, Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany. e-mail: ;
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
- *Correspondence: Alexander Heyl and Thomas Schmülling, Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany. e-mail: ;
| |
Collapse
|
27
|
Boccalandro HE, González CV, Wunderlin DA, Silva MF. Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits. J Pineal Res 2011; 51:226-32. [PMID: 21605162 DOI: 10.1111/j.1600-079x.2011.00884.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The identification of melatonin in plants has inspired new investigations to understand its biological function and which endogenous and external factors control its levels in these organisms. Owing to the therapeutical and nutraceutical properties of melatonin, it should be important to develop reliable analytical methods for its quantification in vegetal matrices containing this indoleamine, such as grape and wine. The main objectives of the present study were to test whether melatonin levels fluctuate during the day in berry skins of Vitis vinifera L. cv Malbec, thereby possibly relating its abundance to its putative antioxidant function, to determine whether daylight reaching clusters negatively controls melatonin levels, and to evaluate whether total polyphenols and anthocyanins also change through a 24-hr period. Grapes were harvested throughout the day/night to determine the moment when high levels of these components are present in grapes. The presence of melatonin in grapes was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. It is shown for the first time that melatonin levels fluctuate during the day/night cycle in plants grown under field conditions in a fruit organ of the species Vitis vinifera. We also determined that the diurnal decay of melatonin in berry skins is induced by sunlight, because covered bunches retained higher melatonin levels than exposed ones, thus explaining at least part of the basis of its daily fluctuation. Evidence of melatonin's antioxidant role in grapes is also suggested by monitoring malondialdehyde levels during the day.
Collapse
Affiliation(s)
- Hernán E Boccalandro
- Instituto de Ciencias Básicas (ICB), Universidad Nacional de Cuyo, Ciudad Universitaria, Mendoza, Argentina
| | | | | | | |
Collapse
|
28
|
Sineshchekov VA. Fluorescence and Photochemical Investigations of Phytochrome in Higher Plants. JOURNAL OF BOTANY 2010; 2010:1-15. [DOI: 10.1155/2010/358372] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
In higher plants, photoreceptor phytochrome (phy)—photoisomerizing biliprotein working as a light-driven molecular switch—is represented by a small family of phytochrome gene products with phyA and phyB as major species. phyA is unique among other phytochromes mediating photoresponse modes specific only for this pigment (far-red light induced) and also photoresponses characteristic of phyB and other minor phys (red light induced). In our group,in vivofluorescence investigations of phytochrome were initiated and two native phyA pools—posttranslationally modifiedPHYAgene products designated phyA′and phyA″—were detected in dicots and monocots. They differ by spectroscopic and photochemical parameters, by abundance and distribution in etiolated plant tissues, by light stability, and other phenomenological characteristics, and, most importantly, by their functional properties. This may explain, at least partially, the nature of the uniqueness of the phyA action. In this paper, the data on the phyA polymorphism are summarized with attention to the applied experimental approach.
Collapse
Affiliation(s)
- Vitaly A. Sineshchekov
- Physico-Chemical Biology, Biology Faculty, M. V. Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
29
|
Rösler J, Jaedicke K, Zeidler M. Cytoplasmic phytochrome action. PLANT & CELL PHYSIOLOGY 2010; 51:1248-1254. [PMID: 20576692 DOI: 10.1093/pcp/pcq091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Phytochrome photoperception is a common mechanism for the detection of red and far-red light in bacteria, cyanobacteria, fungi and plants. However, the responses following phytochrome activation appear to be quite diverse between species. Lower plants, such as mosses, show phytochrome-mediated directional responses, namely phototropism and polarotropism. These cannot be explained by nuclear gene regulation and are thought to be triggered by phytochromes in the cytoplasm or at the plasma membrane. In higher plants, similar directional responses are mediated via phototropin, a blue light receptor, with phytochromes mainly controlling morphogenetic responses through gene regulation. However, cytoplasmic phytochrome responses exist in higher plants too, which appear to be intertwined with directional blue light perception. By summarizing the respective findings, a possible conservation of cytoplasmic phytochrome function in higher and lower plants is addressed here.
