1
|
Jiang B, Yang J, Zhong X, Yan S, Yin M, Shen J, Lei B, Li Z, Zhou Y, Duan L. Triacontanol delivery by nano star shaped polymer promoted growth in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108815. [PMID: 38861820 DOI: 10.1016/j.plaphy.2024.108815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Plant Growth Regulators (PGRs) are functional compounds known for enhancing plant growth and development. However, their environmental impact is a concern due to poor water solubility and the need for substantial organic solvents. Recently, nano-delivery systems have emerged as a solution, offering a broad range of applications for small molecule compounds. This study introduces a nano-delivery system for Triacontanol (TA), utilizing a star polymer (SPc), aimed at promoting maize growth and improving physiological indicators. The system forms nearly spherical nanoparticles through TA's hydroxyl group and SPc's tertiary amine group. The TA/SPc nano-complex notably outperforms separate TA or SPc treatments in maize, increasing biomass, chlorophyll content, and nutrient absorption. It elevates chlorophyll content by 16.4%, 10.0%, and 6.2% over water, TA, and SPc treatments, respectively, and boosts potassium and nitrate ion uptake by up to 2 and 1.6 times compared to TA alone, leading to enhanced plant height and leaf growth. qRT-PCR analysis further demonstrated that the nano-complex enhanced cellular uptake through the endocytosis pathway by up-regulating endocytosis-related gene expression. The employment of TEM to observe vesicle formation during the internalization of maize leaves furnishes corroborative evidence for the participation of the endocytosis pathway in this process. This research confirms that SPc is an effective carrier for TA, significantly enhancing biological activity and reducing TA dosage requirements.
Collapse
Affiliation(s)
- Bingyao Jiang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jia Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xingyu Zhong
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Laboratory for Monitoring and Green Management, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory for Monitoring and Green Management, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Bin Lei
- Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Liusheng Duan
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
2
|
Kraus M, Pleskot R, Van Damme D. Structural and Evolutionary Aspects of Plant Endocytosis. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:521-550. [PMID: 38237062 DOI: 10.1146/annurev-arplant-070122-023455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Endocytosis is an essential eukaryotic process that maintains the homeostasis of the plasma membrane proteome by vesicle-mediated internalization. Its predominant mode of operation utilizes the polymerization of the scaffold protein clathrin forming a coat around the vesicle; therefore, it is termed clathrin-mediated endocytosis (CME). Throughout evolution, the machinery that mediates CME is marked by losses, multiplications, and innovations. CME employs a limited number of conserved structural domains and folds, whose assembly and connections are species dependent. In plants, many of the domains are grouped into an ancient multimeric complex, the TPLATE complex, which occupies a central position as an interaction hub for the endocytic machinery. In this review, we provide an overview of the current knowledge regarding the structural aspects of plant CME, and we draw comparisons to other model systems. To do so, we have taken advantage of recent developments with respect to artificial intelligence-based protein structure prediction.
Collapse
Affiliation(s)
- Michael Kraus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; ,
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Roman Pleskot
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic;
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; ,
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
3
|
Mason K, LaMontagne-Mueller E, Sauer M, Heese A. Arabidopsis clathrin adaptor EPSIN1 but not MODIFIED TRANSPORT TO THE VACOULE1 contributes to effective plant immunity against pathogenic Pseudomonas bacteria. PLANT SIGNALING & BEHAVIOR 2023; 18:2163337. [PMID: 36603596 PMCID: PMC9828777 DOI: 10.1080/15592324.2022.2163337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
In eukaryotes, EPSINs are Epsin N-terminal Homology (ENTH) domain-containing proteins that serve as monomeric clathrin adaptors at the plasma membrane (PM) or the trans-Golgi Network (TGN)/early endosomes (EE). The model plant Arabidopsis thaliana encodes for seven ENTH proteins, of which so far, only AtEPSIN1 (AtEPS1) and MODIFIED TRANSPORT TO THE VACUOLE1 (AtMTV1) localize to the TGN/EE and contribute to cargo trafficking to both the cell surface and the vacuole. However, relatively little is known about role(s) of any plant EPSIN in governing physiological responses. We have recently shown that AtEPS1 is a positive modulator of plant immune signaling and pattern-triggered immunity against flagellated Pseudomonas syringae pv. tomato (Pto) DC3000 bacteria. In eps1 mutants, impaired immune responses correlate with reduced accumulation of the receptor FLAGELLIN SENSING2 (AtFLS2) and the convergent immune co-receptor BRASSINOSTEROID INSENTIVE1-ASSOCIATED RECEPTOR KINASE1 (AtBAK1) in the PM. Here, we report that in contrast to AtEPS1, the TGN/EE-localized AtMTV1 did not contribute significantly to immunity against pathogenic Pto DC3000 bacteria. We also compared the amino acid sequences, peptide motif structures and in silico tertiary structures of the ENTH domains of AtEPS1 and AtMTV1 in more detail. We conclude that despite sharing the classical tertiary alpha helical ENTH-domain structure and clathrin-binding motifs, the overall low amino acid identity and differences in peptide motifs may explain their role(s) in trafficking of some of the same as well as distinct cargo components to their site of function, with the latter potentially contributing to differences in physiological responses.
Collapse
Affiliation(s)
- Kelly Mason
- University of Missouri-Columbia, Division of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA
| | - Erica LaMontagne-Mueller
- University of Missouri-Columbia, Division of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA
| | - Michael Sauer
- Department of Plant Physiology, University of Potsdam, Potsdam, Germany
| | - Antje Heese
- University of Missouri-Columbia, Division of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA
| |
Collapse
|
4
|
Gandhi A, Tseng YH, Oelmüller R. The damage-associated molecular pattern cellotriose alters the phosphorylation pattern of proteins involved in cellulose synthesis and trans-Golgi trafficking in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2023; 18:2184352. [PMID: 36913771 PMCID: PMC10026868 DOI: 10.1080/15592324.2023.2184352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have recently demonstrated that the cellulose breakdown product cellotriose is a damage-associated molecular pattern (DAMP) which induces responses related to the integrity of the cell wall. Activation of downstream responses requires the Arabidopsis malectin domain-containing CELLOOLIGOMER RECEPTOR KINASE1 (CORK1)1. The cellotriose/CORK1 pathway induces immune responses, including NADPH oxidase-mediated reactive oxygen species production, mitogen-activated protein kinase 3/6 phosphorylation-dependent defense gene activation, and the biosynthesis of defense hormones. However, apoplastic accumulation of cell wall breakdown products should also activate cell wall repair mechanisms. We demonstrate that the phosphorylation pattern of numerous proteins involved in the accumulation of an active cellulose synthase complex in the plasma membrane and those for protein trafficking to and within the trans-Golgi network (TGN) are altered within minutes after cellotriose application to Arabidopsis roots. The phosphorylation pattern of enzymes involved in hemicellulose or pectin biosynthesis and the transcript levels for polysaccharide-synthesizing enzymes responded barely to cellotriose treatments. Our data show that the phosphorylation pattern of proteins involved in cellulose biosynthesis and trans-Golgi trafficking is an early target of the cellotriose/CORK1 pathway.
Collapse
Affiliation(s)
- Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
- CONTACT Ralf Oelmüller Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
5
|
Xue M, Arvy N, German‐Retana S. The mystery remains: How do potyviruses move within and between cells? MOLECULAR PLANT PATHOLOGY 2023; 24:1560-1574. [PMID: 37571979 PMCID: PMC10632792 DOI: 10.1111/mpp.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The genus Potyvirus is considered as the largest among plant single-stranded (positive-sense) RNA viruses, causing considerable economic damage to vegetable and fruit crops worldwide. Through the coordinated action of four viral proteins and a few identified host factors, potyviruses exploit the endomembrane system of infected cells for their replication and for their intra- and intercellular movement to and through plasmodesmata (PDs). Although a significant amount of data concerning potyvirus movement has been published, no synthetic review compiling and integrating all information relevant to our current understanding of potyvirus transport is available. In this review, we highlight the complexity of potyvirus movement pathways and present three potential nonexclusive mechanisms based on (1) the use of the host endomembrane system to produce membranous replication vesicles that are targeted to PDs and move from cell to cell, (2) the movement of extracellular viral vesicles in the apoplasm, and (3) the transport of virion particles or ribonucleoprotein complexes through PDs. We also present and discuss experimental data supporting these different models as well as the aspects that still remain mostly speculative.
Collapse
Affiliation(s)
- Mingshuo Xue
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Nathalie Arvy
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Sylvie German‐Retana
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| |
Collapse
|
6
|
Pan T, Liu Y, Hu X, Li P, Lin C, Tang Y, Tang W, Liu Y, Guo L, Kim C, Fang J, Lin H, Wu Z, Blumwald E, Wang S. Stress-induced endocytosis from chloroplast inner envelope membrane is mediated by CHLOROPLAST VESICULATION but inhibited by GAPC. Cell Rep 2023; 42:113208. [PMID: 37792531 DOI: 10.1016/j.celrep.2023.113208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 06/16/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Clathrin-mediated vesicular formation and trafficking are responsible for molecular cargo transport and signal transduction among organelles. Our previous study shows that CHLOROPLAST VESICULATION (CV)-containing vesicles (CVVs) are generated from chloroplasts for chloroplast degradation under abiotic stress. Here, we show that CV interacts with the clathrin heavy chain (CHC) and induces vesicle budding toward the cytosol from the chloroplast inner envelope membrane. In the defective mutants of CHC2 and the dynamin-encoding DRP1A, CVV budding and releasing from chloroplast are impeded. The mutations of CHC2 inhibit CV-induced chloroplast degradation and hypersensitivity to water stress. Moreover, CV-CHC2 interaction is impaired by the oxidized GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPC). GAPC1 overexpression suppresses CV-mediated chloroplast degradation and hypersensitivity to water stress, while CV silencing alleviates the hypersensitivity of the gapc1gapc2 plant to water stress. Together, our work identifies a pathway of clathrin-assisted CVV budding outward from chloroplast, which is involved in chloroplast degradation and stress response.
