1
|
Liu X, Xu Z, Feng B, Zhou Q, Guo S, Liao S, Ou Y, Fan X, Wang T. Dissection of a novel major stable QTL on chromosome 7D for grain hardness and its breeding value estimation in bread wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1356687. [PMID: 38362452 PMCID: PMC10867189 DOI: 10.3389/fpls.2024.1356687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Grain hardness (Gh) is important for wheat processing and end-product quality. Puroindolines polymorphism explains over 60% of Gh variation and the novel genetic factors remain to be exploited. In this study, a total of 153 quantitative trait loci (QTLs), clustered into 12 genomic intervals (C1-C12), for 13 quality-related traits were identified using a recombinant inbred line population derived from the cross of Zhongkemai138 (ZKM138) and Chuanmai44 (CM44). Among them, C7 (harboring eight QTLs for different quality-related traits) and C8 (mainly harboring QGh.cib-5D.1 for Gh) were attributed to the famous genes, Rht-D1 and Pina, respectively, indicating that the correlation of involved traits was supported by the pleotropic or linked genes. Notably, a novel major stable QTL for Gh was detected in the C12, QGh.cib-7D, with ZKM138-derived allele increasing grain hardness, which was simultaneously mapped by the BSE-Seq method. The geographic pattern and transmissibility of this locus revealed that the increasing-Gh allele is highly frequently present in 85.79% of 373 worldwide wheat varieties and presented 99.31% transmissibility in 144 ZKM138-derivatives, indicating the non-negative effect on yield performance and that its indirect passive selection has happened during the actual breeding process. Thus, the contribution of this new Gh-related locus was highlighted in consideration of improving the efficiency and accuracy of the soft/hard material selection in the molecular marker-assisted process. Further, TraesCS7D02G099400, TraesCS7D02G098000, and TraesCS7D02G099500 were initially deduced to be the most potential candidate genes of QGh.cib-7D. Collectively, this study provided valuable information of elucidating the genetic architecture of Gh for wheat quality improvement.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Insitute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shaodan Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuhao Ou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Ahmad N, Fatima S, Mehmood MA, Zaman QU, Atif RM, Zhou W, Rahman MU, Gill RA. Targeted genome editing in polyploids: lessons from Brassica. FRONTIERS IN PLANT SCIENCE 2023; 14:1152468. [PMID: 37409308 PMCID: PMC10318174 DOI: 10.3389/fpls.2023.1152468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 07/07/2023]
Abstract
CRISPR-mediated genome editing has emerged as a powerful tool for creating targeted mutations in the genome for various applications, including studying gene functions, engineering resilience against biotic and abiotic stresses, and increasing yield and quality. However, its utilization is limited to model crops for which well-annotated genome sequences are available. Many crops of dietary and economic importance, such as wheat, cotton, rapeseed-mustard, and potato, are polyploids with complex genomes. Therefore, progress in these crops has been hampered due to genome complexity. Excellent work has been conducted on some species of Brassica for its improvement through genome editing. Although excellent work has been conducted on some species of Brassica for genome improvement through editing, work on polyploid crops, including U's triangle species, holds numerous implications for improving other polyploid crops. In this review, we summarize key examples from genome editing work done on Brassica and discuss important considerations for deploying CRISPR-mediated genome editing more efficiently in other polyploid crops for improvement.
Collapse
Affiliation(s)
- Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Samia Fatima
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Qamar U. Zaman
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Rana Muhammad Atif
- National Center of Genome Editing, Center of Advanced Studies, Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Weijun Zhou
- Ministry of Agriculture and Rural Affairs Key Lab of Spectroscopy Sensing, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Mehboob-ur Rahman
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Rafaqat Ali Gill
- Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
3
|
Filip E, Woronko K, Stępień E, Czarniecka N. An Overview of Factors Affecting the Functional Quality of Common Wheat ( Triticum aestivum L.). Int J Mol Sci 2023; 24:7524. [PMID: 37108683 PMCID: PMC10142556 DOI: 10.3390/ijms24087524] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide, and, as a resilient cereal, it grows in various climatic zones. Due to changing climatic conditions and naturally occurring environmental fluctuations, the priority problem in the cultivation of wheat is to improve the quality of the crop. Biotic and abiotic stressors are known factors leading to the deterioration of wheat grain quality and to crop yield reduction. The current state of knowledge on wheat genetics shows significant progress in the analysis of gluten, starch, and lipid genes responsible for the synthesis of the main nutrients in the endosperm of common wheat grain. By identifying these genes through transcriptomics, proteomics, and metabolomics studies, we influence the creation of high-quality wheat. In this review, previous works were assessed to investigate the significance of genes, puroindolines, starches, lipids, and the impact of environmental factors, as well as their effects on the wheat grain quality.
Collapse
Affiliation(s)
- Ewa Filip
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Karolina Woronko
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Edyta Stępień
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16, 70-383 Szczecin, Poland
| | - Natalia Czarniecka
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| |
Collapse
|
4
|
May D, Paldi K, Altpeter F. Targeted mutagenesis with sequence-specific nucleases for accelerated improvement of polyploid crops: Progress, challenges, and prospects. THE PLANT GENOME 2023:e20298. [PMID: 36692095 DOI: 10.1002/tpg2.20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/08/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Many of the world's most important crops are polyploid. The presence of more than two sets of chromosomes within their nuclei and frequently aberrant reproductive biology in polyploids present obstacles to conventional breeding. The presence of a larger number of homoeologous copies of each gene makes random mutation breeding a daunting task for polyploids. Genome editing has revolutionized improvement of polyploid crops as multiple gene copies and/or alleles can be edited simultaneously while preserving the key attributes of elite cultivars. Most genome-editing platforms employ sequence-specific nucleases (SSNs) to generate DNA double-stranded breaks at their target gene. Such DNA breaks are typically repaired via the error-prone nonhomologous end-joining process, which often leads to frame shift mutations, causing loss of gene function. Genome editing has enhanced the disease resistance, yield components, and end-use quality of polyploid crops. However, identification of candidate targets, genotyping, and requirement of high mutagenesis efficiency remain bottlenecks for targeted mutagenesis in polyploids. In this review, we will survey the tremendous progress of SSN-mediated targeted mutagenesis in polyploid crop improvement, discuss its challenges, and identify optimizations needed to sustain further progress.
Collapse
Affiliation(s)
- David May
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Katalin Paldi
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Fredy Altpeter
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
- Plant Cellular and Molecular Biology Program, Genetics Institute, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| |
Collapse
|
5
|
Han X, Zhang J, Han S, Chong SL, Meng G, Song M, Wang Y, Zhou S, Liu C, Lou L, Lou X, Cheng L, Lin E, Huang H, Yang Q, Tong Z. The chromosome-scale genome of Phoebe bournei reveals contrasting fates of terpene synthase (TPS)-a and TPS-b subfamilies. PLANT COMMUNICATIONS 2022; 3:100410. [PMID: 35841151 PMCID: PMC9700126 DOI: 10.1016/j.xplc.2022.100410] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/16/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 05/15/2023]
Abstract
Terpenoids, including aromatic volatile monoterpenoids and sesquiterpenoids, function in defense against pathogens and herbivores. Phoebe trees are remarkable for their scented wood and decay resistance. Unlike other Lauraceae species investigated to date, Phoebe species predominantly accumulate sesquiterpenoids instead of monoterpenoids. Limited genomic data restrict the elucidation of terpenoid variation and functions. Here, we present a chromosome-scale genome assembly of a Lauraceae tree, Phoebe bournei, and identify 72 full-length terpene synthase (TPS) genes. Genome-level comparison shows pervasive lineage-specific duplication and contraction of TPS subfamilies, which have contributed to the extreme terpenoid variation within Lauraceae species. Although the TPS-a and TPS-b subfamilies were both expanded via tandem duplication in P. bournei, more TPS-a copies were retained and constitutively expressed, whereas more TPS-b copies were lost. The TPS-a genes on chromosome 8 functionally diverged to synthesize eight highly accumulated sesquiterpenes in P. bournei. The essential oil of P. bournei and its main component, β-caryophyllene, exhibited antifungal activities against the three most widespread canker pathogens of trees. The TPS-a and TPS-b subfamilies have experienced contrasting fates over the evolution of P. bournei. The abundant sesquiterpenoids produced by TPS-a proteins contribute to the excellent pathogen resistance of P. bournei trees. Overall, this study sheds light on the evolution and adaptation of terpenoids in Lauraceae and provides valuable resources for boosting plant immunity against pathogens in various trees and crops.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Shuang Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Sun Li Chong
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | | | - Minyan Song
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yang Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Shengcai Zhou
- Experimental Forest Farm of Qingyuan County, Qingyuan, Zhejiang 323800, China
| | - Chengcheng Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Luhuan Lou
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xiongzhen Lou
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Longjun Cheng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Erpei Lin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Huahong Huang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
6
|
Laugerotte J, Baumann U, Sourdille P. Genetic control of compatibility in crosses between wheat and its wild or cultivated relatives. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:812-832. [PMID: 35114064 PMCID: PMC9055826 DOI: 10.1111/pbi.13784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 01/20/2022] [Indexed: 05/16/2023]
Abstract
In the recent years, the agricultural world has been progressing towards integrated crop protection, in the context of sustainable and reasoned agriculture to improve food security and quality, and to preserve the environment through reduced uses of water, pesticides, fungicides or fertilisers. For this purpose, one possible issue is to cross-elite varieties widely used in fields for crop productions with exotic or wild genetic resources in order to introduce new diversity for genes or alleles of agronomical interest to accelerate the development of new improved cultivars. However, crossing ability (or crossability) often depends on genetic background of the recipient varieties or of the donor, which hampers a larger use of wild resources in breeding programmes of many crops. In this review, we tried to provide a comprehensive summary of genetic factors controlling crossing ability between Triticeae species with a special focus on the crossability between wheat (Triticum aestivum L.) and rye (Secale cereale), which lead to the creation of Triticale (x Triticosecale Wittm.). We also discussed potential applications of newly identified genes or markers associated with crossability for accelerating wheat and Triticale improvement by application of modern genomics technologies in breeding programmes.