Collapse
Affiliation(s)
- Jutta Rösler
- Department of Plant Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | |
Collapse
|
30
|
de Carbonnel M, Davis P, Roelfsema MRG, Inoue SI, Schepens I, Lariguet P, Geisler M, Shimazaki KI, Hangarter R, Fankhauser C. The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. PLANT PHYSIOLOGY 2010; 152:1391-405. [PMID: 20071603 PMCID: PMC2832238 DOI: 10.1104/pp.109.150441] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/09/2010] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1-PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins.
Collapse
|
31
|
Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development. Curr Top Dev Biol 2010; 91:29-66. [PMID: 20705178 DOI: 10.1016/s0070-2153(10)91002-8] [Citation(s) in RCA: 433] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering).
Collapse
Affiliation(s)
- Chitose Kami
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
32
|
Pedmale UV, Celaya RB, Liscum E. Phototropism: mechanism and outcomes. THE ARABIDOPSIS BOOK 2010; 8:e0125. [PMID: 22303252 PMCID: PMC3244944 DOI: 10.1199/tab.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants have evolved a wide variety of responses that allow them to adapt to the variable environmental conditions in which they find themselves growing. One such response is the phototropic response - the bending of a plant organ toward (stems and leaves) or away from (roots) a directional blue light source. Phototropism is one of several photoresponses of plants that afford mechanisms to alter their growth and development to changes in light intensity, quality and direction. Over recent decades much has been learned about the genetic, molecular and cell biological components involved in sensing and responding to phototropic stimuli. Many of these advances have been made through the utilization of Arabidopsis as a model for phototropic studies. Here we discuss such advances, as well as studies in other plant species where appropriate to the discussion of work in Arabidopsis.
Collapse
Affiliation(s)
- Ullas V. Pedmale
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - R. Brandon Celaya
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Department of Molecular, Cellular and Developmental Biology, University of California — Los Angeles, 3206 Life Science Bldg, 621 Charles E Young Dr, Los Angeles, CA 90095
| | - Emmanuel Liscum
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Address correspondence to
| |
Collapse
|
33
|
Kneissl J, Wachtler V, Chua NH, Bolle C. OWL1: an Arabidopsis J-domain protein involved in perception of very low light fluences. THE PLANT CELL 2009; 21:3212-25. [PMID: 19808946 PMCID: PMC2782286 DOI: 10.1105/tpc.109.066472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 08/28/2009] [Accepted: 09/14/2009] [Indexed: 05/05/2023]
Abstract
To sense ambient light conditions in order to optimize their growth and development, plants employ a battery of photoreceptors responsive to light quality and quantity. Essential for the sensing of red and far-red (FR) light is the phytochrome family of photoreceptors. Among them, phytochrome A is special because it mediates responses to different light conditions, including both very low fluences (very low fluence response [VLFR]) and high irradiances (high irradiance response [HIR]). In contrast with the FR-HIR signaling pathway, in which several intermediates of the signaling pathway have been identified, specific components of the VLFR pathway remain unknown. Here, we describe owl1 (for orientation under very low fluences of light), a mutant that is specific for the VLFR, suggesting that VLFR and HIR pathways are genetically distinct, although some common mechanisms can be observed. OWL1 codes for a ubiquitous J-domain protein essential for germination, cotyledon opening, hypocotyl elongation, and deviation of the direction of hypocotyl growth from the vertical under very low light conditions. Additionally, we observed a flowering phenotype suggesting a role for the VLFR during the whole life cycle of a plant. OWL1 interacts with the basic helix-loop-helix HFR1 (LONG HYPOCOTYL IN FAR-RED) transcription factor, previously characterized as a component of the FR-HIR pathway. Both proteins are involved in the agravitropic response under FR light. We propose a central function of OWL1 in the VLFR pathway, which is essential for plant survival under unfavorable light conditions.