Collapse
Affiliation(s)
- Ting Pan
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangxuan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xufan Hu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Pengwei Li
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Lin
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yuying Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei Tang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yongsheng Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Fang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Honghui Lin
- Ministry of Education, Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Zhihua Wu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
7
|
Zouhar J, Cao W, Shen J, Rojo E. Retrograde transport in plants: Circular economy in the endomembrane system. Eur J Cell Biol 2023; 102:151309. [PMID: 36933283 DOI: 10.1016/j.ejcb.2023.151309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The study of endomembrane trafficking is crucial for understanding how cells and whole organisms function. Moreover, there is a special interest in investigating endomembrane trafficking in plants, given its role in transport and accumulation of seed storage proteins and in secretion of cell wall material, arguably the two most essential commodities obtained from crops. The mechanisms of anterograde transport in the biosynthetic and endocytic pathways of plants have been thoroughly discussed in recent reviews, but, comparatively, retrograde trafficking pathways have received less attention. Retrograde trafficking is essential to recover membranes, retrieve proteins that have escaped from their intended localization, maintain homeostasis in maturing compartments, and recycle trafficking machinery for its reuse in anterograde transport reactions. Here, we review the current understanding on retrograde trafficking pathways in the endomembrane system of plants, discussing their integration with anterograde transport routes, describing conserved and plant-specific retrieval mechanisms at play, highlighting contentious issues and identifying open questions for future research.
Collapse
Affiliation(s)
- Jan Zouhar
- Central European Institute of Technology, Mendel University in Brno, CZ-61300 Brno, Czech Republic.
| | - Wenhan Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China.
| | - Enrique Rojo
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
| |
Collapse
|
8
|
Woo S, Moon B, Hwang I. Both metaxin and Tom20 together with two mitochondria-specific motifs support mitochondrial targeting of dual-targeting AtSufE1. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1596-1613. [PMID: 35713200 DOI: 10.1111/jipb.13312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Plant cells have two endosymbiotic organelles, chloroplasts, and mitochondria. These organelles perform specific functions that depend on organelle-specific proteins. The majority of chloroplast and mitochondrial proteins are specifically imported by the transit peptide and presequence, respectively. However, a significant number of proteins are also dually targeted to these two organelles. Currently, it is not fully understood how proteins are dually targeted to both chloroplasts and mitochondria. In this study, the mechanism underlying mitochondrial targeting of dual targeting AtSufE1 in Arabidopsis was elucidated. The N-terminal fragment containing 80 residues of AtSufE1 (AtSufE1N80) was sufficient to confer dual targeting of reporter protein, AtSufE1N80:GFP, in protoplasts. Two sequence motifs, two arginine residues at 15th and 21st positions, and amino acid (aa) sequence motif AKTLLLRPLK from the 31st to 40th aa position, were responsible for targeting to mitochondria a portion of reporter proteins amid the chloroplast targeting. The sequence motif PSEVPFRRT from the 41st to 50th aa position constitutes a common motif for targeting to both chloroplasts and mitochondria. For mitochondrial import of AtSufE1:N80, Metaxin played a critical role. In addition, BiFC and protein pull-down experiments showed that AtSufE1N80 specifically interacts with import receptors, Metaxin and Tom20. The interaction of AtSufE1N80 with Metaxin was required for the interaction with Tom20. Based on these results, we propose that mitochondrial targeting of dual-targeting AtSufE1 is mediated by both mitochondria-specific and common sequence motifs in the signal sequence through the interaction with import receptors, Metaxin and Tom20, in a successive manner.
Collapse
Affiliation(s)
- Seungjin Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Byeongho Moon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| |
Collapse
|
9
|
González Solís A, Berryman E, Otegui MS. Plant endosomes as protein sorting hubs. FEBS Lett 2022; 596:2288-2304. [PMID: 35689494 DOI: 10.1002/1873-3468.14425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023]
Abstract
Endocytosis, secretion, and endosomal trafficking are key cellular processes that control the composition of the plasma membrane. Through the coordination of these trafficking pathways, cells can adjust the composition, localization, and turnover of proteins and lipids in response to developmental or environmental cues. Upon being incorporated into vesicles and internalized through endocytosis, plant plasma membrane proteins are delivered to the trans-Golgi network (TGN). At the TGN, plasma membrane proteins are recycled back to the plasma membrane or transferred to multivesicular endosomes (MVEs), where they are further sorted into intralumenal vesicles for degradation in the vacuole. Both types of plant endosomes, TGN and MVEs, act as sorting organelles for multiple endocytic, recycling, and secretory pathways. Molecular assemblies such as retromer, ESCRT (endosomal sorting complex required for transport) machinery, small GTPases, adaptor proteins, and SNAREs associate with specific domains of endosomal membranes to mediate different sorting and membrane-budding events. In this review, we discuss the mechanisms underlying the recognition and sorting of proteins at endosomes, membrane remodeling and budding, and their implications for cellular trafficking and physiological responses in plants.
Collapse
Affiliation(s)
- Ariadna González Solís
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| | - Elizabeth Berryman
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
10
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 PMCID: PMC9134090 DOI: 10.1093/plcell/koac071] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
| | | | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | | | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
11
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 DOI: 10.1101/2021.09.16.460678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Gregory D Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
12
|
Feng Y, Hiwatashi T, Minamino N, Ebine K, Ueda T. Membrane trafficking functions of the ANTH/ENTH/VHS domain-containing proteins in plants. FEBS Lett 2022; 596:2256-2268. [PMID: 35505466 DOI: 10.1002/1873-3468.14368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/07/2022]
Abstract
Subcellular localization of proteins acting on the endomembrane system is primarily regulated via membrane trafficking. To obtain and maintain the correct protein composition of the plasma membrane and membrane-bound organelles, the loading of selected cargos into transport vesicles is critically regulated at donor compartments by adaptor proteins binding to the donor membrane, the cargo molecules, and the coat-protein complexes, including the clathrin coat. The ANTH/ENTH/VHS domain-containing protein superfamily generally comprises a structurally related ENTH, ANTH, or VHS domain in the N-terminal region and a variable C-terminal region, which is thought to act as an adaptor during transport vesicle formation. This protein family is involved in various plant processes, including pollen tube growth, abiotic stress response, and development. In this review, we provide an overview of the recent findings on ANTH/ENTH/VHS domain-containing proteins in plants.
Collapse
Affiliation(s)
- Yihong Feng
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takuma Hiwatashi
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
13
|
Lee J, Hanh Nguyen H, Park Y, Lin J, Hwang I. Spatial regulation of RBOHD via AtECA4-mediated recycling and clathrin-mediated endocytosis contributes to ROS accumulation during salt stress response but not flg22-induced immune response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:816-830. [PMID: 34797009 DOI: 10.1111/tpj.15593] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Various environmental stresses can induce production of reactive oxygen species (ROS) to turn on signaling for proper responses to those stresses. Plasma membrane (PM)-localized respiratory burst oxidase homologs (RBOHs), in particular RBOHD, produce ROS via the post-translational activation upon abiotic and biotic stresses. Although the mechanisms of RBOHD activation upon biotic stress have been elucidated in detail, it remains elusive how salinity stress activates RBOHD. Here, we present evidence that trafficking of PM-localized RBOHD to endosomes and then its recycling back to the PM is critical for ROS accumulation upon salinity stress. ateca4 plants that were defective in recycling of proteins from endosomes to the PM and clc2-1 and chc2-1 plants that were defective in endocytosis showed a defect in salinity stress-induced ROS production. In addition, ateca4 plants showed a defect in transient accumulation of GFP:RBOHD to the PM at the early stage of salinity stress. By contrast, ateca4 plants showed no defect in the increase in the ROS level and accumulation of RBOHD to the PM upon flg22 treatment as wild-type plants. Based on these observations, we propose that factors involved in the trafficking machinery such as AtECA4 and clathrin are important players in salt stress-induced, but not flg22-induced, ROS accumulation.