Collapse
Affiliation(s)
- Julie Laugerotte
- Genetics, Diversity and Ecophysiology of CerealsINRAEUniversité Clermont‐AuvergneClermont‐FerrandFrance
| | - Ute Baumann
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Pierre Sourdille
- Genetics, Diversity and Ecophysiology of CerealsINRAEUniversité Clermont‐AuvergneClermont‐FerrandFrance
| |
Collapse
|
7
|
Cheng A, Mohd Hanafiah N, Harikrishna JA, Eem LP, Baisakh N, Mispan MS. A Reappraisal of Polyploidy Events in Grasses (Poaceae) in a Rapidly Changing World. BIOLOGY 2022; 11:biology11050636. [PMID: 35625365 PMCID: PMC9138248 DOI: 10.3390/biology11050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
Around 80% of megaflora species became extinct at the Cretaceous–Paleogene (K–Pg) boundary. Subsequent polyploidy events drove the survival of thousands of plant species and played a significant historical role in the development of the most successful modern cereal crops. However, current and rapid global temperature change poses an urgent threat to food crops worldwide, including the world’s big three cereals: rice, wheat, and maize, which are members of the grass family, Poaceae. Some minor cereals from the same family (such as teff) have grown in popularity in recent years, but there are important knowledge gaps regarding the similarities and differences between major and minor crops, including how polyploidy affects their biological processes under natural and (a)biotic stress conditions and thus the potential to harness polyploidization attributes for improving crop climate resilience. This review focuses on the impact of polyploidy events on the Poaceae family, which includes the world’s most important food sources, and discusses the past, present, and future of polyploidy research for major and minor crops. The increasing accessibility to genomes of grasses and their wild progenitors together with new tools and interdisciplinary research on polyploidy can support crop improvement for global food security in the face of climate change.
Collapse
Affiliation(s)
- Acga Cheng
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
| | - Noraikim Mohd Hanafiah
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
| | - Jennifer Ann Harikrishna
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lim Phaik Eem
- Institute of Ocean and Earth Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Science, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
- Correspondence: (N.B.); (M.S.M.)
| | - Muhamad Shakirin Mispan
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (N.B.); (M.S.M.)
| |
Collapse
|
8
|
Novel breeding method, matα2-PBT, to construct isogenic series of polyploid strains of Saccharomyces cerevisiae. J Biosci Bioeng 2022; 133:515-523. [PMID: 35393168 DOI: 10.1016/j.jbiosc.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2021] [Revised: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
How ploidy is determined in organisms is an important issue in bioscience. Polyploidy is believed to be relevant to useful traits of domesticated plants and microorganisms. As such, polyploidy is central to many applications in biotechnology. However, studies of polyploidy are poorly advanced because no methodologies to construct desired polyploid have been developed for any organism. Herein we describe the development of a novel breeding technology, matα2-PBT, to generate polyploid strains of Saccharomyces cerevisiae. S. cerevisiae has two mating types, a and α, determined by MATa and MATα gene each of which consists of a1 and a2 and α1 and α2 cistrons. This novel technology exploits an interesting feature of a specific mutation, matα2-102, in the MATα2 gene. Unlike the MATα wild-type strain, which gives a non-mating phenotype when mated with MATa cells, the matα2-102 strain confers an α mating-type to a-type strains when mated with a-type strains. We constructed plasmid with the cloned matα2-102 mutant gene. An a-type cells harboring this plasmid displayed an α mating-type and mated with a-type cells. Because the resultant hybrid displays an α mating-type, it can mate again with a-type cells. By repeating this procedure, we have constructed an isogenic series of haploid to tetraploid of S. cerevisiae. Although whether even higher polyploid than tetraploid can be constructed by using this technology remains to be determined in the future, we believe that it became possible for the first time with matα2-PBT method to investigate whether higher polyploid than tetraploid can be constructed.
Collapse
|
9
|
de Sousa T, Ribeiro M, Sabença C, Igrejas G. The 10,000-Year Success Story of Wheat! Foods 2021; 10:2124. [PMID: 34574233 PMCID: PMC8467621 DOI: 10.3390/foods10092124] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Wheat is one of the most important cereal crops in the world as it is used in the production of a diverse range of traditional and modern processed foods. The ancient varieties einkorn, emmer, and spelt not only played an important role as a source of food but became the ancestors of the modern varieties currently grown worldwide. Hexaploid wheat (Triticum aestivum L.) and tetraploid wheat (Triticum durum Desf.) now account for around 95% and 5% of the world production, respectively. The success of this cereal is inextricably associated with the capacity of its grain proteins, the gluten, to form a viscoelastic dough that allows the transformation of wheat flour into a wide variety of staple forms of food in the human diet. This review aims to give a holistic view of the temporal and proteogenomic evolution of wheat from its domestication to the massively produced high-yield crop of our day.
Collapse
Affiliation(s)
- Telma de Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (M.R.); (C.S.)
- Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2825-149 Lisbon, Caparica, Portugal
| | - Miguel Ribeiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (M.R.); (C.S.)
- Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2825-149 Lisbon, Caparica, Portugal
| | - Carolina Sabença
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (M.R.); (C.S.)
- Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2825-149 Lisbon, Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (M.R.); (C.S.)
- Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2825-149 Lisbon, Caparica, Portugal
| |
Collapse
|
10
|
Li J, Li J, Cheng X, Zhao L, Yang Z, Wu J, Yang Q, Chen X, Zhao J. Molecular Cytogenetic and Agronomic Characterization of the Similarities and Differences Between Wheat- Leymus mollis Trin. and Wheat- Psathyrostachys huashanica Keng 3Ns (3D) Substitution Lines. FRONTIERS IN PLANT SCIENCE 2021; 12:644896. [PMID: 33897735 PMCID: PMC8061751 DOI: 10.3389/fpls.2021.644896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/22/2020] [Accepted: 02/23/2021] [Indexed: 05/12/2023]
Abstract
Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) and Leymus mollis Trin. (2n = 4x = 28, NsNsXmXm) are valuable resources for wheat breeding improvement as they share the Ns genome, which contains diverse resistance genes. To explore the behaviors and traits of Ns chromosomes from the two species in wheat background, a series of wheat-P. huashanica and wheat-L. mollis substitution lines were developed. In the present study, line DH109 (F7 progeny of wheat-P. huashanica heptaploid line H8911 × durum wheat Trs-372) and line DM131 (F8 progeny of wheat-L. mollis octoploid line M842 × durum wheat Trs-372) were selected. Cytological observation combined with genomic in situ hybridization experiments showed that DH109 and DM131 each had 20 pairs of wheat chromosomes plus a pair of alien chromosomes (Ns chromosome), and the pair of alien chromosomes showed stable inheritance. Multiple molecular markers and wheat 55K SNP array demonstrated that a pair of wheat 3D chromosome in DH109 and in DM131 was substituted by a pair of P. huashanica 3Ns chromosome and a pair of L. mollis 3Ns chromosome, respectively. Fluorescence in situ hybridization (FISH) analysis confirmed that wheat 3D chromosomes were absent from DH109 and DM131, and chromosomal FISH karyotypes of wheat 3D, P. huashanica 3Ns, and L. mollis 3Ns were different. Moreover, the two lines had many differences in agronomic traits. Comparing with their wheat parents, DH109 expressed superior resistance to powdery mildew and fusarium head blight, whereas DM131 had powdery mildew resistance, longer spike, and more tiller number. Therefore, Ns genome from P. huashanica and L. mollis might have some different effects. The two novel wheat-alien substitution lines provide new ideas and resources for disease resistance and high-yield breeding on further utilization of 3Ns chromosomes of P. huashanica or L. mollis.
Collapse
Affiliation(s)
- Jiachuang Li
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Jiaojiao Li
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Xueni Cheng
- College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Li Zhao
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Zujun Yang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Wu
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Qunhui Yang
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Xinhong Chen
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Xianyang, China
- *Correspondence: Xinhong Chen,
| | - Jixin Zhao
- College of Agronomy, Northwest A&F University, Xianyang, China
- Jixin Zhao,
| |
Collapse
|
11
|
Morris CF, Luna J, Caffe-Treml M. The Vromindolines of cv. Hayden oat (Avena sativa L.) – A review of the Poeae and Triticeae indolines and a suggested system for harmonization of nomenclature. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2020.103135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
12
|
Parisod C, Badaeva ED. Chromosome restructuring among hybridizing wild wheats. THE NEW PHYTOLOGIST 2020; 226:1263-1273. [PMID: 31913521 DOI: 10.1111/nph.16415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/25/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
The wheat group offers an outstanding system to address the interplay between hybridization, chromosomal evolution and biological diversification. Most diploid wild wheats originated following hybridization between the A-genome lineage and the B-genome lineage some 4 Myr ago, resulting in an admixed D-genome lineage that presented dramatic radiation accompanied by considerable changes in genome size and chromosomal rearrangements. Comparative profiling of low-copy genes, repeated sequences and transposable elements among those divergent species characterized by different karyotypes highlights high genome dynamics and sheds new light on the processes underlying chromosomal evolution in wild wheats. One of the hybrid clades presents upsizing of metacentric chromosomes going along with the proliferation of specific repeats (i.e. 'genomic obesity'), whereas other species show stable genome size associated with increasing chromosomal asymmetry. Genetic and ecological variation in those specialized species suggest that genome restructuring was coupled with adaptive processes to support the evolution of a majority of acrocentric chromosomes. This synthesis of current knowledge on genome restructuring across the diversity of wild wheats paves the way towards surveys based on latest sequencing technologies to characterize valuable resources and address the significance of chromosomal evolution in species with complex genomes.