Collapse
Affiliation(s)
- Julia Kneissl
- Institute of Botany, Department for Biology I, Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| | - Volker Wachtler
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York 10021
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York 10021
| | - Cordelia Bolle
- Institute of Botany, Department for Biology I, Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
34
|
Cosio C, Vuillemin L, De Meyer M, Kevers C, Penel C, Dunand C. An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. PLANTA 2009; 229:823-36. [PMID: 19116728 DOI: 10.1007/s00425-008-0876-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 12/10/2008] [Indexed: 05/21/2023]
Abstract
The high number of peroxidase genes explains the description of numerous physiological functions and the fact that the in planta function of a single isoform has never been characterized yet. We analyzed in transgenic Arabidopsis thaliana the localization of a zucchini isoperoxidase (APRX), previously purified thanks to its pectin binding ability. We confirmed that the protein is localized near the cell wall, mainly produced in the elongation area of the hypocotyls and respond to exogenous auxin. In addition, the ectopic overexpression of APRX induced changes in growth pattern and a significant reduction of endogenous indole-3-acetic acid (IAA) level. In agreement with these observations APRX showed an elevated in vitro auxin oxidase activity. We propose that APRX participates in the negative feedback regulation of auxin level and consequently terminates the hypocotyl elongation process.
Collapse
MESH Headings
- 2,4-Dichlorophenoxyacetic Acid/pharmacology
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Blotting, Northern
- Cluster Analysis
- Cucurbita/enzymology
- Cucurbita/genetics
- Cucurbita/growth & development
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Hypocotyl/enzymology
- Hypocotyl/genetics
- Hypocotyl/growth & development
- Indoleacetic Acids/metabolism
- Microscopy, Fluorescence
- Molecular Sequence Data
- Oxidoreductases/metabolism
- Peroxidases/classification
- Peroxidases/genetics
- Peroxidases/metabolism
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Claudia Cosio
- Laboratoire of Plant Biochemistry and Physiology, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Han IS, Tseng TS, Eisinger W, Briggs WR. Phytochrome A regulates the intracellular distribution of phototropin 1-green fluorescent protein in Arabidopsis thaliana. THE PLANT CELL 2008; 20:2835-47. [PMID: 18952772 PMCID: PMC2590736 DOI: 10.1105/tpc.108.059915] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 09/30/2008] [Accepted: 10/10/2008] [Indexed: 05/21/2023]
Abstract
It has been known for decades that red light pretreatment has complex effects on subsequent phototropic sensitivity of etiolated seedlings. Here, we demonstrate that brief pulses of red light given 2 h prior to phototropic induction by low fluence rates of blue light prevent the blue light-induced loss of green fluorescent protein-tagged phototropin 1 (PHOT1-GFP) from the plasma membrane of cortical cells of transgenic seedlings of Arabidopsis thaliana expressing PHOT1-GFP in a phot1-5 null mutant background. This red light effect is mediated by phytochrome A and requires approximately 2 h in the dark at room temperature to go to completion. It is fully far red reversible and shows escape from photoreversibility following 30 min of subsequent darkness. Red light-induced inhibition of blue light-inducible changes in the subcellular distribution of PHOT1-GFP is only observed in rapidly elongating regions of the hypocotyl. It is absent in hook tissues and in mature cells below the elongation zone. We hypothesize that red light-induced retention of the PHOT1-GFP on the plasma membrane may account for the red light-induced increase in phototropic sensitivity to low fluence rates of blue light.
Collapse
Affiliation(s)
- In-Seob Han
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | | | | | | |
Collapse
|
36
|
Schepens I, Boccalandro HE, Kami C, Casal JJ, Fankhauser C. PHYTOCHROME KINASE SUBSTRATE4 modulates phytochrome-mediated control of hypocotyl growth orientation. PLANT PHYSIOLOGY 2008; 147:661-71. [PMID: 18390804 PMCID: PMC2409036 DOI: 10.1104/pp.108.118166] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 03/25/2008] [Indexed: 05/19/2023]
Abstract
Gravity and light are major factors shaping plant growth. Light perceived by phytochromes leads to seedling deetiolation, which includes the deviation from vertical hypocotyl growth and promotes hypocotyl phototropism. These light responses enhance survival of young seedlings during their emergence from the soil. The PHYTOCHROME KINASE SUBSTRATE (PKS) family is composed of four members in Arabidopsis (Arabidopsis thaliana): PKS1 to PKS4. Here we show that PKS4 is a negative regulator of both phytochrome A- and B-mediated inhibition of hypocotyl growth and promotion of cotyledon unfolding. Most prominently, pks4 mutants show abnormal phytochrome-modulated hypocotyl growth orientation. In dark-grown seedlings hypocotyls change from the original orientation defined by seed position to the upright orientation defined by gravity and light reduces the magnitude of this shift. In older seedlings with the hypocotyls already oriented by gravity, light promotes the deviation from vertical orientation. Based on the characterization of pks4 mutants we propose that PKS4 inhibits changes in growth orientation under red or far-red light. Our data suggest that in these light conditions PKS4 acts as an inhibitor of asymmetric growth. This hypothesis is supported by the phenotype of PKS4 overexpressers. Together with previous findings, these results indicate that the PKS family plays important functions during light-regulated tropic growth responses.