Collapse
Affiliation(s)
- Jihyeong Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Hong Hanh Nguyen
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Youngmin Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Bioapplications, Pohang, Korea
| | - Jinxing Lin
- Key Lab of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 10083, China
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| |
Collapse
|
14
|
Wu G, Jia Z, Ding K, Zheng H, Lu Y, Lin L, Peng J, Rao S, Wang A, Chen J, Yan F. Turnip mosaic virus co-opts the vacuolar sorting receptor VSR4 to promote viral genome replication in plants by targeting viral replication vesicles to the endosome. PLoS Pathog 2022; 18:e1010257. [PMID: 35073383 PMCID: PMC8812904 DOI: 10.1371/journal.ppat.1010257] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
Accumulated experimental evidence has shown that viruses recruit the host intracellular machinery to establish infection. It has recently been shown that the potyvirus Turnip mosaic virus (TuMV) transits through the late endosome (LE) for viral genome replication, but it is still largely unknown how the viral replication vesicles labelled by the TuMV membrane protein 6K2 target LE. To further understand the underlying mechanism, we studied the involvement of the vacuolar sorting receptor (VSR) family proteins from Arabidopsis in this process. We now report the identification of VSR4 as a new host factor required for TuMV infection. VSR4 interacted specifically with TuMV 6K2 and was required for targeting of 6K2 to enlarged LE. Following overexpression of VSR4 or its recycling-defective mutant that accumulates in the early endosome (EE), 6K2 did not employ the conventional VSR-mediated EE to LE pathway, but targeted enlarged LE directly from cis-Golgi and viral replication was enhanced. In addition, VSR4 can be N-glycosylated and this is required for its stability and for monitoring 6K2 trafficking to enlarged LE. A non-glycosylated VSR4 mutant enhanced the dissociation of 6K2 from cis-Golgi, leading to the formation of punctate bodies that targeted enlarged LE and to more robust viral replication than with glycosylated VSR4. Finally, TuMV hijacks N-glycosylated VSR4 and protects VSR4 from degradation via the autophagy pathway to assist infection. Taken together, our results have identified a host factor VSR4 required for viral replication vesicles to target endosomes for optimal viral infection and shed new light on the role of N-glycosylation of a host factor in regulating viral infection. A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host endomembrane system to produce a membranous replication organelle. Recent reports suggest that the late endosome (LE) serves as a replication site for the potyvirus Turnip mosaic virus (TuMV), but the mechanism(s) by which TuMV replication vesicles target LE are far from being fully elucidated. Identification of the host factors involved in this transport process could lead to new strategies to combat TuMV infection. In this report, we provide evidence that TuMV replication depends on functional vesicle transport from cis-Golgi to the enlarged LE pathway that is mediated by a specific VSR family member, VSR4, from Arabidopsis. Knock out of VSR4 impaired the targeting of TuMV replication vesicles to enlarged LE and suppressed viral infection, and this process depends on the specific interaction between VSR4 and the viral replication vesicle-forming protein 6K2. We also showed that N-glycosylation of VSR4 modulates the targeting of TuMV replication vesicles to enlarged LE and enhances viral infection, thus contributing to our understanding of how TuMV manipulates host factors in order to establish optimal infection. These results may have implications for the role of VSR in other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhaoxing Jia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kaida Ding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JC); (FY)
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JC); (FY)
| |
Collapse
|
15
|
Dukowic-Schulze S, Harvey A, Garcia N, Chen C, Gardner G. UV-B Irradiation Results in Inhibition of Hypocotyl Elongation, Cell Cycle Arrest, and Decreased Endoreduplication Mediated by miR5642. Photochem Photobiol 2021; 98:1084-1099. [PMID: 34882800 DOI: 10.1111/php.13574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/06/2021] [Indexed: 01/11/2023]
Abstract
UV-B as a component of natural solar radiation can induce damage and morphological development in plants. The UV-B response from germination and early development in seedlings is still largely unknown, with most studies focused on older, light-exposed seedlings. We used fluence response curves measuring hypocotyl length after UV-B exposure coupled with RNA-seq and sRNA-seq evaluation of the early seedling response in the model organism Arabidopsis thaliana. We identified miR5642 as a potential novel key regulator of UV-B responses. miR5642 is a noncanonical miRNA predicted to target previously known and unknown components involved in hypocotyl growth inhibition. These include (i) SMAX1, a signal transmitter for seedling germination and growth; (ii) ZAT1, an uncharacterized transcription factor; and (iii) membrane pores and transporters (VHA-E1, VHA-E3, EPSIN-LIKE and PIP1.4) implicated in cell elongation. In addition, HY5 and HYH, two homologous and redundant transcription factors involved in seedling photomorphogenesis, may interact with these newly identified components. Interestingly, UV-B-induced DNA photodimer formation seems to be the direct trigger leading to inhibition of hypocotyl growth through a combination of cellular decisions including cell cycle arrest, reduced endoreduplication and reduced cell elongation, and this inhibition appears to be modulated by miR5642 target genes.
Collapse
Affiliation(s)
| | - Allison Harvey
- Department of Horticultural Science, University of Minnesota, St. Paul, MN
| | - Nelson Garcia
- Department of Horticultural Science, University of Minnesota, St. Paul, MN
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN
| | - Gary Gardner
- Department of Horticultural Science, University of Minnesota, St. Paul, MN
| |
Collapse
|
16
|
Involvement of adaptor proteins in clathrin-mediated endocytosis of virus entry. Microb Pathog 2021; 161:105278. [PMID: 34740810 DOI: 10.1016/j.micpath.2021.105278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
The first step in the initiation of effective viral infection is breaking through the cytomembrane to enter the cell. Clathrin-mediated endocytosis is a key vesicular trafficking process in which a variety of cargo molecules are transported from the outside to the inside of the cell. This process is hijacked by numerous families of enveloped or non-enveloped viruses, which use it to enter host cells, followed by trafficking to their replicating sites. Various adaptor proteins that assist in cargo selection, coat assembly, and clathrin-coated bud maturation are important in this process. Research data documented on the involvement of adaptor proteins, such as AP-2, Eps-15, Epsin1, and AP180/CALM, in the invasion of viruses via the clathrin-mediated endocytosis have provided novel insights into understanding the viral life cycle and have led to the development of novel therapeutics. Here, we summarize the latest discoveries on the role of these adaptor proteins in clathrin-mediated endocytosis of virus entry and also discuss the future trends in this field.
Collapse
|
17
|
Yan X, Wang Y, Xu M, Dahhan DA, Liu C, Zhang Y, Lin J, Bednarek SY, Pan J. Cross-talk between clathrin-dependent post-Golgi trafficking and clathrin-mediated endocytosis in Arabidopsis root cells. THE PLANT CELL 2021; 33:3057-3075. [PMID: 34240193 PMCID: PMC8462817 DOI: 10.1093/plcell/koab180] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 05/26/2023]
Abstract
Coupling of post-Golgi and endocytic membrane transport ensures that the flow of materials to/from the plasma membrane (PM) is properly balanced. The mechanisms underlying the coordinated trafficking of PM proteins in plants, however, are not well understood. In plant cells, clathrin and its adaptor protein complexes, AP-2 and the TPLATE complex (TPC) at the PM, and AP-1 at the trans-Golgi network/early endosome (TGN/EE), function in clathrin-mediated endocytosis (CME) and post-Golgi trafficking. Here, we utilized mutants with defects in clathrin-dependent post-Golgi trafficking and CME, in combination with other cytological and pharmacological approaches, to further investigate the machinery behind the coordination of protein delivery and recycling to/from the TGN/EE and PM in Arabidopsis (Arabidopsis thaliana) root cells. In mutants with defective AP-2-/TPC-dependent CME, we determined that clathrin and AP-1 recruitment to the TGN/EE as well as exocytosis are significantly impaired. Likewise, defects in AP-1-dependent post-Golgi trafficking and pharmacological inhibition of exocytosis resulted in the reduced association of clathrin and AP-2/TPC subunits with the PM and a reduction in the internalization of cargoes via CME. Together, these results suggest that post-Golgi trafficking and CME are coupled via modulation of clathrin and adaptor protein complex recruitment to the TGN/EE and PM.
Collapse
Affiliation(s)
- Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yutong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mei Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dana A. Dahhan
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Chan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Sebastian Y. Bednarek
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
Jamsheer K M, Kumar M, Srivastava V. SNF1-related protein kinase 1: the many-faced signaling hub regulating developmental plasticity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6042-6065. [PMID: 33693699 DOI: 10.1093/jxb/erab079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/17/2021] [Indexed: 05/03/2023]
Abstract
The Snf1-related protein kinase 1 (SnRK1) is the plant homolog of the heterotrimeric AMP-activated protein kinase/sucrose non-fermenting 1 (AMPK/Snf1), which works as a major regulator of growth under nutrient-limiting conditions in eukaryotes. Along with its conserved role as a master regulator of sugar starvation responses, SnRK1 is involved in controlling the developmental plasticity and resilience under diverse environmental conditions in plants. In this review, through mining and analyzing the interactome and phosphoproteome data of SnRK1, we are highlighting its role in fundamental cellular processes such as gene regulation, protein synthesis, primary metabolism, protein trafficking, nutrient homeostasis, and autophagy. Along with the well-characterized molecular interaction in SnRK1 signaling, our analysis highlights several unchartered regions of SnRK1 signaling in plants such as its possible communication with chromatin remodelers, histone modifiers, and inositol phosphate signaling. We also discuss potential reciprocal interactions of SnRK1 signaling with other signaling pathways and cellular processes, which could be involved in maintaining flexibility and homeostasis under different environmental conditions. Overall, this review provides a comprehensive overview of the SnRK1 signaling network in plants and suggests many novel directions for future research.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Manoj Kumar
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
19
|
Lim J, Lee K, Im H. Reinforcement of the Unfolded Protein Response Mitigates Cytotoxicity Induced by Human Z‐Type α
1
‐Antitrypsin. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jaeyeon Lim
- Department of Integrative Bioscience and Biotechnology Sejong University Seoul 05006 South Korea
| | - Kyunghee Lee
- Department of Chemistry Sejong University Seoul 05006 South Korea
| | - Hana Im
- Department of Integrative Bioscience and Biotechnology Sejong University Seoul 05006 South Korea
| |
Collapse
|
20
|
Zhang X, Li H, Lu H, Hwang I. The trafficking machinery of lytic and protein storage vacuoles: how much is shared and how much is distinct? JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3504-3512. [PMID: 33587748 DOI: 10.1093/jxb/erab067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 05/10/2023]
Abstract
Plant cells contain two types of vacuoles, the lytic vacuole (LV) and protein storage vacuole (PSV). LVs are present in vegetative cells, whereas PSVs are found in seed cells. The physiological functions of the two types of vacuole differ. Newly synthesized proteins must be transported to these vacuoles via protein trafficking through the endomembrane system for them to function. Recently, significant advances have been made in elucidating the molecular mechanisms of protein trafficking to these organelles. Despite these advances, the relationship between the trafficking mechanisms to the LV and PSV remains unclear. Some aspects of the trafficking mechanisms are common to both types of vacuole, but certain aspects are specific to trafficking to either the LV or PSV. In this review, we summarize recent findings on the components involved in protein trafficking to both the LV and PSV and compare them to examine the extent of overlap in the trafficking mechanisms. In addition, we discuss the interconnection between the LV and PSV provided by the protein trafficking machinery and the implications for the identity of these organelles.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Inhwan Hwang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Department of Life Sciences, Pohang University of Science and Technology, 37673 Pohang, South Korea
| |
Collapse
|
21
|
de Jong F, Munnik T. Attracted to membranes: lipid-binding domains in plants. PLANT PHYSIOLOGY 2021; 185:707-723. [PMID: 33793907 PMCID: PMC8133573 DOI: 10.1093/plphys/kiaa100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 05/18/2023]
Abstract
Membranes are essential for cells and organelles to function. As membranes are impermeable to most polar and charged molecules, they provide electrochemical energy to transport molecules across and create compartmentalized microenvironments for specific enzymatic and cellular processes. Membranes are also responsible for guided transport of cargoes between organelles and during endo- and exocytosis. In addition, membranes play key roles in cell signaling by hosting receptors and signal transducers and as substrates and products of lipid second messengers. Anionic lipids and their specific interaction with target proteins play an essential role in these processes, which are facilitated by specific lipid-binding domains. Protein crystallography, lipid-binding studies, subcellular localization analyses, and computer modeling have greatly advanced our knowledge over the years of how these domains achieve precision binding and what their function is in signaling and membrane trafficking, as well as in plant development and stress acclimation.