Collapse
Affiliation(s)
- Christian Parisod
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Ekaterina D Badaeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin St. 3, Moscow, 119991, Russia
| |
Collapse
|
13
|
Identification of a hard kernel texture line of synthetic allohexaploid wheat reducing the puroindoline accumulation on the D genome from Aegilops tauschii. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
14
|
Kroupin PY, Chernook AG, Bazhenov MS, Karlov GI, Goncharov NP, Chikida NN, Divashuk MG. Allele mining of TaGRF-2D gene 5'-UTR in Triticum aestivum and Aegilops tauschii genotypes. PLoS One 2020; 15:e0231704. [PMID: 32298343 PMCID: PMC7162470 DOI: 10.1371/journal.pone.0231704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
The low diversity of the D-subgenome of bread wheat requires the involvement of new alleles for breeding. In grasses, the allelic state of Growth Regulating Factor (GRF) gene is correlated with nitrogen uptake. In this study, we characterized the sequence of TaGRF-2D and assessed its diversity in bread wheat and goatgrass Aegilops tauschii (genome DD). In silico analysis was performed for reference sequence searching, primer pairs design and sequence assembly. The gene sequence was obtained using Illumina and Sanger sequencing. The complete sequences of TaGRF-2D were obtained for 18 varieties of wheat. The polymorphism in the presence/absence of two GCAGCC repeats in 5' UTR was revealed and the GRF-2D-SSR marker was developed. Our results showed that the alleles 5' UTR-250 and 5' UTR-238 were present in wheat varieties, 5' UTR-250 was presented in the majority of wheat varieties. In Ae. tauschii ssp. strangulata (likely donor of the D-subgenome of polyploid wheat), most accessions carried the 5' UTR-250 allele, whilst most Ae. tauschii ssp. tauschii have 5' UTR-244. The developed GRF-2D-SSR marker can be used to study the genetic diversity of wheat and Ae. tauschii.
Collapse
Affiliation(s)
- Pavel Yu. Kroupin
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Anastasiya G. Chernook
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Mikhail S. Bazhenov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Gennady I. Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Nikolay P. Goncharov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nadezhda N. Chikida
- Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources, Saint Petersburg, Russia
| | - Mikhail G. Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- Centre for Molecular Biotechnology, Russian State Agrarian University–Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Kurchatov Genomics Center-ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
15
|
Lullien-Pellerin V. Both genetic and environmental conditions affect wheat grain texture: Consequences for grain fractionation and flour properties. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
16
|
Li X, Li Y, Yu X, Sun F, Yang G, He G. Genomics-Enabled Analysis of Puroindoline b2 Genes Identifies New Alleles in Wheat and Related Triticeae Species. Int J Mol Sci 2020; 21:E1304. [PMID: 32075191 PMCID: PMC7072932 DOI: 10.3390/ijms21041304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 01/12/2023] Open
Abstract
Kernel hardness is a key trait of wheat seeds, largely controlled by two tightly linked genes Puroindoline a and b (Pina and Pinb). Genes homologous to Pinb, namely Pinb2, have been studied. Whether these genes contribute to kernel hardness and other important seed traits remains inconclusive. Using the high-quality bread wheat reference genome, we show that PINB2 are encoded by three homoeologous loci Pinb2 not syntenic to the Hardness locus, with Pinb2-7A locus containing three tandem copies. PINB2 proteins have several features conserved for the Pin/Pinb2 phylogenetic cluster but lack a structural basis of significant impact on kernel hardness. Pinb2 are seed-specifically expressed with varied expression levels between the homoeologous copies and among wheat varieties. Using the high-quality genome information, we developed new Pinb2 allele specific markers and demonstrated their usefulness by 1) identifying new Pinb2 alleles in Triticeae species; and 2) performing an association analysis of Pinb2 with kernel hardness. The association result suggests that Pinb2 genes may have no substantial contribution to kernel hardness. Our results provide new insights into Pinb2 evolution and expression and the new allele-specific markers are useful to further explore Pinb2's contribution to seed traits in wheat.
Collapse
Affiliation(s)
- Xiaoyan Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| | - Yin Li
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| | - Xiaofen Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| | - Fusheng Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| |
Collapse
|
17
|
Ma X, Xue H, Sun J, Sajjad M, Wang J, Yang W, Li X, Zhang A, Liu D. Transformation of Pinb-D1x to soft wheat produces hard wheat kernel texture. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2019.102889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|
18
|
Maryami Z, Azimi MR, Guzman C, Dreisigacker S, Najafian G. Puroindoline ( Pina-D1 and Pinb-D1) and waxy ( Wx-1) genes in Iranian bread wheat ( Triticum aestivum L.) landraces. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1814866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Zahra Maryami
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Mohammad Reza Azimi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Carlos Guzman
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Sussane Dreisigacker
- Global Wheat Program, International Maize and Wheat Improvement Center(CIMMYT), Mexico D.F, Mexico
| | - Godarz Najafian
- Cereal Chemistry and Technology Unit, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| |
Collapse
|
19
|
Usai G, Mascagni F, Vangelisti A, Giordani T, Ceccarelli M, Cavallini A, Natali L. Interspecific hybridisation and LTR-retrotransposon mobilisation-related structural variation in plants: A case study. Genomics 2019; 112:1611-1621. [PMID: 31605729 DOI: 10.1016/j.ygeno.2019.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2019] [Revised: 07/13/2019] [Accepted: 09/12/2019] [Indexed: 11/30/2022]
Abstract
The dynamics of long-terminal-repeat retrotransposons in two poplar species (Populus deltoides and P. nigra) and in an interspecific hybrid, recently synthesized, were investigated by analyzing the genomic abundance and transcription levels of a collection of 828 full-length retroelements identified in the genome sequence of P. trichocarpa, all occurring also in the genomes of P. deltoides and P. nigra. Overall, genomic abundance and transcription levels of many retrotransposons in the hybrid resulted higher or lower than expected by calculating the mean of the parental values. A bioinformatics procedure was established to ascertain the occurrence of the same retrotransposon loci in the three genotypes. The results indicated that retrotransposon abundance variations between the hybrid and the mean value of the parents were due to i) co-segregation of retrotransposon high- or low-abundant haplotypes; ii) new retroelement insertions; iii) retrotransposon loss. Concerning retrotransposon expression, this was generally low, with only 14/828 elements over- or under-expressed in the hybrid than expected by calculating the mean of the parents. It is concluded that interspecific hybridisation between the two poplar species determine quantitative variation and differential expression of some retrotransposons, with possible consequences for the genetic differentiation of the hybrid.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Marilena Ceccarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy.
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy.
| |
Collapse
|
20
|
|
21
|
|
22
|
Abstract
Wheat gluten has an immense impact on human nutrition as it largely determines the processing properties of wheat flour, and in particular the ability to make leavened breads, other baked products, pasta and noodles. However, there has been increasing interest in wheat gluten over the past two decades because of its well-established role in triggering coeliac disease, and its perceived role in other adverse reactions to wheat. The literature on wheat gluten is vast and extends back over two centuries, with most studies focusing on the structures of gluten proteins and their role in determining the functional properties of wheat flour and dough. This article provides a concise account of wheat gluten, focusing on properties, and features which are relevant to its role in triggering coeliac disease and, to a lesser extent, other gluten-related disorders. It includes descriptions of the biological role of the gluten proteins, the structures and relationships of gluten protein families, and the presence of related types of protein which may also contribute to functional properties and impacts on health. It therefore provides an understanding of the gluten protein system at the level required by those focusing on its impact on human health.
Collapse
Affiliation(s)
- Peter Shewry
- Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| |
Collapse
|
23
|
Naz AA, Dadshani S, Ballvora A, Pillen K, Léon J. Genetic Analysis and Transfer of Favorable Exotic QTL Alleles for Grain Yield Across D Genome Using Two Advanced Backcross Wheat Populations. FRONTIERS IN PLANT SCIENCE 2019; 10:711. [PMID: 31214227 PMCID: PMC6557981 DOI: 10.3389/fpls.2019.00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/31/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Hexaploid wheat evolved through a spontaneous hybridization of tetraploid wheat (Triticum turgidum, AABB) with diploid wild grass (Aegilops tauschii, DD). Recent genome sequencing found alarmingly low genetic diversity and abundance of repeated sequences across D genome as compared to AB genomes. This characteristic feature of D genome often results in a low recombination rate and abrupt changes in chromosome, which are the major hurdles to utilize the genetic potential of D genome in wheat breeding. In the present study, we evaluated two advanced backcross populations designated as B22 (250 BC2F3:6 lines) and Z86 (150 BC2F3:6 lines) to test their yield potential and to enrich the D genome diversity simultaneously. The populations B22 and Z86 were derived by crossing winter wheat cultivars Batis and Zentos with synthetic hexaploid wheat accessions Syn022L and Syn086L, respectively. These populations were genotyped using SNP markers and phenotyped for yield traits in ten environments in Germany. Marker analysis identified lower recombination rate across D genome as compared to A and B genomes in both populations. Further, we compared the genotype data with the trait grain yield to identify favorable exotic introgressions from synthetic wheat accessions. QTL analysis identified seven and 13 favorable exotic QTL alleles associated with enhancement or at least stable grain yield in populations B22 and Z86, respectively. These favorable introgressions were located on all chromosomes from 1D to 7D. The strongest exotic QTL allele on chromosome 1D at SNP marker RAC875_c51493_471 resulted in a relative increase of 8.6% in grain yield as compared to cultivated allele. The identified exotic introgressions will help to refine useful exotic chromosome segments for their incorporation for improving yield and increasing D genome diversity among cultivated varieties.