Collapse
Affiliation(s)
- Isabelle Schepens
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Molas ML, Kiss JZ. PKS1 plays a role in red-light-based positive phototropism in roots. PLANT, CELL & ENVIRONMENT 2008; 31:842-9. [PMID: 18266898 DOI: 10.1111/j.1365-3040.2008.01797.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Aerial parts of plants curve towards the light (i.e. positive phototropism), and roots typically grow away from the light (i.e. negative phototropism). In addition, Arabidopsis roots exhibit positive phototropism relative to red light (RL), and this response is mediated by phytochromes A and B (phyA and phyB). Upon light stimulation, phyA and phyB interact with the phytochrome kinase substrate (PKS1) in the cytoplasm. In this study, we investigated the role of PKS1, along with phyA and phyB, in the positive phototropic responses to RL in roots. Using a high-resolution feedback system, we studied the phenotypic responses of roots of phyA, phyB, pks1, phyA pks1 and phyB pks1 null mutants as well as the PKS1-overexpressing line in response to RL. PKS1 emerged as an intermediary in the signalling pathways and appears to promote a negative curvature to RL in roots. In addition, phyA and phyB were both essential for a positive response to RL and act in a complementary fashion. However, either photoreceptor acting without the other results in negative curvature in response to red illumination so that the mode of action differs depending on whether phyA and phyB act independently or together. Our results suggest that PKS1 is part of a signalling pathway independent of phyA and phyB and that PKS1 modulates RL-based root phototropism.
Collapse
Affiliation(s)
- Maria Lia Molas
- Department of Botany, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
38
|
Boccalandro HE, De Simone SN, Bergmann-Honsberger A, Schepens I, Fankhauser C, Casal JJ. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism. PLANT PHYSIOLOGY 2008; 146:108-15. [PMID: 18024556 PMCID: PMC2230574 DOI: 10.1104/pp.107.106468] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light.
Collapse
Affiliation(s)
- Hernán E Boccalandro
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, 1417, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
39
|
Crepy M, Yanovsky MJ, Casal JJ. Blue Rhythms Between GIGANTEA and Phytochromes. PLANT SIGNALING & BEHAVIOR 2007; 2:530-2. [PMID: 19704550 PMCID: PMC2634360 DOI: 10.4161/psb.2.6.4744] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 07/16/2007] [Indexed: 05/13/2023]
Abstract
GIGANTEA (GI) is involved in the promotion of flowering by long days, in light input to the circadian clock, and in seedling de-etiolation under continuous red light or blue light but not under continuous far-red light (FR). Since red-light effects are mediated largely by phytochrome B and those of FR by phytochrome A (phyA), GI was considered not to affect phyA signaling. However, recent observations using brief FR pulses indicate that GI does affect the very-low-fluence response (VLFR) and not the high-irradiance response (HIR) pathway of phyA. Seed germination, seedling de-etiolation and gene expression showed rhythmic sensitivity to FR pulses. GI affected the magnitude but not the rhythmic pattern of the responses, indicating that GI regulation of phyA signaling does not derive from its effects on the clock. Here we show that despite de above divergence between VLFR and HIR, both pathways require the bZip transcription factor HY5. Furthermore, the blue-light phenotype of gi is not mediated by phyA, indicating a role of GI in the control of cryptochrome signaling. These findings illustrate features of plant signaling networks.