Collapse
Affiliation(s)
- Femke de Jong
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Teun Munnik
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
22
|
EPSIN1 and MTV1 define functionally overlapping but molecularly distinct trans-Golgi network subdomains in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:25880-25889. [PMID: 32989160 DOI: 10.1073/pnas.2004822117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The plant trans-Golgi network (TGN) is a central trafficking hub where secretory, vacuolar, recycling, and endocytic pathways merge. Among currently known molecular players involved in TGN transport, three different adaptor protein (AP) complexes promote vesicle generation at the TGN with different cargo specificity and destination. Yet, it remains unresolved how sorting into diverging vesicular routes is spatially organized. Here, we study the family of Arabidopsis thaliana Epsin-like proteins, which are accessory proteins to APs facilitating vesicle biogenesis. By comprehensive molecular, cellular, and genetic analysis of the EPSIN gene family, we identify EPSIN1 and MODIFIED TRANSPORT TO THE VACUOLE1 (MTV1) as its only TGN-associated members. Despite their large phylogenetic distance, they perform overlapping functions in vacuolar and secretory transport. By probing their relationship with AP complexes, we find that they define two molecularly independent pathways: While EPSIN1 associates with AP-1, MTV1 interacts with AP-4, whose function is required for MTV1 recruitment. Although both EPSIN1/AP-1 and MTV1/AP-4 pairs reside at the TGN, high-resolution microscopy reveals them as spatially separate entities. Our results strongly support the hypothesis of molecularly, functionally, and spatially distinct subdomains of the plant TGN and suggest that functional redundancy can be achieved through parallelization of molecularly distinct but functionally overlapping pathways.
Collapse
|
23
|
Zhang W. EPSIN1 Contributes to Plant Immunity by Modulating the Abundance of Pattern Recognition Receptors at the Plasma Membrane. PLANT PHYSIOLOGY 2020; 183:3-4. [PMID: 32385169 PMCID: PMC7210624 DOI: 10.1104/pp.20.00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Wei Zhang
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502
| |
Collapse
|
24
|
Collins CA, LaMontagne ED, Anderson JC, Ekanayake G, Clarke AS, Bond LN, Salamango DJ, Cornish PV, Peck SC, Heese A. EPSIN1 Modulates the Plasma Membrane Abundance of FLAGELLIN SENSING2 for Effective Immune Responses. PLANT PHYSIOLOGY 2020; 182:1762-1775. [PMID: 32094305 PMCID: PMC7140936 DOI: 10.1104/pp.19.01172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/14/2020] [Indexed: 05/25/2023]
Abstract
The plasma membrane (PM) provides a critical interface between plant cells and their environment to control cellular responses. To perceive the bacterial flagellin peptide flg22 for effective defense signaling, the immune receptor FLAGELLIN SENSING2 (FLS2) needs to be at its site of function, the PM, in the correct abundance. However, the intracellular machinery that controls PM accumulation of FLS2 remains largely undefined. The Arabidopsis (Arabidopsis thaliana) clathrin adaptor EPSIN1 (EPS1) is implicated in clathrin-coated vesicle formation at the trans-Golgi network (TGN), likely aiding the transport of cargo proteins from the TGN for proper location; but EPS1's impact on physiological responses remains elusive. Here, we identify EPS1 as a positive regulator of flg22 signaling and pattern-triggered immunity against Pseudomonas syringae pv tomato DC3000. We provide evidence that EPS1 contributes to modulating the PM abundance of defense proteins for effective immune signaling because in eps1, impaired flg22 signaling correlated with reduced PM accumulation of FLS2 and its coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1). The eps1 mutant also exhibited reduced responses to the pathogen/damage-associated molecular patterns elf26 and AtPep1, which are perceived by the coreceptor BAK1 and cognate PM receptors. Furthermore, quantitative proteomics of enriched PM fractions revealed that EPS1 was required for proper PM abundance of a discrete subset of proteins with different cellular functions. In conclusion, our study expands the limited understanding of the physiological roles of EPSIN family members in plants and provides novel insight into the TGN-associated clathrin-coated vesicle trafficking machinery that impacts plant PM-derived defense processes.
Collapse
Affiliation(s)
- Carina A Collins
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Erica D LaMontagne
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Jeffrey C Anderson
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Gayani Ekanayake
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Alexander S Clarke
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Lauren N Bond
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Daniel J Salamango
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Peter V Cornish
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Scott C Peck
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Antje Heese
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| |
Collapse
|
25
|
Yao L, Yu Q, Huang M, Song Z, Grosser J, Chen S, Wang Y, Gmitter FG. Comparative iTRAQ proteomic profiling of sweet orange fruit on sensitive and tolerant rootstocks infected by 'Candidatus Liberibacter asiaticus'. PLoS One 2020; 15:e0228876. [PMID: 32059041 PMCID: PMC7021301 DOI: 10.1371/journal.pone.0228876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 01/12/2023] Open
Abstract
Citrus Huanglongbing (HLB), which is also known as citrus greening, is a destructive disease continuing to devastate citrus production worldwide. Although all citrus varieties can be infected with 'Candidatus Liberibacter asiaticus' (CaLas), a certain level of HLB tolerance of scion varieties can be conferred by some rootstocks. To understand the effects of rootstock varieties on orange fruit under CaLas stress, comparative iTRAQ proteomic profilings were conducted, using fruit from 'Valencia' sweet orange grafted on the sensitive ('Swingle') and tolerant rootstocks (a new selection called '46x20-04-48') infected by CaLas as experimental groups, and the same plant materials without CaLas infection as controls. The symptomatic fruit on 'Swingle' had 573 differentially-expressed (DE) proteins in comparison with their healthy fruit on the same rootstock, whereas the symptomatic fruit on '46x20-04-48' had 263 DE proteins. Many defense-associated proteins were down-regulated in the symptomatic fruit on 'Swingle' rootstock that were seldom detected in the symptomatic fruit on the '46x20-04-48' rootstock, especially the proteins involved in the jasmonate biosynthesis (AOC4), jasmonate signaling (ASK2, RUB1, SKP1, HSP70T-2, and HSP90.1), protein hydrolysis (RPN8A and RPT2a), and vesicle trafficking (SNAREs and Clathrin) pathways. Therefore, we predict that the down-regulated proteins involved in the jasmonate signaling pathway and vesicle trafficking are likely to be related to citrus sensitivity to the CaLas pathogen.
Collapse
Affiliation(s)
- Lixiao Yao
- Citrus Research Institute, Southwest University, Chongqing, China
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Ming Huang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Zhen Song
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Jude Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Shanchun Chen
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Yu Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Frederick G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
26
|
Schwihla M, Korbei B. The Beginning of the End: Initial Steps in the Degradation of Plasma Membrane Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:680. [PMID: 32528512 PMCID: PMC7253699 DOI: 10.3389/fpls.2020.00680] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 05/05/2023]
Abstract
The plasma membrane (PM), as border between the inside and the outside of a cell, is densely packed with proteins involved in the sensing and transmission of internal and external stimuli, as well as transport processes and is therefore vital for plant development as well as quick and accurate responses to the environment. It is consequently not surprising that several regulatory pathways participate in the tight regulation of the spatiotemporal control of PM proteins. Ubiquitination of PM proteins plays a key role in directing their entry into the endo-lysosomal system, serving as a signal for triggering endocytosis and further sorting for degradation. Nevertheless, a uniting picture of the different roles of the respective types of ubiquitination in the consecutive steps of down-regulation of membrane proteins is still missing. The trans-Golgi network (TGN), which acts as an early endosome (EE) in plants receives the endocytosed cargo, and here the decision is made to either recycled back to the PM or further delivered to the vacuole for degradation. A multi-complex machinery, the endosomal sorting complex required for transport (ESCRT), concentrates ubiquitinated proteins and ushers them into the intraluminal vesicles of multi-vesicular bodies (MVBs). Several ESCRTs have ubiquitin binding subunits, which anchor and guide the cargos through the endocytic degradation route. Basic enzymes and the mode of action in the early degradation steps of PM proteins are conserved in eukaryotes, yet many plant unique components exist, which are often essential in this pathway. Thus, deciphering the initial steps in the degradation of ubiquitinated PM proteins, which is the major focus of this review, will greatly contribute to the larger question of how plants mange to fine-tune their responses to their environment.