Collapse
Affiliation(s)
- Ali Ahmad Naz
- Institute of Crop Science and Resource Conservation, Plant Breeding, University of Bonn, Bonn, Germany
| | - Said Dadshani
- Institute of Crop Science and Resource Conservation, Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation, Plant Breeding, University of Bonn, Bonn, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Plant Breeding, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation, Plant Breeding, University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
The antimicrobial properties of the puroindolines, a review. World J Microbiol Biotechnol 2019; 35:86. [PMID: 31134452 DOI: 10.1007/s11274-019-2655-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
Antimicrobial proteins, and especially antimicrobial peptides (AMPs) hold great promise in the control of animal and plant diseases with low risk of pathogen resistance. The two puroindolines, a and b, from wheat control endosperm softness of the wheat caryopsis (grain), but have also been shown to inhibit the growth and kill various bacteria and fungi, while showing little toxicity to erythrocytes. Puroindolines are small (~ 13 kDa) amphipathic proteins with a characteristic tryptophan-rich domain (TRD) that is part of an 18 or 19 amino acid residue loop subtended by a disulfide bond. This review presents a brief history of the puroindolines, their physical-chemical characteristics, their interaction with lipids and membranes, and their activity as antimicrobial proteins and AMPs. In this latter context, the use of the TRDs of puroindoline a and b in puroindoline AMP function is reviewed. The activity of puroindoline a and b and their AMPs appear to act through similar but somewhat different modes, which may involve membrane binding, membrane disruption and ion channel formation, and intra-cellular nucleic acid binding and metabolic disruption. Natural and synthetic mutants have identified key elements of the puroindolines for antimicrobial activity.
Collapse
|
25
|
Long YL, Qiao F, Jiang XF, Cong HQ, Sun ML, Xu ZJ. Screening and analysis on the differentially expression genes between diploid and autotetraploid watermelon by using of digital gene expression profile. BRAZ J BIOL 2019; 79:180-190. [DOI: 10.1590/1519-6984.174475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2017] [Accepted: 12/27/2017] [Indexed: 11/22/2022] Open
Abstract
Abstract Synthetic polyploids are key breeding materials for watermelon. Compared with diploid watermelon, the tetraploid watermelon often exhibit wide phenotypic differences and differential gene expression. Digital gene expression (DGE) profile technique was performed in this study to present gene expression patterns in an autotetraploid and its progenitor diploid watermelon, and deferentially expressed genes (DEGs) related to the abiotic and biotic stress were also addressed. Altogether, 4,985 DEGs were obtained in the autotetraploid against its progenitor diploid, and 66.02% DEGs is up-regulated. GO analysis shows that these DEGs mainly distributed in ‘metabolic process’, ‘cell’ and ‘catalytic activity’. KEGG analysis revealed that these DEGs mainly cover ‘metabolic pathways’, ‘secondary metabolites’ and ‘ribosome’. Moreover, 134 tolerance related DEGs were identified which cover osmotic adjustment substance, protective enzymes/protein, signaling proteins and pathogenesis-related proteins. This study present the differential expression of stress related genes and global gene expression patterns at background level in autotetraploid watermelons. These new evidences could supplement the molecular theoretical basis for the better resistance after the genome doubling in the gourd family.
Collapse
Affiliation(s)
- Y. L. Long
- Hainan University, China; Chinese Academy of Tropical Agricultural Sciences, China
| | - F. Qiao
- Chinese Academy of Tropical Agricultural Sciences, China
| | | | - H. Q. Cong
- Chinese Academy of Tropical Agricultural Sciences, China
| | | | | |
Collapse
|
26
|
Kumar A, Kapoor P, Chunduri V, Sharma S, Garg M. Potential of Aegilops sp. for Improvement of Grain Processing and Nutritional Quality in Wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2019; 10:308. [PMID: 30936886 PMCID: PMC6431632 DOI: 10.3389/fpls.2019.00308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/30/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Wheat is one of the most important staple crops in the world and good source of calories and nutrition. Its flour and dough have unique physical properties and can be processed to make unique products like bread, cakes, biscuits, pasta, noodles etc., which is not possible from other staple crops. Due to domestication, the genetic variability of the genes coding for different economically important traits in wheat is narrow. This genetic variability can be increased by utilizing its wild relatives. Its closest relative, genus Aegilops can be an important source of new alleles. Aegilops has played a very important role in evolution of tetraploid and hexaploid wheat. It consists of 22 species with C, D, M, N, S, T and U genomes with high allelic diversity relative to wheat. Its utilization for wheat improvement for various abiotic and biotic stresses has been reported by various scientific publications. Here in, for the first time, we review the potential of Aegilops for improvement of processing and nutritional traits in wheat. Among processing quality related gluten proteins; high molecular weight glutenins (HMW GS), being easiest to study have been explored in highest number of accessions or lines i.e., 681 belonging to 13 species and selected ones like Ae. searsii, Ae. geniculata and Ae. longissima have been linked with improved bread making quality of wheat. Gliadins and low molecular weight glutenins (LMW GS) have also been extensively explored for wheat improvement and Ae. umbellulata specific LMW GS have been linked with wheat bread making quality improvement. Aegilops has been explored for seed texture diversity and proteins like puroindolins (Pin) and grain softness proteins (GSP). For nutrition quality improvement, it has been screened for essential micronutrients like Fe, Zn, phytochemicals like carotenoids and dietary fibers like arabinoxylan and β-glucan. Ae. kotschyi and Ae. biuncialis transfer in wheat have been associated with higher Fe, Zn content. In this article we have tried to compile information available on exploration of nutritional and processing quality related traits in Aegilops section and their utilization for wheat improvement by different approaches.
Collapse
|
27
|
Goriewa-Duba K, Duba A, Wachowska U, Wiwart M. The Never-Ending Story of the Phylogeny and Taxonomy of Genus Triticum L. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418120037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
28
|
Edet OU, Gorafi YSA, Nasuda S, Tsujimoto H. DArTseq-based analysis of genomic relationships among species of tribe Triticeae. Sci Rep 2018; 8:16397. [PMID: 30401925 PMCID: PMC6219600 DOI: 10.1038/s41598-018-34811-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2018] [Accepted: 10/26/2018] [Indexed: 11/10/2022] Open
Abstract
Precise utilization of wild genetic resources to improve the resistance of their cultivated relatives to environmental growth limiting factors, such as salinity stress and diseases, requires a clear understanding of their genomic relationships. Although seriously criticized, analyzing these relationships in tribe Triticeae has largely been based on meiotic chromosome pairing in hybrids of wide crosses, a specialized and labourious strategy. In this study, DArTseq, an efficient genotyping-by-sequencing platform, was applied to analyze the genomes of 34 Triticeae species. We reconstructed the phylogenetic relationships among diploid and polyploid Aegilops and Triticum species, including hexaploid wheat. Tentatively, we have identified the diploid genomes that are likely to have been involved in the evolution of five polyploid species of Aegilops, which have remained unresolved for decades. Explanations which cast light on the progenitor of the A genomes and the complex genomic status of the B/G genomes of polyploid Triticum species in the Emmer and Timopheevi lineages of wheat have also been provided. This study has, therefore, demonstrated that DArTseq genotyping can be effectively applied to analyze the genomes of plants, especially where their genome sequence information are not available.
Collapse
Affiliation(s)
- Offiong U Edet
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.,United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553, Japan
| | - Yasir S A Gorafi
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.,Agricultural Research Corporation (ARC), P. O. Box 126, Wad Madani, Sudan
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
| |
Collapse
|
29
|
Sequence Diversity and Identification of Novel Puroindoline and Grain Softness Protein Alleles in Elymus, Agropyron and Related Species. DIVERSITY 2018. [DOI: 10.3390/d10040114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
The puroindoline proteins, PINA and PINB, which are encoded by the Pina and Pinb genes located at the Ha locus on chromosome 5D of bread wheat, are considered to be the most important determinants of grain hardness. However, the recent identification of Pinb-2 genes on group 7 chromosomes has stressed the importance of considering the effects of related genes and proteins. Several species related to wheat (two diploid Agropyron spp., four tetraploid Elymus spp. and five hexaploid Elymus and Agropyron spp.) were therefore analyzed to identify novel variation in Pina, Pinb and Pinb-2 genes which could be exploited for the improvement of cultivated wheat. A novel sequence for the Pina gene was detected in Elymus burchan-buddae, Elymus dahuricus subsp. excelsus and Elymus nutans and novel PINB sequences in Elymus burchan-buddae, Elymus dahuricus subsp. excelsus, and Elymus nutans. A novel PINB-2 variant was also detected in Agropyron repens and Elymus repens. The encoded proteins detected all showed changes in the tryptophan-rich domain as well as changes in and/or deletions of basic and hydrophobic residues. In addition, two new AGP sequences were identified in Elymus nutans and Elymus wawawaiensis. The data presented therefore highlight the sequence diversity in this important gene family and the potential to exploit this diversity to modify grain texture and end-use quality in wheat.