Collapse
Affiliation(s)
- María Crepy
- IFEVA; Facultad de Agronomía; Universidad de Buenos Aires; CONICET; Buenos Aires, Argentina
| | | | | |
Collapse
|
40
|
Brock MT, Tiffin P, Weinig C. Sequence diversity and haplotype associations with phenotypic responses to crowding: GIGANTEA affects fruit set in Arabidopsis thaliana. Mol Ecol 2007; 16:3050-62. [PMID: 17614917 DOI: 10.1111/j.1365-294x.2007.03298.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Identifying the molecular genetic basis of intraspecific variation in quantitative traits promises to provide novel insight into their evolutionary history as well as genetic mechanisms of adaptation. In an attempt to identify genes responsible for natural variation in competitive responses in Arabidopsis thaliana, we examined DNA sequence diversity at seven loci previously identified as members of the phytochrome B signalling network. For one gene, GIGANTEA (GI), we detected significant haplotype structure. To test for GI haplogroup-phenotype associations, we genotyped 161 A. thaliana accessions at GI and censused the same accessions for total fruit set and the expression of three phenotypic traits (days to flowering, petiole length, and inflorescence height) in a greenhouse experiment where plants were grown in crowded and uncrowded environments. We detected a significant association between GI and total fruit set that resulted in a 14% difference in average fruit set among GI haplogroups. Given that fruit set is an important component of fitness in this species and given the magnitude of the effect, the question arises as to how variation at this locus is maintained. Our observation of frequent and significant epistasis between GI and background single nucleotide polymorphisms (SNP), where the fitness ranking of the GI allele either reverses or does not differ depending on the allele at the interacting SNP, suggests that epistatic selection may actively maintain or at least slow the loss of variation at GI. This result is particularly noteworthy in the light of the ongoing debate regarding the genetic underpinnings of phenotypic evolution and recent observations that epistasis for phenotypic traits and components of fitness is common in A. thaliana.
Collapse
Affiliation(s)
- Marcus T Brock
- Department of Plant Biology, University of Minnesota, 1445 Gortner Avenue, Saint Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
41
|
Khanna R, Shen Y, Toledo-Ortiz G, Kikis EA, Johannesson H, Hwang YS, Quail PH. Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in Arabidopsis are necessary for optimal deetiolation. THE PLANT CELL 2006; 18:2157-71. [PMID: 16891401 PMCID: PMC1560915 DOI: 10.1105/tpc.106.042200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In previous time-resolved microarray-based expression profiling, we identified 32 genes encoding putative transcription factors, signaling components, and unknown proteins that are rapidly and robustly induced by phytochrome (phy)-mediated light signals. Postulating that they are the most likely to be direct targets of phy signaling and to function in the primary phy regulatory circuitry, we examined the impact of targeted mutations in these genes on the phy-induced seedling deetiolation process in Arabidopsis thaliana. Using light-imposed concomitant inhibition of hypocotyl and stimulation of cotyledon growth as diagnostic criteria for normal deetiolation, we identified three major mutant response categories. Seven (22%) lines displayed statistically significant, reciprocal, aberrant photoresponsiveness in the two organs, suggesting disruption of normal deetiolation; 13 (41%) lines displayed significant defects either unidirectionally in both organs or in hypocotyls only, suggesting global effects not directly related to photomorphogenic signaling; and 12 (37%) lines displayed no significant difference in photoresponsiveness from the wild type. Potential reasons for the high proportion of rapidly light-responsive genes apparently unnecessary for the deetiolation phenotype are discussed. One of the seven disrupted genes displaying a significant mutant phenotype, the basic helix-loop-helix factor-encoding PHYTOCHROME-INTERACTING FACTOR3-LIKE1 gene, was found to be necessary for rapid light-induced expression of the photomorphogenesis- and circadian-related PSEUDO-RESPONSE REGULATOR9 gene, indicating a regulatory function in the early phy-induced transcriptional network.