Collapse
|
27
|
Zhang HM, Devine LB, Xia X, Offler CE, Patrick JW. Ethylene and hydrogen peroxide regulate formation of a sterol-enriched domain essential for wall labyrinth assembly in transfer cells. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1469-1482. [PMID: 30649402 PMCID: PMC6411373 DOI: 10.1093/jxb/erz003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/02/2019] [Indexed: 05/20/2023]
Abstract
Transfer cells (TCs) facilitate high rates of nutrient transport into, and within, the plant body. Their transport function is conferred by polarized wall ingrowth papillae, deposited upon a specialized uniform wall layer, that form a scaffold supporting an amplified area of plasma membrane enriched in nutrient transporters. We explored the question of whether lipid-enriched domains of the TC plasma membrane could serve as organizational platforms for proteins regulating the construction of the intricate TC wall labyrinth using developing Vicia faba cotyledons. When these cotyledons are placed in culture, their adaxial epidermal cells trans-differentiate to a TC phenotype regulated by auxin, ethylene, extracellular hydrogen peroxide (apoH2O2), and cytosolic Ca2+ ([Ca2+]cyt) arranged in series. Staining cultured cotyledons with the sterol-specific dye, Filipin III, detected a polarized sterol-enriched domain in the plasma membrane of their trans-differentiating epidermal transfer cells (ETCs). Ethylene activated sterol biosynthesis while extracellular apoH2O2 directed sterol-enriched vesicles to fuse with the outer periclinal region of the ETC plasma membrane. The sterol-enriched domain was essential for generating the [Ca2+]cyt signal and orchestrating construction of both the uniform wall layer and wall ingrowth papillae. A model is presented outlining how the sterol-enriched plasma membrane domain forms and functions to regulate wall labyrinth assembly.
Collapse
Affiliation(s)
- Hui-Ming Zhang
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
| | - Luke B Devine
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
| | - Xue Xia
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
| | - Christina E Offler
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
- Correspondence: or
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
- Correspondence: or
| |
Collapse
|
28
|
A single class of ARF GTPase activated by several pathway-specific ARF-GEFs regulates essential membrane traffic in Arabidopsis. PLoS Genet 2018; 14:e1007795. [PMID: 30439956 PMCID: PMC6264874 DOI: 10.1371/journal.pgen.1007795] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 11/29/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, GTP-bound ARF GTPases promote intracellular membrane traffic by mediating the recruitment of coat proteins, which in turn sort cargo proteins into the forming membrane vesicles. Mammals employ several classes of ARF GTPases which are activated by different ARF guanine-nucleotide exchange factors (ARF-GEFs). In contrast, flowering plants only encode evolutionarily conserved ARF1 GTPases (class I) but not the other classes II and III known from mammals, as suggested by phylogenetic analysis of ARF family members across the five major clades of eukaryotes. Instead, flowering plants express plant-specific putative ARF GTPases such as ARFA and ARFB, in addition to evolutionarily conserved ARF-LIKE (ARL) proteins. Here we show that all eight ARF-GEFs of Arabidopsis interact with the same ARF1 GTPase, whereas only a subset of post-Golgi ARF-GEFs also interacts with ARFA, as assayed by immunoprecipitation. Both ARF1 and ARFA were detected at the Golgi stacks and the trans-Golgi network (TGN) by both live-imaging with the confocal microscope and nano-gold labeling followed by EM analysis. ARFB representing another plant-specific putative ARF GTPase was detected at both the plasma membrane and the TGN. The activation-impaired form (T31N) of ARF1, but neither ARFA nor ARFB, interfered with development, although ARFA-T31N interfered, like ARF1-T31N, with the GDP-GTP exchange. Mutant plants lacking both ARFA and ARFB transcripts were viable, suggesting that ARF1 is sufficient for all essential trafficking pathways under laboratory conditions. Detailed imaging of molecular markers revealed that ARF1 mediated all known trafficking pathways whereas ARFA was not essential to any major pathway. In contrast, the hydrolysis-impaired form (Q71L) of both ARF1 and ARFA, but not ARFB, had deleterious effects on development and various trafficking pathways. However, the deleterious effects of ARFA-Q71L were abolished by ARFA-T31N inhibiting cognate ARF-GEFs, both in cis (ARFA-T31N,Q71L) and in trans (ARFA-T31N + ARFA-Q71L), suggesting indirect effects of ARFA-Q71L on ARF1-mediated trafficking. The deleterious effects of ARFA-Q71L were also suppressed by strong over-expression of ARF1, which was consistent with a subset of BIG1-4 ARF-GEFs interacting with both ARF1 and ARFA. Indeed, the SEC7 domain of BIG5 activated both ARF1 and ARFA whereas the SEC7 domain of BIG3 only activated ARF1. Furthermore, ARFA-T31N impaired root growth if ARF1-specific BIG3 was knocked out and only ARF1- and ARFA-activating BIG4 was functional. Activated ARF1 recruits different coat proteins to different endomembrane compartments, depending on its activation by different ARF-GEFs. Unlike ARF GTPases, ARF-GEFs not only localize at distinct compartments but also regulate specific trafficking pathways, suggesting that ARF-GEFs might play specific roles in traffic regulation beyond the activation of ARF1 by GDP-GTP exchange.
Collapse
|
29
|
Müdsam C, Wollschläger P, Sauer N, Schneider S. Sorting of Arabidopsis NRAMP3 and NRAMP4 depends on adaptor protein complex AP4 and a dileucine-based motif. Traffic 2018; 19:503-521. [PMID: 29573093 DOI: 10.1111/tra.12567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023]
Abstract
Adaptor protein complexes mediate cargo selection and vesicle trafficking to different cellular membranes in all eukaryotic cells. Information on the role of AP4 in plants is still limited. Here, we present the analyses of Arabidopsis thaliana mutants lacking different subunits of AP4. These mutants show abnormalities in their development and in protein sorting. We found that growth of roots and etiolated hypocotyls, as well as male fertility and trichome morphology are disturbed in ap4. Analyses of GFP-fusions transiently expressed in mesophyll protoplasts demonstrated that the tonoplast (TP) proteins MOT2, NRAMP3 and NRAMP4, but not INT1, are partially sorted to the plasma membrane (PM) in the absence of a functional AP4 complex. Moreover, alanine mutagenesis revealed that in wild-type plants, sorting of NRAMP3 and NRAMP4 to the TP requires an N-terminal dileucine-based motif. The NRAMP3 or NRAMP4 N-terminal domain containing the dileucine motif was sufficient to redirect the PM localized INT4 protein to the TP and to confer AP4-dependency on sorting of INT1. Our data show that correct sorting of NRAMP3 and NRAMP4 depends on both, an N-terminal dileucine-based motif as well as AP4.
Collapse
Affiliation(s)
- Christina Müdsam
- Molecular Plant Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paul Wollschläger
- Molecular Plant Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine Schneider
- Molecular Plant Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
30
|
Nguyen HH, Lee MH, Song K, Ahn G, Lee J, Hwang I. The A/ENTH Domain-Containing Protein AtECA4 Is an Adaptor Protein Involved in Cargo Recycling from the trans-Golgi Network/Early Endosome to the Plasma Membrane. MOLECULAR PLANT 2018; 11:568-583. [PMID: 29317286 DOI: 10.1016/j.molp.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/03/2017] [Accepted: 01/03/2018] [Indexed: 05/05/2023]
Abstract
Endocytosis and subsequent trafficking pathways are crucial for regulating the activity of plasma membrane-localized proteins. Depending on cellular and physiological conditions, the internalized cargoes are sorted at (and transported from) the trans-Golgi network/early endosome (TGN/EE) to the vacuole for degradation or recycled back to the plasma membrane. How this occurs at the molecular level remains largely elusive. Here, we provide evidence that the ENTH domain-containing protein AtECA4 plays a crucial role in recycling cargoes from the TGN/EE to the plasma membrane in Arabidopsis thaliana. AtECA4:sGFP primarily localized to the TGN/EE and plasma membrane (at low levels). Upon NaCl or mannitol treatment, AtECA4:sGFP accumulated at the TGN/EE at an early time point but was released from the TGN/EE to the cytosol at later time points. The ateca4 mutant showed higher resistance to osmotic stress and more sensitive to exogenous abscisic acid (ABA) than the wild type, as well as increased expression of ABA-inducible genes RD29A and RD29B. Consistently, ABCG25, a plasma membrane-localized ABA exporter, accumulated at the prevacuolar compartment in ateca4, indicating a defect in recycling to the plasma membrane. However, the role of AtECA4 in cargo recycling is not specific to ABCG25, as it also functions in the recycling of BRI1. These results suggest that AtECA4 plays a crucial role in the recycling of endocytosed cargoes from the TGN/EE to the plasma membrane.
Collapse
Affiliation(s)
- Hong Hanh Nguyen
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Myoung Hui Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kyungyoung Song
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Gyeongik Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jihyeong Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
31
|
AtCAP2 is crucial for lytic vacuole biogenesis during germination by positively regulating vacuolar protein trafficking. Proc Natl Acad Sci U S A 2018; 115:E1675-E1683. [PMID: 29378957 DOI: 10.1073/pnas.1717204115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein trafficking is a fundamental mechanism of subcellular organization and contributes to organellar biogenesis. AtCAP2 is an Arabidopsis homolog of the Mesembryanthemum crystallinum calcium-dependent protein kinase 1 adaptor protein 2 (McCAP2), a member of the syntaxin superfamily. Here, we show that AtCAP2 plays an important role in the conversion to the lytic vacuole (LV) during early plant development. The AtCAP2 loss-of-function mutant atcap2-1 displayed delays in protein storage vacuole (PSV) protein degradation, PSV fusion, LV acidification, and biosynthesis of several vacuolar proteins during germination. At the mature stage, atcap2-1 plants accumulated vacuolar proteins in the prevacuolar compartment (PVC) instead of the LV. In wild-type plants, AtCAP2 localizes to the PVC as a peripheral membrane protein and in the PVC compartment recruits glyceraldehyde-3-phosphate dehydrogenase C2 (GAPC2) to the PVC. We propose that AtCAP2 contributes to LV biogenesis during early plant development by supporting the trafficking of specific proteins involved in the PSV-to-LV transition and LV acidification during early stages of plant development.