Collapse
|
30
|
Mao H, Chen M, Su Y, Wu N, Yuan M, Yuan S, Brestic M, Zivcak M, Zhang H, Chen Y. Comparison on Photosynthesis and Antioxidant Defense Systems in Wheat with Different Ploidy Levels and Octoploid Triticale. Int J Mol Sci 2018; 19:E3006. [PMID: 30279334 PMCID: PMC6213355 DOI: 10.3390/ijms19103006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
To investigate the evolutionary differences of wheat with different ploidy levels and octoploid Triticale, photosynthetic capacity, and antioxidant defenses system were compared within and between diploid, tetraploid and hexaploid wheat, and octoploid Triticale seedlings. The results showed that seed germination rate, chlorophyll content, and photochemical activity of photosystems, and the activities of antioxidative enzymes in hexaploid wheat and octoploid Triticale were significantly higher than in diploid and tetraploid wheat. Compared to other two wheat species and octoploid Triticale, hexaploid wheat presented lower levels of reactive oxygen species (ROS). Furthermore, we found that the levels of photosystem II reaction center protein D1, light-harvesting complex II b4 (CP29), and D subunit of photosystem I (PsaD) in diploid wheat were significantly lower compared with hexaploid wheat and octoploid Triticale. Taken together, we concluded that hexaploid wheat and octoploid Triticale have higher photosynthetic capacities and better antioxidant systems. These findings indicate that different ploidy levels of chromosome probably play an important regulatory role in photosystems and antioxidative systems of plants.
Collapse
Affiliation(s)
- Haotian Mao
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| | - Mengying Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yanqiu Su
- College of Life Sciences, Sichuan University, Chengdu 610061, China.
| | - Nan Wu
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| | - Shu Yuan
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, 94976 Nitra, Slovakia.
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, 94976 Nitra, Slovakia.
| | - Huaiyu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yanger Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
31
|
Okada M, Ikeda TM, Yoshida K, Takumi S. Effect of the U genome on grain hardness in nascent synthetic hexaploids derived from interspecific hybrids between durum wheat and Aegilops umbellulata. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
32
|
Chichti E, Carrère M, George M, Delenne JY, Lullien-Pellerin V. A wheat grain quantitative evaluation of vitreousness by light transmission analysis. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
|
33
|
Dvorak J, Wang L, Zhu T, Jorgensen CM, Deal KR, Dai X, Dawson MW, Müller HG, Luo MC, Ramasamy RK, Dehghani H, Gu YQ, Gill BS, Distelfeld A, Devos KM, Qi P, You FM, Gulick PJ, McGuire PE. Structural variation and rates of genome evolution in the grass family seen through comparison of sequences of genomes greatly differing in size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:487-503. [PMID: 29770515 DOI: 10.1111/tpj.13964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/18/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 05/05/2023]
Abstract
Homology was searched with genes annotated in the Aegilops tauschii pseudomolecules against genes annotated in the pseudomolecules of tetraploid wild emmer wheat, Brachypodium distachyon, sorghum and rice. Similar searches were performed with genes annotated in the rice pseudomolecules. Matrices of collinear genes and rearrangements in their order were constructed. Optical BioNano genome maps were constructed and used to validate rearrangements unique to the wild emmer and Ae. tauschii genomes. Most common rearrangements were short paracentric inversions and short intrachromosomal translocations. Intrachromosomal translocations outnumbered segmental intrachromosomal duplications. The densities of paracentric inversion lengths were approximated by exponential distributions in all six genomes. Densities of collinear genes along the Ae. tauschii chromosomes were highly correlated with meiotic recombination rates but those of rearrangements were not, suggesting different causes of the erosion of gene collinearity and evolution of major chromosome rearrangements. Frequent rearrangements sharing breakpoints suggested that chromosomes have been rearranged recurrently at some sites. The distal 4 Mb of the short arms of rice chromosomes Os11 and Os12 and corresponding regions in the sorghum, B. distachyon and Triticeae genomes contain clusters of interstitial translocations including from 1 to 7 collinear genes. The rates of acquisition of major rearrangements were greater in the large wild emmer wheat and Ae. tauschii genomes than in the lineage preceding their divergence or in the B. distachyon, rice and sorghum lineages. It is suggested that synergy between large quantities of dynamic transposable elements and annual growth habit have been the primary causes of the fast evolution of the Triticeae genomes.
Collapse
Affiliation(s)
- Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Le Wang
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Chad M Jorgensen
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Xiongtao Dai
- Department of Statistics, University of California, Davis, CA, USA
| | - Matthew W Dawson
- Department of Statistics, University of California, Davis, CA, USA
| | | | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Ramesh K Ramasamy
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Hamid Dehghani
- Department of Plant Sciences, University of California, Davis, CA, USA
- Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Yong Q Gu
- Crop Improvement & Genetics Research, USDA-ARS, Albany, CA, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Assaf Distelfeld
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop & Soil Sciences), University of Georgia, Athens, GA, USA
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Peng Qi
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop & Soil Sciences), University of Georgia, Athens, GA, USA
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Frank M You
- Agriculture & Agri-Food Canada, Morden, MB, Canada
| | - Patrick J Gulick
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
34
|
Zhang G, Hua Z. Genome comparison implies the role of Wsm2 in membrane trafficking and protein degradation. PeerJ 2018; 6:e4678. [PMID: 29707435 PMCID: PMC5918131 DOI: 10.7717/peerj.4678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2018] [Accepted: 04/09/2018] [Indexed: 02/01/2023] Open
Abstract
Wheat streak mosaic virus (WSMV) causes streak mosaic disease in wheat (Triticum aestivum L.) and has been an important constraint limiting wheat production in many regions around the world. Wsm2 is the only resistance gene discovered in wheat genome and has been located in a short genomic region of its chromosome 3B. However, the sequence nature and the biological function of Wsm2 remain unknown due to the difficulty of genetic manipulation in wheat. In this study, we tested WSMV infectivity among wheat and its two closely related grass species, rice (Oryza sativa) and Brachypodium distachyon. Based on the phenotypic result and previous genomic studies, we developed a novel bioinformatics pipeline for interpreting a potential biological function of Wsm2 and its ancestor locus in wheat. In the WSMV resistance tests, we found that rice has a WMSV resistance gene while Brachypodium does not, which allowed us to hypothesize the presence of a Wsm2 ortholog in rice. Our OrthoMCL analysis of protein coding genes on wheat chromosome 3B and its syntenic chromosomes in rice and Brachypodium discovered 4,035 OrthoMCL groups as preliminary candidates of Wsm2 orthologs. Given that Wsm2 is likely duplicated through an intrachromosomal illegitimate recombination and that Wsm2 is dominant, we inferred that this new WSMV-resistance gene acquired an activation domain, lost an inhibition domain, or gained high expression compared to its ancestor locus. Through comparison, we identified that 67, 16, and 10 out of 4,035 OrthoMCL orthologous groups contain a rice member with 25% shorter or longer in length, or 10 fold more expression, respectively, than those from wheat and Brachypodium. Taken together, we predicted a total of 93 good candidates for a Wsm2 ancestor locus. All of these 93 candidates are not tightly linked with Wsm2, indicative of the role of illegitimate recombination in the birth of Wsm2. Further sequence analysis suggests that the protein products of Wsm2 may combat WSMV disease through a molecular mechanism involving protein degradation and/or membrane trafficking. The 93 putative Wsm2 ancestor loci discovered in this study could serve as good candidates for future genetic isolation of the true Wsm2 locus.
Collapse
Affiliation(s)
- Guorong Zhang
- Agricultural Research Center-Hays, Kansas State University, Hays, KS, United States of America
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States of America.,Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States of America
| |
Collapse
|
35
|
Luo G, Song S, Zhao L, Shen L, Song Y, Wang X, Yu K, Liu Z, Li Y, Yang W, Li X, Zhan K, Zhang A, Liu D. Mechanisms, origin and heredity of Glu-1Ay silencing in wheat evolution and domestication. THEORETICAL AND APPLIED GENETICS 2018; 131:1561-1575. [PMID: 29696298 DOI: 10.1007/s00122-018-3098-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/17/2018] [Accepted: 04/13/2018] [Indexed: 01/10/2023]
Abstract
KEY MESSAGE Allotetraploidization drives Glu-1Ay silencing in polyploid wheat. The high-molecular-weight glutenin subunit gene, Glu-1Ay, is always silenced in common wheat via elusive mechanisms. To investigate its silencing and heredity during wheat polyploidization and domestication, the Glu-1Ay gene was characterized in 1246 accessions containing diploid and polyploid wheat worldwide. Eight expressed Glu-1Ay alleles (in 71.81% accessions) and five silenced alleles with a premature termination codon (PTC) were identified in Triticum urartu; 4 expressed alleles (in 41.21% accessions), 13 alleles with PTCs and 1 allele with a WIS 2-1A retrotransposon were present in wild tetraploid wheat; and only silenced alleles with PTC or WIS 2-1A were in cultivated tetra- and hexaploid wheat. Both the PTC number and position in T. urartu Glu-1Ay alleles (one in the N-terminal region) differed from its progeny wild tetraploid wheat (1-5 PTCs mainly in the repetitive domain). The WIS 2-1A insertion occurred ~ 0.13 million years ago in wild tetraploid wheat, much later than the allotetraploidization event. The Glu-1Ay alleles with PTCs or WIS 2-1A that arose in wild tetraploid wheat were fully succeeded to cultivated tetraploid and hexaploid wheat. In addition, the Glu-1Ay gene in wild einkorn inherited to cultivated einkorn. Our data demonstrated that the silencing of Glu-1Ay in tetraploid and hexaploid wheat was attributed to the new PTCs and WIS 2-1A insertion in wild tetraploid wheat, and most silenced alleles were delivered to the cultivated tetraploid and hexaploid wheat, providing a clear evolutionary history of the Glu-1Ay gene in the wheat polyploidization and domestication processes.