Collapse
Affiliation(s)
- Rajnish Khanna
- Department of Plant and Microbial Biology, University of California, Berkeley, 94720, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Hiltbrunner A, Tscheuschler A, Viczián A, Kunkel T, Kircher S, Schäfer E. FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor. PLANT & CELL PHYSIOLOGY 2006; 47:1023-34. [PMID: 16861711 DOI: 10.1093/pcp/pcj087] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The phytochrome family of red/far-red photoreceptors is involved in the regulation of a wide range of developmental responses in plants. The Arabidopsis genome contains five phytochromes (phyA-E), among which phyA and phyB play the most important roles. Phytochromes localize to the cytosol in the dark and accumulate in the nucleus under light conditions, inducing specific phytochrome-mediated responses. Light-regulated nuclear accumulation of the phytochrome photoreceptors is therefore considered a key regulatory step of these pathways. In fact, one of the most severe phyA signaling mutants, fhy1 (far red elongated hypocotyl 1), is strongly affected in nuclear accumulation of phyA. The fhy1 fhl (fhy1 like) double mutant, lacking both FHY1 and its only close homolog FHL, is virtually blind to far-red light like phyA null seedlings. Here we show that FHL accounts for residual amounts of phyA in the nucleus in a fhy1 background and that nuclear accumulation of phyA is completely inhibited in an fhy1 FHL RNAi knock-down line. Moreover, we demonstrate that FHL and phyA interact with each other in a light-dependent manner and that they co-localize in light-induced nuclear speckles. We also identify a phyA-binding site at the C-terminus of FHY1 and FHL, and show that the N-terminal 406 amino acids of phyA are sufficient for the interaction with FHY1/FHL.
Collapse
Affiliation(s)
- Andreas Hiltbrunner
- Institut für Biologie II/Botanik, Albert Ludwigs Universität, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Lariguet P, Schepens I, Hodgson D, Pedmale UV, Trevisan M, Kami C, de Carbonnel M, Alonso JM, Ecker JR, Liscum E, Fankhauser C. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proc Natl Acad Sci U S A 2006; 103:10134-9. [PMID: 16777956 PMCID: PMC1502518 DOI: 10.1073/pnas.0603799103] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1-PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families.
Collapse
Affiliation(s)
- Patricia Lariguet
- *Department of Molecular Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - Isabelle Schepens
- *Department of Molecular Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne, Switzerland
| | - Daniel Hodgson
- Division of Biological Sciences, 302/303 Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| | - Ullas V. Pedmale
- Division of Biological Sciences, 302/303 Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| | - Martine Trevisan
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne, Switzerland
| | - Chitose Kami
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne, Switzerland
| | - Matthieu de Carbonnel
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne, Switzerland
| | - José M. Alonso
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Joseph R. Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Emmanuel Liscum
- Division of Biological Sciences, 302/303 Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| | - Christian Fankhauser
- *Department of Molecular Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne, Switzerland
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Marrocco K, Zhou Y, Bury E, Dieterle M, Funk M, Genschik P, Krenz M, Stolpe T, Kretsch T. Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:423-38. [PMID: 16412087 DOI: 10.1111/j.1365-313x.2005.02635.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Empfindlicher im Dunkelroten Licht 1 (EID1) is an F-box protein that functions as a negative regulator in phytochrome A (phyA)-specific light signalling. F-box proteins are components of SCF ubiquitin ligase complexes that target proteins for degradation in the proteasome. Here we present further characterization of EID1 at the expression level, and show that it regulates photomorphogenesis in seedlings, rosette leaf development and flowering. Data on transcript expression patterns indicate that EID1 is expressed during all stages of Arabidopsis development and exhibits no light response. Microscope studies demonstrate that EID1 is localized to the nucleus, where it can form speckles under continuous far-red light that resemble clastosomes. To characterize the composition and formation of SCF(EID1) complexes further, we used two-hybrid and bridge assays in yeast and in planta. EID1 interacts specifically with several Arabidopsis Skp1-like (ASK) proteins and Cullin1 to form stable dimeric and trimeric complexes. Our results support a two-step association process in which the F-box protein binds first to the ASK adaptor, forming a unit which then associates with the catalytic core of the SCF complex. Finally, our data indicate that the EID1 target interaction domain is composed of two independent modules.