Collapse
|
32
|
Jung JY, Lee DW, Ryu SB, Hwang I, Schachtman DP. SCYL2 Genes Are Involved in Clathrin-Mediated Vesicle Trafficking and Essential for Plant Growth. PLANT PHYSIOLOGY 2017; 175:194-209. [PMID: 28751315 PMCID: PMC5580775 DOI: 10.1104/pp.17.00824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/24/2017] [Indexed: 05/10/2023]
Abstract
Protein transport between organelles is an essential process in all eukaryotic cells and is mediated by the regulation of processes such as vesicle formation, transport, docking, and fusion. In animals, SCY1-LIKE2 (SCYL2) binds to clathrin and has been shown to play roles in trans-Golgi network-mediated clathrin-coated vesicle trafficking. Here, we demonstrate that SCYL2A and SCYL2B, which are Arabidopsis (Arabidopsis thaliana) homologs of animal SCYL2, are vital for plant cell growth and root hair development. Studies of the SCYL2 isoforms using multiple single or double loss-of-function alleles show that SCYL2B is involved in root hair development and that SCYL2A and SCYL2B are essential for plant growth and development and act redundantly in those processes. Quantitative reverse transcription-polymerase chain reaction and a β-glucuronidase-aided promoter assay show that SCYL2A and SCYL2B are differentially expressed in various tissues. We also show that SCYL2 proteins localize to the Golgi, trans-Golgi network, and prevacuolar compartment and colocalize with Clathrin Heavy Chain1 (CHC1). Furthermore, bimolecular fluorescence complementation and coimmunoprecipitation data show that SCYL2B interacts with CHC1 and two Soluble NSF Attachment Protein Receptors (SNAREs): Vesicle Transport through t-SNARE Interaction11 (VTI11) and VTI12. Finally, we present evidence that the root hair tip localization of Cellulose Synthase-Like D3 is dependent on SCYL2B. These findings suggest the role of SCYL2 genes in plant cell developmental processes via clathrin-mediated vesicle membrane trafficking.
Collapse
Affiliation(s)
- Ji-Yul Jung
- Department of Plant Molecular Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Stephen Beungtae Ryu
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Daniel P Schachtman
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68588
| |
Collapse
|
33
|
Enrichment of hydroxylated C24- and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains. Nat Commun 2016; 7:12788. [PMID: 27681606 PMCID: PMC5056404 DOI: 10.1038/ncomms12788] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 07/29/2016] [Indexed: 01/01/2023] Open
Abstract
The post-Golgi compartment trans-Golgi Network (TGN) is a central hub divided into multiple subdomains hosting distinct trafficking pathways, including polar delivery to apical membrane. Lipids such as sphingolipids and sterols have been implicated in polar trafficking from the TGN but the underlying mechanisms linking lipid composition to functional polar sorting at TGN subdomains remain unknown. Here we demonstrate that sphingolipids with α-hydroxylated acyl-chains of at least 24 carbon atoms are enriched in secretory vesicle subdomains of the TGN and are critical for de novo polar secretory sorting of the auxin carrier PIN2 to apical membrane of Arabidopsis root epithelial cells. We show that sphingolipid acyl-chain length influences the morphology and interconnections of TGN-associated secretory vesicles. Our results uncover that the sphingolipids acyl-chain length links lipid composition of TGN subdomains with polar secretory trafficking of PIN2 to apical membrane of polarized epithelial cells. Sphingolipids in the trans-Golgi network have been implicated in polar trafficking. Here Wattelet-Boyer et al. show that hydroxylated C24- and C26-acyl-chain sphingolipids are enriched in trans-Golgi network subdomains that are critical for polar sorting of the PIN2 auxin carrier in plant cells.
Collapse
|
34
|
Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC, Dacks JB. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 2016; 209:88-103. [PMID: 27444378 PMCID: PMC5140719 DOI: 10.1016/j.molbiopara.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
35
|
Robinson DG, Neuhaus JM. Receptor-mediated sorting of soluble vacuolar proteins: myths, facts, and a new model. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4435-49. [PMID: 27262127 DOI: 10.1093/jxb/erw222] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To prevent their being released to the cell exterior, acid hydrolases are recognized by receptors at some point in the secretory pathway and diverted towards the lytic compartment of the cell (lysosome or vacuole). In animal cells, the receptor is called the mannosyl 6-phosphate receptor (MPR) and it binds hydrolase ligands in the trans-Golgi network (TGN). These ligands are then sequestered into clathrin-coated vesicles (CCVs) because of motifs in the cytosolic tail of the MPR which interact first with monomeric adaptors (Golgi-localized, Gamma-ear-containing, ARF-binding proteins, GGAs) and then with tetrameric (adaptin) adaptor complexes. The CCVs then fuse with an early endosome, whose more acidic lumen causes the ligands to dissociate. The MPRs are then recycled back to the TGN via retromer-coated carriers. Plants have vacuolar sorting receptors (VSRs) which were originally identified in CCVs isolated from pea (Pisum sativum L.) cotyledons. It was therefore assumed that VSRs would have an analogous function in plants to MPRs in animals. Although this dogma has enjoyed wide support over the last 20 years there are many inconsistencies. Recently, results have been published which are quite contrary to it. It now emerges that VSRs and their ligands can interact very early in the secretory pathway, and dissociate in the TGN, which, in contrast to its mammalian counterpart, has a pH of 5.5. Multivesicular endosomes in plants lack proton pump complexes and consequently have an almost neutral internal pH, which discounts them as organelles of pH-dependent receptor-ligand dissociation. These data force a critical re-evaluation of the role of CCVs at the TGN, especially considering that vacuolar cargo ligands have never been identified in them. We propose that one population of TGN-derived CCVs participate in retrograde transport of VSRs from the TGN. We also present a new model to explain how secretory and vacuolar cargo proteins are effectively separated after entering the late Golgi/TGN compartments.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies (COS), University of Heidelberg, Germany
| | - Jean-Marc Neuhaus
- Institute of Biology, Laboratory of Cell and Molecular Biology, University of Neuchatel, Switzerland
| |
Collapse
|
36
|
Wang C, Hu T, Yan X, Meng T, Wang Y, Wang Q, Zhang X, Gu Y, Sánchez-Rodríguez C, Gadeyne A, Lin J, Persson S, Van Damme D, Li C, Bednarek SY, Pan J. Differential Regulation of Clathrin and Its Adaptor Proteins during Membrane Recruitment for Endocytosis. PLANT PHYSIOLOGY 2016; 171:215-29. [PMID: 26945051 PMCID: PMC4854679 DOI: 10.1104/pp.15.01716] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/03/2016] [Indexed: 05/18/2023]
Abstract
In plants, clathrin-mediated endocytosis (CME) is dependent on the function of clathrin and its accessory heterooligomeric adaptor protein complexes, ADAPTOR PROTEIN2 (AP-2) and the TPLATE complex (TPC), and is negatively regulated by the hormones auxin and salicylic acid (SA). The details for how clathrin and its adaptor complexes are recruited to the plasma membrane (PM) to regulate CME, however, are poorly understood. We found that SA and the pharmacological CME inhibitor tyrphostin A23 reduce the membrane association of clathrin and AP-2, but not that of the TPC, whereas auxin solely affected clathrin membrane association, in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological experiments revealed that loss of AP2μ or AP2σ partially affected the membrane association of other AP-2 subunits and that the AP-2 subunit AP2σ, but not AP2μ, was required for SA- and tyrphostin A23-dependent inhibition of CME Furthermore, we show that although AP-2 and the TPC are both required for the PM recruitment of clathrin in wild-type cells, the TPC is necessary for clathrin PM association in AP-2-deficient cells. These results indicate that developmental signals may differentially modulate the membrane recruitment of clathrin and its core accessory complexes to regulate the process of CME in plant cells.
Collapse
Affiliation(s)
- Chao Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Tianwei Hu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Xu Yan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Tingting Meng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Yutong Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Qingmei Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Xiaoyue Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Ying Gu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Clara Sánchez-Rodríguez
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Astrid Gadeyne
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Jinxing Lin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Staffan Persson
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Daniël Van Damme
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Chuanyou Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Sebastian Y Bednarek
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| |
Collapse
|
37
|
Kibria KMK, Hossain MU, Oany AR, Ahmad SAI. Novel insights on ENTH domain-containing proteins in apicomplexan parasites. Parasitol Res 2016; 115:2191-202. [PMID: 26922178 DOI: 10.1007/s00436-016-4961-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/17/2016] [Indexed: 11/27/2022]
Abstract
The phylum Apicomplexa includes a large group of early branching eukaryotes having significant medical and economical importance. The molecular machinery responsible for protein trafficking is poorly understood in these apicomplexans. One of the most important proteins involved in clathrin-mediated protein trafficking is Epsin, which contains ENTH domain, a conserved domain crucial for membrane bending leading to vesicle formation. We undertook homology searching and phylogenetic analyses to produce a rigorously annotated set of Epsin homologs retrieved from diverse apicomplexan genomes. Genomic and phylogenetic comparisons revealed that apicomplexans contain unusual Epsin homologs that are distinct from those observed in mammals and yeast. Although there are four Epsin genes in mammalian system and five in the yeast genome, apicomplexan parasites consist only a single Epsin gene. The apicomplexan Epsin contains the conserved ENTH domain consisting of phosphoinositide (PtdIns)-binding sites which indicate about their functional significance in the formation of vesicles; however, the absence of ubiquitin-interacting motif (UIM) suggests a possible different mechanism for protein trafficking. The existence of dileucine motif in Plasmodium, Cryptosporidum parvum and Eimeria tenella Epsins might solve their functionality while lacking a lot of conserved motifs as this motif is known to interact with different adaptor protein complexes (AP1, AP2 and AP3). Other Epsin homologs are also shown to have different peptide motifs reported for possible interaction with α-ear appendage, γ-ear appendage and EH domain present in different adaptors. Bioinformatic and phylogenetic analyses suggest that the apicomplexan Epsins have unusual functionality from that of the mammalian Epsins. This detailed study may greatly facilitate future molecular cell biological investigation for the role of Epsins in these parasites.