Collapse
Affiliation(s)
- Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyi Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.,College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Liru Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhong Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.,College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Xin Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.,Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Kehui Zhan
- College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China. .,College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
36
|
Kalinka A, Achrem M. Reorganization of wheat and rye genomes in octoploid triticale (× Triticosecale). PLANTA 2018; 247:807-829. [PMID: 29234880 PMCID: PMC5856900 DOI: 10.1007/s00425-017-2827-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/05/2017] [Accepted: 12/03/2017] [Indexed: 06/01/2023]
Abstract
The analysis of early generations of triticale showed numerous rearrangements of the genome. Complexed transformation included loss of chromosomes, t-heterochromatin content changes and the emergence of retrotransposons in new locations. This study investigated certain aspects of genomic transformations in the early generations (F5 and F8) of the primary octoploid triticale derived from the cross of hexaploid wheat with the diploid rye. Most of the plants tested were hypoploid; among eliminated chromosomes were rye chromosomes 4R and 5R and variable number of wheat chromosomes. Wheat chromosomes were eliminated to a higher extent. The lower content of telomeric heterochromatin was also found in rye chromosomes in comparison with parental rye. Studying the location of selected retrotransposons from Ty1-copia and Ty3-gypsy families using fluorescence in situ hybridization revealed additional locations of these retrotransposons that were not present in chromosomes of parental species. ISSR, IRAP and REMAP analyses showed significant changes at the level of specific DNA nucleotide sequences. In most cases, the disappearance of certain types of bands was observed, less frequently new types of bands appeared, not present in parental species. This demonstrates the scale of genome rearrangement and, above all, the elimination of wheat and rye sequences, largely due to the reduction of chromosome number. With regard to the proportion of wheat to rye genome, the rye genome was more affected by the changes, thus this study was focused more on the rye genome. Observations suggest that genome reorganization is not finished in the F5 generation but is still ongoing in the F8 generation.
Collapse
Affiliation(s)
- Anna Kalinka
- Department of Cell Biology, Faculty of Biology, Institute for Research on Biodiversity, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
- Faculty of Biology, Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Magdalena Achrem
- Department of Cell Biology, Faculty of Biology, Institute for Research on Biodiversity, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
- Faculty of Biology, Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| |
Collapse
|
37
|
Huo N, Zhu T, Altenbach S, Dong L, Wang Y, Mohr T, Liu Z, Dvorak J, Luo MC, Gu YQ. Dynamic Evolution of α-Gliadin Prolamin Gene Family in Homeologous Genomes of Hexaploid Wheat. Sci Rep 2018; 8:5181. [PMID: 29581476 PMCID: PMC5980091 DOI: 10.1038/s41598-018-23570-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Wheat Gli-2 loci encode complex groups of α-gliadin prolamins that are important for breadmaking, but also major triggers of celiac disease (CD). Elucidation of α-gliadin evolution provides knowledge to produce wheat with better end-use properties and reduced immunogenic potential. The Gli-2 loci contain a large number of tandemly duplicated genes and highly repetitive DNA, making sequence assembly of their genomic regions challenging. Here, we constructed high-quality sequences spanning the three wheat homeologous α-gliadin loci by aligning PacBio-based sequence contigs with BioNano genome maps. A total of 47 α-gliadin genes were identified with only 26 encoding intact full-length protein products. Analyses of α-gliadin loci and phylogenetic tree reconstruction indicate significant duplications of α-gliadin genes in the last ~2.5 million years after the divergence of the A, B and D genomes, supporting its rapid lineage-independent expansion in different Triticeae genomes. We showed that dramatic divergence in expression of α-gliadin genes could not be attributed to sequence variations in the promoter regions. The study also provided insights into the evolution of CD epitopes and identified a single indel event in the hexaploid wheat D genome that likely resulted in the generation of the highly toxic 33-mer CD epitope.
Collapse
Affiliation(s)
- Naxin Huo
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA.,Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Susan Altenbach
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Wang
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Toni Mohr
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Yong Q Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA.
| |
Collapse
|
38
|
Jia M, Guan J, Zhai Z, Geng S, Zhang X, Mao L, Li A. Wheat functional genomics in the era of next generation sequencing: An update. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
|
39
|
Huo N, Zhang S, Zhu T, Dong L, Wang Y, Mohr T, Hu T, Liu Z, Dvorak J, Luo MC, Wang D, Lee JY, Altenbach S, Gu YQ. Gene Duplication and Evolution Dynamics in the Homeologous Regions Harboring Multiple Prolamin and Resistance Gene Families in Hexaploid Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:673. [PMID: 29875781 PMCID: PMC5974169 DOI: 10.3389/fpls.2018.00673] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/05/2018] [Accepted: 05/03/2018] [Indexed: 05/19/2023]
Abstract
Improving end-use quality and disease resistance are important goals in wheat breeding. The genetic loci controlling these traits are highly complex, consisting of large families of prolamin and resistance genes with members present in all three homeologous A, B, and D genomes in hexaploid bread wheat. Here, orthologous regions harboring both prolamin and resistance gene loci were reconstructed and compared to understand gene duplication and evolution in different wheat genomes. Comparison of the two orthologous D regions from the hexaploid wheat Chinese Spring and the diploid progenitor Aegilops tauschii revealed their considerable difference due to the presence of five large structural variations with sizes ranging from 100 kb to 2 Mb. As a result, 44% of the Ae. tauschii and 71% of the Chinese Spring sequences in the analyzed regions, including 79 genes, are not shared. Gene rearrangement events, including differential gene duplication and deletion in the A, B, and D regions, have resulted in considerable erosion of gene collinearity in the analyzed regions, suggesting rapid evolution of prolamin and resistance gene families after the separation of the three wheat genomes. We hypothesize that this fast evolution is attributed to the co-evolution of the two gene families dispersed within a high recombination region. The identification of a full set of prolamin genes facilitated transcriptome profiling and revealed that the A genome contributes the least to prolamin expression because of its smaller number of expressed intact genes and their low expression levels, while the B and D genomes contribute similarly.
Collapse
Affiliation(s)
- Naxin Huo
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Shengli Zhang
- Hena Institute of Science and Technology, Xinxiang, China
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Toni Mohr
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Tiezhu Hu
- Hena Institute of Science and Technology, Xinxiang, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jong-Yeol Lee
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Susan Altenbach
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- *Correspondence: Susan Altenbach, Yong Q. Gu,
| | - Yong Q. Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- *Correspondence: Susan Altenbach, Yong Q. Gu,
| |
Collapse
|
40
|
Lundström M, Leino MW, Hagenblad J. Evolutionary history of the NAM-B1 gene in wild and domesticated tetraploid wheat. BMC Genet 2017; 18:118. [PMID: 29262777 PMCID: PMC5738170 DOI: 10.1186/s12863-017-0566-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2017] [Accepted: 11/09/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The NAM-B1 gene in wheat has for almost three decades been extensively studied and utilized in breeding programs because of its significant impact on grain protein and mineral content and pleiotropic effects on senescence rate and grain size. First detected in wild emmer wheat, the wild-type allele of the gene has been introgressed into durum and bread wheat. Later studies have, however, also found the presence of the wild-type allele in some domesticated subspecies. In this study we trace the evolutionary history of the NAM-B1 in tetraploid wheat species and evaluate it as a putative domestication gene. RESULTS Genotyping of wild and landrace tetraploid accessions showed presence of only null alleles in durum. Domesticated emmer wheats contained both null alleles and the wild-type allele while wild emmers, with one exception, only carried the wild-type allele. One of the null alleles consists of a deletion that covers several 100 kb. The other null-allele, a one-basepair frame-shift insertion, likely arose among wild emmer. This allele was the target of a selective sweep, extending over several 100 kb. CONCLUSIONS The NAM-B1 gene fulfils some criteria for being a domestication gene by encoding a trait of domestication relevance (seed size) and is here shown to have been under positive selection. The presence of both wild-type and null alleles in domesticated emmer does, however, suggest the gene to be a diversification gene in this species. Further studies of genotype-environment interactions are needed to find out under what conditions selection on different NAM-B1 alleles have been beneficial.
Collapse
Affiliation(s)
- Maria Lundström
- Linköping University, IFM Biology, SE-581 83, Linköping, Sweden
| | - Matti W Leino
- Linköping University, IFM Biology, SE-581 83, Linköping, Sweden.,Nordiska museet, Swedish Museum of Cultural History, Box 27820, SE-115 93, Stockholm, Sweden.,The Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Jenny Hagenblad
- Linköping University, IFM Biology, SE-581 83, Linköping, Sweden.
| |
Collapse
|
41
|
Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 2017; 551:498-502. [PMID: 29143815 PMCID: PMC7416625 DOI: 10.1038/nature24486] [Citation(s) in RCA: 413] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2016] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
A combination of advanced sequencing and mapping techniques is used to produce a reference genome of Aegilops tauschii, progenitor of the wheat D genome, providing a valuable resource for comparative genetic studies. Sequencing the genomes of crops plants provides useful resources for crop improvement and breeding. Jan Dvořák, Katrien Devos, Steven Salzberg and colleagues report a reference genome for Aegilops tauschii, the diploid progenitor of the D genome of hexaploid wheat. They use a combination of ordered-clone genome sequencing, whole-genome shotgun sequencing and BioNano optical genome mapping to assemble this large and highly repetitive genome. This provides a useful resource for comparative genomics studies of wheat. Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat1 (Triticum aestivum, genomes AABBDD) and an important genetic resource for wheat2,3,4. The large size and highly repetitive nature of the Ae. tauschii genome has until now precluded the development of a reference-quality genome sequence5. Here we use an array of advanced technologies, including ordered-clone genome sequencing, whole-genome shotgun sequencing, and BioNano optical genome mapping, to generate a reference-quality genome sequence for Ae. tauschii ssp. strangulata accession AL8/78, which is closely related to the wheat D genome. We show that compared to other sequenced plant genomes, including a much larger conifer genome, the Ae. tauschii genome contains unprecedented amounts of very similar repeated sequences. Our genome comparisons reveal that the Ae. tauschii genome has a greater number of dispersed duplicated genes than other sequenced genomes and its chromosomes have been structurally evolving an order of magnitude faster than those of other grass genomes. The decay of colinearity with other grass genomes correlates with recombination rates along chromosomes. We propose that the vast amounts of very similar repeated sequences cause frequent errors in recombination and lead to gene duplications and structural chromosome changes that drive fast genome evolution.