Collapse
Affiliation(s)
- Katia Marrocco
- Albert-Ludwigs-Universität Freiburg i. Br., Institut für Biologie 2 - Botanik, Schänzlestr. 1, 79104 Freiburg i. Br., Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Molas ML, Kiss JZ, Correll MJ. Gene profiling of the red light signalling pathways in roots. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:3217-29. [PMID: 16908503 DOI: 10.1093/jxb/erl086] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Red light, acting through the phytochromes, controls numerous aspects of plant development. Many of the signal transduction elements downstream of the phytochromes have been identified in the aerial portions of the plant; however, very few elements in red-light signalling have been identified specifically for roots. Gene profiling studies using microarrays and quantitative Real-Time PCR were performed to characterize gene expression changes in roots of Arabidopsis seedlings exposed to 1 h of red light. Several factors acting downstream of phytochromes in red-light signalling in roots were identified. Some of the genes found to be differentially expressed in this study have already been characterized in the red-light-signalling pathway for whole plants. For example, PHYTOCHROME KINASE 1 (PKS1), LONG HYPOCOTYL 5 (HY5), EARLY FLOWERING 4 (ELF4), and GIGANTEA (GI) were all significantly up-regulated in roots of seedlings exposed to 1 h of red light. The up-regulation of SUPPRESSOR OF PHYTOCHROME A RESPONSES 1 (SPA1) and CONSTITUTIVE PHOTOMORPHOGENIC 1-like (COP1-like) genes suggests that the PHYA-mediated pathway was attenuated by red light. In addition, genes involved in lateral root and root hair formation, root plastid development, phenylpropanoid metabolism, and hormone signalling were also regulated by exposure to red light. Interestingly, members of the RPT2/NPH3 (ROOT PHOTOTROPIC 2/NON PHOTOTROPIC HYPOCOTYL 3) family, which have been shown to mediate blue-light-induced phototropism, were also differentially regulated in roots in red light. Therefore, these results suggest that red and blue light pathways interact in roots of seedlings and that many elements involved in red-light-signalling found in the aerial portions of the plant are differentially expressed in roots within 1 h of red light exposure.
Collapse
Affiliation(s)
- Maria Lia Molas
- Department of Botany, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
46
|
Brenner WG, Romanov GA, Köllmer I, Bürkle L, Schmülling T. Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:314-33. [PMID: 16212609 DOI: 10.1111/j.1365-313x.2005.02530.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cytokinins are hormones that regulate many developmental and physiological processes in plants. Recent work has revealed that the cytokinin signal is transduced by two-component systems to the nucleus where target genes are activated. Most of the rapid transcriptional responses are unknown. We measured immediate-early and delayed cytokinin responses through genome-wide expression profiling with the Affymetrix ATH1 full genome array (Affymetrix Inc., Santa Clara, CA, USA). Fifteen minutes after cytokinin treatment of 5-day-old Arabidopsis seedlings, 71 genes were upregulated and 11 genes were downregulated. Immediate-early cytokinin response genes include a high portion of transcriptional regulators, among them six transcription factors that had previously not been linked to cytokinin. Five plastid transcripts were rapidly regulated as well, indicating a rapid transfer of the signal to plastids or direct perception of the cytokinin signal by plastids. After 2 h of cytokinin treatment genes coding for transcriptional regulators, signaling proteins, developmental and hormonal regulators, primary and secondary metabolism, energy generation and stress reactions were over-represented. A significant number of the responding genes are known to regulate light (PHYA, PSK1, CIP8, PAT1, APRR), auxin (Aux/IAA), ethylene (ETR2, EIN3, ERFs/EREBPs), gibberellin (GAI, RGA1, GA20 oxidase), nitrate (NTR2, NIA) and sugar (STP1, SUS1) dependent processes, indicating intense crosstalk with environmental cues, other hormones and metabolites. Analysis of cytokinin-deficient 35S:AtCKX1 transgenic seedlings has revealed additional, long-lasting cytokinin-sensitive changes of transcript abundance. Comparative overlay-analysis with the software tool mapman identified previously unknown cytokinin-sensitive metabolic genes, for example in the metabolism of trehalose-6-phosphate. Taken together, we present a genome-wide view of changes in cytokinin-responsive transcript abundance of genes that might be functionally relevant for the many biological processes that are governed by cytokinins.