Collapse
Affiliation(s)
- K M Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh.
| | - Mohammad Uzzal Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Arafat Rahman Oany
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Shah Adil Ishtiyaq Ahmad
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| |
Collapse
|
38
|
Ahn HK, Kang YW, Lim HM, Hwang I, Pai HS. Physiological Functions of the COPI Complex in Higher Plants. Mol Cells 2015; 38:866-75. [PMID: 26434491 PMCID: PMC4625068 DOI: 10.14348/molcells.2015.0115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 11/27/2022] Open
Abstract
COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed α-, β-, β'-, γ-, δ-, ε-, and ζ-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAi of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The β'-, γ-, and δ-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of β'-, γ-, and δ-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of β'-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.
Collapse
Affiliation(s)
- Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
| | - Yong Won Kang
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
- Biospectrum Life Science Institute, Seongnam 462-120,
Korea
| | - Hye Min Lim
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752,
Korea
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
| |
Collapse
|
39
|
Reguzova A, Antonets D, Karpenko L, Ilyichev A, Maksyutov R, Bazhan S. Design and evaluation of optimized artificial HIV-1 poly-T cell-epitope immunogens. PLoS One 2015; 10:e0116412. [PMID: 25786238 PMCID: PMC4364888 DOI: 10.1371/journal.pone.0116412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/09/2014] [Indexed: 11/18/2022] Open
Abstract
A successful HIV vaccine in addition to induction of antibody responses should elicit effective T cell responses. Here we described possible strategies for rational design of T-cell vaccine capable to induce high levels of both CD4+ and CD8+ T- cell responses. We developed artificial HIV-1 polyepitope T-cell immunogens based on the conserved natural CD8+ and CD4+ T cell epitopes from different HIV-1 strains and restricted by the most frequent major human leukocyte antigen (HLA) alleles. Designed immunogens contain optimized core polyepitope sequence and additional "signal" sequences which increase epitope processing and presentation to CD8+ and CD4+ T-lymphocytes: N-terminal ubiquitin, N-terminal signal peptide and C-terminal tyrosine motif of LAMP-1 protein. As a result we engineered three T cell immunogens - TCI-N, TCI-N2, and TCI-N3, with different combinations of signal sequences. All designed immunogens were able to elicit HIV-specific CD4+ and CD8+ T cell responses following immunization. Attachment of either ubiquitin or ER-signal/LAMP-1 sequences increased both CD4+ and CD8+ mediated HIV-specific T cell responses in comparison with polyepitope immunogen without any additional signal sequences. Moreover, TCI-N3 polyepitope immunogen with ubiquitin generated highest magnitude of HIV-specific CD4+ and CD8+ T cell responses in our study. Obtained data suggests that attachment of signal sequences targeting polyepitope immunogens to either MHC class I or MHC class II presentation pathways may improve immunogenicity of T-cell vaccines. These results support the strategy of the rational T cell immunogen design and contribute to the development of effective HIV-1 vaccine.
Collapse
Affiliation(s)
- Alena Reguzova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559, Russia
| | - Denis Antonets
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559, Russia
| | - Larisa Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559, Russia
| | - Alexander Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559, Russia
| | - Rinat Maksyutov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559, Russia
| | - Sergei Bazhan
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559, Russia
| |
Collapse
|
40
|
Zouhar J, Sauer M. Helping hands for budding prospects: ENTH/ANTH/VHS accessory proteins in endocytosis, vacuolar transport, and secretion. THE PLANT CELL 2014; 26:4232-44. [PMID: 25415979 PMCID: PMC4277227 DOI: 10.1105/tpc.114.131680] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/31/2014] [Accepted: 11/13/2014] [Indexed: 05/18/2023]
Abstract
Coated vesicles provide a major mechanism for the transport of proteins through the endomembrane system of plants. Transport between the endoplasmic reticulum and the Golgi involves vesicles with COPI and COPII coats, whereas clathrin is the predominant coat in endocytosis and post-Golgi trafficking. Sorting of cargo, coat assembly, budding, and fission are all complex and tightly regulated processes that involve many proteins. The mechanisms and responsible factors are largely conserved in eukaryotes, and increasing organismal complexity tends to be associated with a greater numbers of individual family members. Among the key factors is the class of ENTH/ANTH/VHS domain-containing proteins, which link membrane subdomains, clathrin, and other adapter proteins involved in early steps of clathrin coated vesicle formation. More than 30 Arabidopsis thaliana proteins contain this domain, but their generally low sequence conservation has made functional classification difficult. Reports from the last two years have greatly expanded our knowledge of these proteins and suggest that ENTH/ANTH/VHS domain proteins are involved in various instances of clathrin-related endomembrane trafficking in plants. This review aims to summarize these new findings and discuss the broader context of clathrin-dependent plant vesicular transport.
Collapse
Affiliation(s)
- Jan Zouhar
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Michael Sauer
- Institute for Bichemistry and Biology, University of Potsdam, 10627 Potsdam, Germany
| |
Collapse
|
41
|
Krishnamoorthy P, Sanchez-Rodriguez C, Heilmann I, Persson S. Regulatory roles of phosphoinositides in membrane trafficking and their potential impact on cell-wall synthesis and re-modelling. ANNALS OF BOTANY 2014; 114:1049-57. [PMID: 24769536 PMCID: PMC4195552 DOI: 10.1093/aob/mcu055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/26/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant cell walls are complex matrices of carbohydrates and proteins that control cell morphology and provide protection and rigidity for the plant body. The construction and maintenance of this intricate system involves the delivery and recycling of its components through a precise balance of endomembrane trafficking, which is controlled by a plethora of cell signalling factors. Phosphoinositides (PIs) are one class of signalling molecules with diverse roles in vesicle trafficking and cytoskeleton structure across different kingdoms. Therefore, PIs may also play an important role in the assembly of plant cell walls. SCOPE The eukaryotic PI pathway is an intricate network of different lipids, which appear to be divided in different pools that can partake in vesicle trafficking or signalling. Most of our current understanding of how PIs function in cell metabolism comes from yeast and mammalian systems; however, in recent years significant progress has been made towards a better understanding of the plant PI system. This review examines the current state of knowledge of how PIs regulate vesicle trafficking and their potential influence on plant cell-wall architecture. It considers first how PIs are formed in plants and then examines their role in the control of vesicle trafficking. Interactions between PIs and the actin cytoskeleton and small GTPases are also discussed. Future challenges for research are suggested.
Collapse
Affiliation(s)
- Praveen Krishnamoorthy
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Clara Sanchez-Rodriguez
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ingo Heilmann
- Martin-Luther-University Halle-Wittenberg, Institute for Biochemistry, Department of Cellular Biochemistry, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Staffan Persson
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
42
|
Kang H, Hwang I. Vacuolar Sorting Receptor-Mediated Trafficking of Soluble Vacuolar Proteins in Plant Cells. PLANTS 2014; 3:392-408. [PMID: 27135510 PMCID: PMC4844349 DOI: 10.3390/plants3030392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 01/13/2023]
Abstract
Vacuoles are one of the most prominent organelles in plant cells, and they play various important roles, such as degradation of waste materials, storage of ions and metabolites, and maintaining turgor. During the past two decades, numerous advances have been made in understanding how proteins are specifically delivered to the vacuole. One of the most crucial steps in this process is specific sorting of soluble vacuolar proteins. Vacuolar sorting receptors (VSRs), which are type I membrane proteins, are involved in the sorting and packaging of soluble vacuolar proteins into transport vesicles with the help of various accessory proteins. To date, large amounts of data have led to the development of two different models describing VSR-mediated vacuolar trafficking that are radically different in multiple ways, particularly regarding the location of cargo binding to, and release from, the VSR and the types of carriers utilized. In this review, we summarize current literature aimed at elucidating VSR-mediated vacuolar trafficking and compare the two models with respect to the sorting signals of vacuolar proteins, as well as the molecular machinery involved in VSR-mediated vacuolar trafficking and its action mechanisms.
Collapse
Affiliation(s)
- Hyangju Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
43
|
Paul P, Simm S, Mirus O, Scharf KD, Fragkostefanakis S, Schleiff E. The complexity of vesicle transport factors in plants examined by orthology search. PLoS One 2014; 9:e97745. [PMID: 24844592 PMCID: PMC4028247 DOI: 10.1371/journal.pone.0097745] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the 'core-set' of 240 factors as bait. We identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences Molecular Cell Biology of Plants
| | - Stefan Simm
- Department of Biosciences Molecular Cell Biology of Plants
| | - Oliver Mirus
- Department of Biosciences Molecular Cell Biology of Plants
| | | | | | - Enrico Schleiff
- Department of Biosciences Molecular Cell Biology of Plants
- Cluster of Excellence Frankfurt
- Center of Membrane Proteomics; Goethe University Frankfurt, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
44
|
Dong T, Xu ZY, Park Y, Kim DH, Lee Y, Hwang I. Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:277-89. [PMID: 24676855 PMCID: PMC4012586 DOI: 10.1104/pp.114.239210] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The phytohormone abscisic acid (ABA) is crucial for plant growth and adaptive responses to various stress conditions. Plants continuously adjust the ABA level to meet physiological needs, but how ABA homeostasis occurs is not fully understood. This study provides evidence that UGT71B6, an ABA uridine diphosphate glucosyltransferase (UGT), and its two closely related homologs, UGT71B7 and UGT71B8, play crucial roles in ABA homeostasis and in adaptation to dehydration, osmotic stress, and high-salinity stresses in Arabidopsis (Arabidopsis thaliana). UGT RNA interference plants that had low levels of these three UGT transcripts displayed hypersensitivity to exogenous ABA and high-salt conditions during germination and exhibited a defect in plant growth. However, the ectopic expression of UGT71B6 in the atbg1 (for β-glucosidase) mutant background aggravated the ABA-deficient phenotype of atbg1 mutant plants. In addition, modulation of the expression of the three UGTs affects the expression of CYP707A1 to CYP707A4, which encode ABA 8'-hydroxylases; four CYP707As were expressed at higher levels in the UGT RNA interference plants but at lower levels in the UGT71B6:GFP-overexpressing plants. Based on these data, this study proposes that UGT71B6 and its two homologs play a critical role in ABA homeostasis by converting active ABA to an inactive form (abscisic acid-glucose ester) depending on intrinsic cellular and environmental conditions in plants.