Collapse
|
42
|
Boehm JD, Zhang M, Cai X, Morris CF. Molecular and Cytogenetic Characterization of the 5DS-5BS Chromosome Translocation Conditioning Soft Kernel Texture in Durum Wheat. THE PLANT GENOME 2017; 10. [PMID: 29293810 DOI: 10.3835/plantgenome2017.04.0031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/25/2023]
Abstract
The durum wheat ( ssp. (Desf.) Husn.) cultivar Soft Svevo with a soft kernel texture was developed through a -mediated homoeologous 5DS-5BS chromosomal translocation. The soft kernel trait ( locus) derived from chromosome 5D of the common wheat ( L.) cultivar Chinese Spring. Soft Svevo was used as the donor parent to create near-isogenic soft durum germplasm. The size of the translocation, its estimated breakpoint, and the amount of chromosome 5BS translocated, if any, remain unknown. Four near-isogenic pairs of hard and soft kernel durum genotypes, in addition to Soft Svevo and the Chinese Spring deletion line 5DS-2, which lacks a distal 22% terminal segment of chromosome 5DS, were genotyped using Illumina's 90k wheat single nucleotide polymorphism array. Single nucleotide polymorphism results were processed in GenomeStudio and 164 polymorphic markers were identified between the near-isogenic lines (NILs). Subsequent BLASTn results for two subsets of markers corresponding to the distal ends of chromosomes 5DS and 5BS indicated that the translocation event was nearly reciprocal, as a ∼24.36-Mbp segment of chromosome 5DS was gained, whereas a ∼20.01-Mbp segment of chromosome 5BS was lost. Genomic in situ hybridization images of the soft durum NILs agreed with these estimates and confirmed the absence of additional terminal or interstitial translocations. Soft durum represents the potential of a new wheat market class and these findings will assist durum wheat breeders in the development of new soft durum germplasm.
Collapse
|
43
|
Martin JM, Hogg AC, Webster RW, Giroux MJ. Creation and Characterization of a Double Null Puroindoline Genotype in Spring Wheat. Cereal Chem 2017. [DOI: 10.1094/cchem-04-17-0071-rw] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Affiliation(s)
- John M. Martin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, U.S.A
| | - Andrew C. Hogg
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, U.S.A
| | - Richard W. Webster
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, U.S.A
| | - Michael J. Giroux
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, U.S.A
| |
Collapse
|
44
|
Vicient CM, Casacuberta JM. Impact of transposable elements on polyploid plant genomes. ANNALS OF BOTANY 2017; 120:195-207. [PMID: 28854566 PMCID: PMC5737689 DOI: 10.1093/aob/mcx078] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The growing wealth of knowledge on whole-plant genome sequences is highlighting the key role of transposable elements (TEs) in plant evolution, as a driver of drastic changes in genome size and as a source of an important number of new coding and regulatory sequences. Together with polyploidization events, TEs should thus be considered the major players in evolution of plants. SCOPE This review outlines the major mechanisms by which TEs impact plant genome evolution and how polyploidy events can affect these impacts, and vice versa. These include direct effects on genes, by providing them with new coding or regulatory sequences, an effect on the epigenetic status of the chromatin close to genes, and more subtle effects by imposing diverse evolutionary constraints to different chromosomal regions. These effects are particularly relevant after polyploidization events. Polyploidization often induces bursts of transposition probably due to a relaxation in their epigenetic control, and, in the short term, this can increase the rate of gene mutations and changes in gene regulation due to the insertion of TEs next to or into genes. Over longer times, TE bursts may induce global changes in genome structure due to inter-element recombination including losses of large genome regions and chromosomal rearrangements that reduce the genome size and the chromosome number as part of a process called diploidization. CONCLUSIONS TEs play an essential role in genome and gene evolution, in particular after polyploidization events. Polyploidization can induce TE activity that may explain part of the new phenotypes observed. TEs may also play a role in the diploidization that follows polyploidization events. However, the extent to which TEs contribute to diploidization and fractionation bias remains unclear. Investigating the multiple factors controlling TE dynamics and the nature of ancient and recent polyploid genomes may shed light on these processes.
Collapse
Affiliation(s)
- Carlos M. Vicient
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
- For correspondence. E-mail
| | - Josep M. Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
45
|
Rousseau H, Rousseau-Gueutin M, Dauvergne X, Boutte J, Simon G, Marnet N, Bouchereau A, Guiheneuf S, Bazureau JP, Morice J, Ravanel S, Cabello-Hurtado F, Ainouche A, Salmon A, Wendel JF, Ainouche ML. Evolution of DMSP (dimethylsulfoniopropionate) biosynthesis pathway: Origin and phylogenetic distribution in polyploid Spartina (Poaceae, Chloridoideae). Mol Phylogenet Evol 2017; 114:401-414. [PMID: 28694102 DOI: 10.1016/j.ympev.2017.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022]
Abstract
DMSP (dimethylsulfoniopropionate) is an ecologically important sulfur metabolite commonly produced by marine algae and by some higher plant lineages, including the polyploid salt marsh genus Spartina (Poaceae). The molecular mechanisms and genes involved in the DMSP biosynthesis pathways are still unknown. In this study, we performed comparative analyses of DMSP amounts and molecular phylogenetic analyses to decipher the origin of DMSP in Spartina that represents one of the major source of terrestrial DMSP in coastal marshes. DMSP content was explored in 14 Spartina species using 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS). Putative genes encoding the four enzymatic steps of the DMSP biosynthesis pathway in Spartina were examined and their evolutionary dynamics were studied. We found that the hexaploid lineage containing S. alterniflora, S. foliosa and S. maritima and their derived hybrids and allopolyploids are all able to produce DMSP, in contrast to species in the tetraploid clade. Thus, examination of DMSP synthesis in a phylogenetic context implicated a single origin of this physiological innovation, which occurred in the ancestor of the hexaploid Spartina lineage, 3-6MYA. Candidate genes specific to the Spartina DMSP biosynthesis pathway were also retrieved from Spartina transcriptomes, and provide a framework for future investigations to decipher the molecular mechanisms involved in this plant phenotypic novelty that has major ecological impacts in saltmarsh ecosystems.
Collapse
Affiliation(s)
- Hélène Rousseau
- UMR CNRS 6553 Ecobio, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes Cedex, France
| | - Mathieu Rousseau-Gueutin
- UMR IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, BP35327, F-35653 Le Rheu Cedex, France
| | - Xavier Dauvergne
- EA 2219 Géoarchitecture, Université de Bretagne Occidentale, 6 av. le Gorgeu - CS93837, 29238 Brest Cedex 3, France
| | - Julien Boutte
- UMR CNRS 6553 Ecobio, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes Cedex, France
| | - Gaëlle Simon
- Plateforme technologique de Résonance Magnétique Nucléaire, Résonance Paramagnétique Electronique et Spectrométrie de Masse, 6, av. Victor Le Gorgeu, CS93837, 29238 Brest Cedex 3, France
| | - Nathalie Marnet
- Plateau de Profilage Métabolique et Métabolomique (P2M2), Centre de Recherche Angers Nantes BIA, INRA de Rennes, F-35653 Le Rheu, France
| | - Alain Bouchereau
- UMR IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, BP35327, F-35653 Le Rheu Cedex, France
| | - Solène Guiheneuf
- UMR CNRS 6226, Groupe Ingénierie Chimique & Molécules pour le Vivant (ICMV), Sciences Chimiques de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Jean-Pierre Bazureau
- UMR CNRS 6226, Groupe Ingénierie Chimique & Molécules pour le Vivant (ICMV), Sciences Chimiques de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Jérôme Morice
- UMR IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, BP35327, F-35653 Le Rheu Cedex, France
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire & Végétale, UMR 5168 CNRS-CEA-UMR 1417 INRA-Université Grenoble Alpes, Grenoble, France
| | | | - Abdelkader Ainouche
- UMR CNRS 6553 Ecobio, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes Cedex, France
| | - Armel Salmon
- UMR CNRS 6553 Ecobio, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes Cedex, France
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Malika L Ainouche
- UMR CNRS 6553 Ecobio, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes Cedex, France.