Collapse
Affiliation(s)
- Wolfram G Brenner
- Max Planck-Institute for Molecular Genetics, Ihnestrasse 63-73, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
47
|
Magliano TMA, Botto JF, Godoy AV, Symonds VV, Lloyd AM, Casal JJ. New Arabidopsis recombinant inbred lines (Landsberg erecta x Nossen) reveal natural variation in phytochrome-mediated responses. PLANT PHYSIOLOGY 2005; 138:1126-35. [PMID: 15908601 PMCID: PMC1150426 DOI: 10.1104/pp.104.059071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We used 52 Arabidopsis (Arabidopsis thaliana) accessions and developed a new set of 137 recombinant inbred lines between Landsberg erecta (Ler) and Nossen (No-0) to explore the genetic basis of phytochrome-mediated responses during deetiolation. Unexpectedly, most accessions showed weak or moderate hypocotyl growth and cotyledon unfolding responses to pulses of far-red light (FR). Crosses between Columbia and No-0, two accessions with poor response, segregated seedlings with unfolded cotyledons under pulsed FR, suggesting the occurrence of accession-specific loci in the repression of morphological responses to weak light signals. Confirming the latter expectation, mapping of responses to pulsed FR in the Ler x No-0 lines identified novel loci. Despite its weak response to pulsed FR, No-0 showed a response to continuous FR stronger than that observed in Ler. By mapping the differential effect of pulsed versus continuous FR, we identified two high-irradiance response loci that account for the steeper response to continuous FR in No-0. This underscores the potential of the methodology to identify loci involved in the regulation of the shape of signal input-output relationships. Loci specific for a given phytochrome-mediated response were more frequent than pleiotropic loci. Segregation of these specific loci is predicted to yield different combinations of seedling responsivity to light. Such flexibility in combination of responses is observed among accessions and could aid in the adjustment to different microenvironments.
Collapse
Affiliation(s)
- Teresa M Alconada Magliano
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, 1417 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
48
|
Kim JI, Park JE, Zarate X, Song PS. Phytochrome phosphorylation in plant light signaling. Photochem Photobiol Sci 2005; 4:681-7. [PMID: 16121277 DOI: 10.1039/b417912a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reversible protein phosphorylation is a switching mechanism used in eukaryotes to regulate various cellular signalings. In plant light signaling, sophisticated photosensory receptor systems operate to modulate growth and development. The photoreceptors include phytochromes, cryptochromes and phototropins. Despite considerable progresses in defining the photosensory roles of these photoreceptors, the primary biochemical mechanisms by which the photoreceptor molecules transduce the perceived light signals into cellular responses remain to be elucidated. The signal-transducing photoreceptors in plants are all phosphoproteins and/or protein kinases, suggesting that light-dependent protein phosphorylation and dephosphorylation play important roles in the function of the photoreceptors. This review focuses on the role of phytochromes' reversible phosphorylation involved in the light signal transduction in plants.
Collapse
Affiliation(s)
- Jeong-Il Kim
- Kumho Life & Environmental Science Laboratory, 1 Oryong-Dong, Gwangju, 500-712 South Korea.
| | | | | | | |
Collapse
|
49
|
Abstract
Plants utilize several families of photoreceptors to fine-tune growth and development over a large range of environmental conditions. The UV-A/blue light sensing phototropins mediate several light responses enabling optimization of photosynthetic yields. The initial event occurring upon photon capture is a conformational change of the photoreceptor that activates its protein kinase activity. The UV-A/blue light sensing cryptochromes and the red/far-red sensing phytochromes coordinately control seedling establishment, entrainment of the circadian clock, and the transition from vegetative to reproductive growth. In addition, the phytochromes control seed germination and shade-avoidance responses. The molecular mechanisms involved include light-regulated subcellular localization of the photoreceptors, a large reorganization of the transcriptional program, and light-regulated proteolytic degradation of several photoreceptors and signaling components.
Collapse
Affiliation(s)
- Meng Chen
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
50
|
Schepens I, Duek P, Fankhauser C. Phytochrome-mediated light signalling in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:564-569. [PMID: 15337099 DOI: 10.1016/j.pbi.2004.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The phytochrome photoreceptors regulate all major transitions during the life cycle of plants. The role of each member of the phytochrome family in Arabidopsis is starting to be understood, and a molecular description of phytochrome-regulated flowering time and shade avoidance is emerging. Recent publications have challenged some areas of well-accepted models concerning phytochrome signalling. Moreover, the importance of proteolysis during phytochrome signalling is becoming very apparent.
Collapse
Affiliation(s)
- Isabelle Schepens
- Department of Molecular Biology, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland.
| | | | | |
Collapse
|