| |
Collapse
|
46
|
Nedelkou IP, Maurer A, Schubert A, Léon J, Pillen K. Exotic QTL improve grain quality in the tri-parental wheat population SW84. PLoS One 2017; 12:e0179851. [PMID: 28686676 PMCID: PMC5501409 DOI: 10.1371/journal.pone.0179851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023] Open
Abstract
Developing the tri-parental exotic wheat population SW84 Genetic diversity of cultivated wheat was markedly reduced, first, during domestication and, second, since the onset of modern elite breeding. There is an increasing demand for utilizing genetic resources to increase genetic diversity and, simultaneously, to improve agronomic performance of cultivated wheat. To locate favorable effects of exotic wheat alleles, we developed the tri-parental wheat population SW84. The population was derived from crossing the hexaploid spring wheat cultivars Triso and Devon with one synthetic exotic donor accession, Syn084L, followed by two rounds of backcrossing and three rounds of selfing. SW84 consists of 359 BC2F4 lines, split into two families, D84 (Devon*Syn084L) and T84 (Triso*Syn084L). Studying the genetic control of grain quality in SW84 As a case study, grain quality of SW84 was studied in replicated field trials. Transgressive segregation was observed for all studied grain quality traits by evaluating SW84 for two years at two locations under low and high nitrogen supply. Subsequently, a genome-wide association study (GWAS) was carried out based on genomic data derived from a 90k Infinium iSELECT single nucleotide polymorphism (SNP) array. In total, GWAS yielded 37 marker-trait associations, summarized to 16 quantitative trait loci (QTL). These SNPs indicate genetic regulators of grain protein content, grain hardness, sedimentation value and sedimentation ratio. The majority of exotic QTL alleles (75%) exerted favorable effects, increasing grain protein content and sedimentation value in ten and two cases, respectively. For instance, two exotic QTL alleles were associated with a substantial increase of grain protein content and sedimentation value by 1.09% and 7.31 ml, respectively. This finding confirms the potential of exotic germplasm to improve grain quality in cultivated wheat. So far, the molecular nature of most of the detected QTL is unknown. However, two QTL correspond to known genes controlling grain quality: The major QTL on chromosome 6B, increasing grain protein content by 0.70%, on average, co-localizes with the NAM-B1 gene, known to control grain protein content as well as iron and zinc content. Likewise, the major QTL on chromosome 5D, reducing grain hardness by 8.98%, on average, co-localizes with the gene for puroindoline b (Pinb-D1) at the Ha locus. In total, 13 QTL were detected across families, whereas one and three QTL were exclusively detected in families D84 and T84, respectively. Likewise, ten QTL were detected across nitrogen treatments, whereas one and five QTL were exclusively detected under low and high N treatments, respectively. Our data indicate that most effects in SW84 act across families and N levels. Merging of data from two families or two N treatments may, thus, be considered in association studies to increase sample size and, as a result, QTL detection power. Utilizing favorable exotic QTL alleles in wheat breeding Our study serves as a model how favorable exotic QTL alleles can be located in exotic germplasm of wheat. In future, the localized favorable exotic QTL alleles will be utilized in wheat breeding programs to simultaneously improve grain quality and selectively expand genetic diversity of the elite wheat gene pool.
Collapse
Affiliation(s)
- Ioanna-Pavlina Nedelkou
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Andreas Maurer
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Anne Schubert
- University of Bonn, Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, Katzenburgweg 5, Bonn, Germany
| | - Jens Léon
- University of Bonn, Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, Katzenburgweg 5, Bonn, Germany
| | - Klaus Pillen
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
- * E-mail:
| |
Collapse
|
47
|
Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan CKK, Visendi P, Lai K, Doležel J, Batley J, Edwards D. The pangenome of hexaploid bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1007-1013. [PMID: 28231383 DOI: 10.1111/tpj.13515] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/17/2016] [Accepted: 02/06/2017] [Indexed: 05/19/2023]
Abstract
There is an increasing understanding that variation in gene presence-absence plays an important role in the heritability of agronomic traits; however, there have been relatively few studies on variation in gene presence-absence in crop species. Hexaploid wheat is one of the most important food crops in the world and intensive breeding has reduced the genetic diversity of elite cultivars. Major efforts have produced draft genome assemblies for the cultivar Chinese Spring, but it is unknown how well this represents the genome diversity found in current modern elite cultivars. In this study we build an improved reference for Chinese Spring and explore gene diversity across 18 wheat cultivars. We predict a pangenome size of 140 500 ± 102 genes, a core genome of 81 070 ± 1631 genes and an average of 128 656 genes in each cultivar. Functional annotation of the variable gene set suggests that it is enriched for genes that may be associated with important agronomic traits. In addition to variation in gene presence, more than 36 million intervarietal single nucleotide polymorphisms were identified across the pangenome. This study of the wheat pangenome provides insight into genome diversity in elite wheat as a basis for genomics-based improvement of this important crop. A wheat pangenome, GBrowse, is available at http://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan/, and data are available to download from http://wheatgenome.info/wheat_genome_databases.php.
Collapse
Affiliation(s)
- Juan D Montenegro
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
| | - Agnieszka A Golicz
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Philipp E Bayer
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Bhavna Hurgobin
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - HueyTyng Lee
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Chon-Kit Kenneth Chan
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Paul Visendi
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
| | | | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-783 71, Olomouc, Czech Republic
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
- Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - David Edwards
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
- Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
48
|
Oury FX, Lasme P, Michelet C, Dubat A, Gardet O, Heumez E, Rolland B, Rousset M, Abecassis J, Bar L'Helgouac'h C, Lullien-Pellerin V. Bread wheat milling behavior: effects of genetic and environmental factors, and modeling using grain mechanical resistance traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:929-950. [PMID: 28204843 DOI: 10.1007/s00122-017-2861-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/26/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Genetic (Pinb-D1 alleles) and environment (through vitreousness) have important effects on bread wheat milling behavior. SKCS optimal values corresponding to soft vitreous or hard mealy grains were defined to obtain the highest total flour yield. Near-isogenic lines of bread wheat that differ in hardness, due to distinct puroindoline-b alleles (the wild type, Pinb-D1a, or the mutated forms, Pinb-D1b or Pinb-D1d), were grown in different environments and under two nitrogen fertilization levels, to study genetic and environmental effects on milling behavior. Milling tests used a prototype mill, equipped with two break steps, one sizing step, and two reduction steps, and this enabled 21 individual or aggregated milling fractions to be collected. Four current grain characters, thousand grain weight, test weight, grain diameter, and protein content, were measured, and three characters known to influence grain mechanical resistance, NIRS hardness, SKCS hardness index, and grain vitreousness (a character affecting the grain mechanical behavior but generally not studied). As expected, the wild type or mutated forms of Pinb-D1 alleles led to contrasted milling behavior: soft genotypes produced high quantities of break flour and low quantities of reduction flour, whereas reverse quantities were observed for hard genotypes. This different milling behavior had only a moderate influence on total flour production. NIRS hardness and vitreousness were, respectively, the most important and the second most important grain characters to explain milling behavior. However, contrary to NIRS hardness, vitreousness was only involved in endosperm reduction and not in the separation between the starchy endosperm and the outer layers. The highest flour yields were obtained for SKCS values comprised between 30 and 50, which corresponded either to soft vitreous or hard mealy grains. Prediction equations were defined and showed a good accuracy estimating break and reduction flours portions, but should be used more cautiously for total flour.
Collapse
Affiliation(s)
- François-Xavier Oury
- INRA, UMR 1095, Génétique Diversité et Ecophysiologie des Céréales, 5 Chemin de Beaulieu, 63100, Clermont-Ferrand, France.
| | - P Lasme
- UMR IATE, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - C Michelet
- UFS, 17 Rue du Louvre, 75001, Paris, France
| | - A Dubat
- CHOPIN Technologies, 20 Avenue Marcellin Berthelot, 92390, Villeneuve-la-Garenne, France
| | - O Gardet
- URAO63, Domaine de Crouelle, 5 Chemin de Beaulieu, 63100, Clermont-Ferrand, France
| | - E Heumez
- INRA, UE 972, Grandes Cultures Innovation Environnement, 2 Chaussée Brunehaut, 80200, Estrées-Mons, France
| | - B Rolland
- INRA, UMR 1349, Institut de Génétique Environnement et Protection des Plantes, Domaine de la Motte, 35653, Le Rheu, France
| | - M Rousset
- INRA, UMR 320, Génétique Quantitative et Evolution, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - J Abecassis
- UMR IATE, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - C Bar L'Helgouac'h
- ARVALIS-Institut du végétal, Station Expérimentale, 91720, Boigneville, France
| | - V Lullien-Pellerin
- UMR IATE, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, 34060, Montpellier, France
| |
Collapse
|
49
|
He Z, Wang L, Harper AL, Havlickova L, Pradhan AK, Parkin IAP, Bancroft I. Extensive homoeologous genome exchanges in allopolyploid crops revealed by mRNAseq-based visualization. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:594-604. [PMID: 27808473 PMCID: PMC5399007 DOI: 10.1111/pbi.12657] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/19/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 05/21/2023]
Abstract
Polyploidy, the possession of multiple sets of chromosomes, has been a predominant factor in the evolution and success of the angiosperms. Although artificially formed allopolyploids show a high rate of genome rearrangement, the genomes of cultivars and germplasm used for crop breeding were assumed stable and genome structural variation under the artificial selection process of commercial breeding has remained little studied. Here, we show, using a repurposed visualization method based on transcriptome sequence data, that genome structural rearrangement occurs frequently in varieties of three polyploid crops (oilseed rape, mustard rape and bread wheat), meaning that the extent of genome structural variation present in commercial crops is much higher than expected. Exchanges were found to occur most frequently where homoeologous chromosome segments are collinear to telomeres and in material produced as doubled haploids. The new insights into genome structural evolution enable us to reinterpret the results of recent studies and implicate homoeologous exchanges, not deletions, as being responsible for variation controlling important seed quality traits in rapeseed. Having begun to identify the extent of genome structural variation in polyploid crops, we can envisage new strategies for the global challenge of broadening crop genetic diversity and accelerating adaptation, such as the molecular identification and selection of genome deletions or duplications encompassing genes with trait-controlling dosage effects.
Collapse
Affiliation(s)
- Zhesi He
- Department of BiologyUniversity of YorkHeslingtonYorkUK
| | - Lihong Wang
- Department of BiologyUniversity of YorkHeslingtonYorkUK
| | | | | | - Akshay K. Pradhan
- Department of Genetics and Centre for Genetic Manipulation of Crop PlantsUniversity of DelhiNew DelhiIndia
| | | | - Ian Bancroft
- Department of BiologyUniversity of YorkHeslingtonYorkUK
| |
Collapse
|
50
|
Wilkinson MD, Tosi P, Lovegrove A, Corol DI, Ward JL, Palmer R, Powers S, Passmore D, Webster G, Marcus SE, Knox JP, Shewry PR. The Gsp-1 genes encode the wheat arabinogalactan peptide. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|