Collapse
|
45
|
Robinson DG, Pimpl P. Clathrin and post-Golgi trafficking: a very complicated issue. TRENDS IN PLANT SCIENCE 2014; 19:134-9. [PMID: 24263003 DOI: 10.1016/j.tplants.2013.10.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 05/21/2023]
Abstract
Clathrin-coated vesicles (CCVs) are formed at the plasma membrane and act as vectors for endocytosis. They also assemble at the trans-Golgi network (TGN), but their exact function at this organelle is unclear. Recent studies have examined the effects on vacuolar and secretory protein transport of knockout mutations of the adaptor protein 1 (AP1) μ-adaptin subunit AP1M, but these investigations do not clarify the situation. These mutations lead to the abrogation of multiple trafficking pathways at the TGN and cannot be used as evidence in favour of CCVs being agents for receptor-mediated export of vacuolar proteins out of the TGN. This transport process could just as easily occur through the maturation of the TGN into intermediate compartments that subsequently fuse with the vacuole.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany.
| | - Peter Pimpl
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| |
Collapse
|
46
|
Viotti C. ER and vacuoles: never been closer. FRONTIERS IN PLANT SCIENCE 2014; 5:20. [PMID: 24550928 PMCID: PMC3913007 DOI: 10.3389/fpls.2014.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/17/2014] [Indexed: 05/02/2023]
Abstract
The endoplasmic reticulum (ER) represents the gateway for intracellular trafficking of membrane proteins, soluble cargoes and lipids. In all eukaryotes, the best described mechanism of exiting the ER is via COPII-coated vesicles, which transport both membrane proteins and soluble cargoes to the cis-Golgi. The vacuole, together with the plasma membrane, is the most distal point of the secretory pathway, and many vacuolar proteins are transported from the ER through intermediate compartments. However, past results and recent findings demonstrate the presence of alternative transport routes from the ER towards the tonoplast, which are independent of Golgi- and post-Golgi trafficking. Moreover, the transport mechanism of the vacuolar proton pumps VHA-a3 and AVP1 challenges the current model of vacuole biogenesis, pointing to the endoplasmic reticulum for being the main membrane source for the biogenesis of the plant lytic compartment. This review gives an overview of the current knowledge on the transport routes towards the vacuole and discusses the possible mechanism of vacuole biogenesis in plants.
Collapse
Affiliation(s)
- Corrado Viotti
- *Correspondence: Corrado Viotti, Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Linnéusväg 6, 90187 Umeå, Sweden e-mail:
| |
Collapse
|
47
|
McMichael CM, Reynolds GD, Koch LM, Wang C, Jiang N, Nadeau J, Sack FD, Gelderman MB, Pan J, Bednarek SY. Mediation of clathrin-dependent trafficking during cytokinesis and cell expansion by Arabidopsis stomatal cytokinesis defective proteins. THE PLANT CELL 2013; 25:3910-25. [PMID: 24179130 PMCID: PMC3877817 DOI: 10.1105/tpc.113.115162] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/17/2013] [Accepted: 09/27/2013] [Indexed: 05/20/2023]
Abstract
Stomatal cytokinesis defective1 (SCD1) encodes a putative Rab guanine nucleotide exchange factor that functions in membrane trafficking and is required for cytokinesis and cell expansion in Arabidopsis thaliana. Here, we show that the loss of SCD2 function disrupts cytokinesis and cell expansion and impairs fertility, phenotypes similar to those observed for scd1 mutants. Genetic and biochemical analyses showed that SCD1 function is dependent upon SCD2 and that together these proteins are required for plasma membrane internalization. Further specifying the role of these proteins in membrane trafficking, SCD1 and SCD2 proteins were found to be associated with isolated clathrin-coated vesicles and to colocalize with clathrin light chain at putative sites of endocytosis at the plasma membrane. Together, these data suggest that SCD1 and SCD2 function in clathrin-mediated membrane transport, including plasma membrane endocytosis, required for cytokinesis and cell expansion.
Collapse
Affiliation(s)
- Colleen M. McMichael
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Gregory D. Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lisa M. Koch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Chao Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Nan Jiang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Jeanette Nadeau
- Department of Plant Biology, Ohio State University, Columbus, Ohio 43210
| | - Fred D. Sack
- Department of Plant Biology, Ohio State University, Columbus, Ohio 43210
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Max B. Gelderman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Sebastian Y. Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Address correspondence to
| |
Collapse
|
48
|
Sauer M, Delgadillo MO, Zouhar J, Reynolds GD, Pennington JG, Jiang L, Liljegren SJ, Stierhof YD, De Jaeger G, Otegui MS, Bednarek SY, Rojo E. MTV1 and MTV4 encode plant-specific ENTH and ARF GAP proteins that mediate clathrin-dependent trafficking of vacuolar cargo from the trans-Golgi network. THE PLANT CELL 2013; 25:2217-35. [PMID: 23771894 PMCID: PMC3723622 DOI: 10.1105/tpc.113.111724] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/14/2013] [Accepted: 05/30/2013] [Indexed: 05/18/2023]
Abstract
Many soluble proteins transit through the trans-Golgi network (TGN) and the prevacuolar compartment (PVC) en route to the vacuole, but our mechanistic understanding of this vectorial trafficking step in plants is limited. In particular, it is unknown whether clathrin-coated vesicles (CCVs) participate in this transport step. Through a screen for modified transport to the vacuole (mtv) mutants that secrete the vacuolar protein VAC2, we identified MTV1, which encodes an epsin N-terminal homology protein, and MTV4, which encodes the ADP ribosylation factor GTPase-activating protein nevershed/AGD5. MTV1 and NEV/AGD5 have overlapping expression patterns and interact genetically to transport vacuolar cargo and promote plant growth, but they have no apparent roles in protein secretion or endocytosis. MTV1 and NEV/AGD5 colocalize with clathrin at the TGN and are incorporated into CCVs. Importantly, mtv1 nev/agd5 double mutants show altered subcellular distribution of CCV cargo exported from the TGN. Moreover, MTV1 binds clathrin in vitro, and NEV/AGD5 associates in vivo with clathrin, directly linking these proteins to CCV formation. These results indicate that MTV1 and NEV/AGD5 are key effectors for CCV-mediated trafficking of vacuolar proteins from the TGN to the PVC in plants.
Collapse
Affiliation(s)
- Michael Sauer
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
| | - M. Otilia Delgadillo
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
| | - Jan Zouhar
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica, 28223 Madrid, Spain
| | | | | | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Sarah J. Liljegren
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677-1848
| | - York-Dieter Stierhof
- Zentrum für Molekularbiologie der Pflanzen, University of Tübingen, 72076 Tuebingen, Germany
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Marisa S. Otegui
- Department of Botany, University of Madison, Madison, Wisconsin 53706
| | | | - Enrique Rojo
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
- Address correspondence to
| |
Collapse
|
49
|
McMichael CM, Bednarek SY. Cytoskeletal and membrane dynamics during higher plant cytokinesis. THE NEW PHYTOLOGIST 2013; 197:1039-1057. [PMID: 23343343 DOI: 10.1111/nph.12122] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/02/2012] [Indexed: 05/08/2023]
Abstract
Following mitosis, cytoplasm, organelles and genetic material are partitioned into daughter cells through the process of cytokinesis. In somatic cells of higher plants, two cytoskeletal arrays, the preprophase band and the phragmoplast, facilitate the positioning and de novo assembly of the plant-specific cytokinetic organelle, the cell plate, which develops across the division plane and fuses with the parental plasma membrane to yield distinct new cells. The coordination of cytoskeletal and membrane dynamics required to initiate, assemble and shape the cell plate as it grows toward the mother cell cortex is dependent upon a large array of proteins, including molecular motors, membrane tethering, fusion and restructuring factors and biosynthetic, structural and regulatory elements. This review focuses on the temporal and molecular requirements of cytokinesis in somatic cells of higher plants gleaned from recent studies using cell biology, genetics, pharmacology and biochemistry.
Collapse
Affiliation(s)
- Colleen M McMichael
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53713, USA
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53713, USA
| |
Collapse
|
50
|
Wang C, Yan X, Chen Q, Jiang N, Fu W, Ma B, Liu J, Li C, Bednarek SY, Pan J. Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. THE PLANT CELL 2013; 25:499-516. [PMID: 23424247 PMCID: PMC3608774 DOI: 10.1105/tpc.112.108373] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 01/31/2013] [Indexed: 05/18/2023]
Abstract
Plant clathrin-mediated membrane trafficking is involved in many developmental processes as well as in responses to environmental cues. Previous studies have shown that clathrin-mediated endocytosis of the plasma membrane (PM) auxin transporter PIN-FORMED1 is regulated by the extracellular auxin receptor AUXIN BINDING PROTEIN1 (ABP1). However, the mechanisms by which ABP1 and other factors regulate clathrin-mediated trafficking are poorly understood. Here, we applied a genetic strategy and time-resolved imaging to dissect the role of clathrin light chains (CLCs) and ABP1 in auxin regulation of clathrin-mediated trafficking in Arabidopsis thaliana. Auxin was found to differentially regulate the PM and trans-Golgi network/early endosome (TGN/EE) association of CLCs and heavy chains (CHCs) in an ABP1-dependent but TRANSPORT INHIBITOR RESPONSE1/AUXIN-BINDING F-BOX PROTEIN (TIR1/AFB)-independent manner. Loss of CLC2 and CLC3 affected CHC membrane association, decreased both internalization and intracellular trafficking of PM proteins, and impaired auxin-regulated endocytosis. Consistent with these results, basipetal auxin transport, auxin sensitivity and distribution, and root gravitropism were also found to be dramatically altered in clc2 clc3 double mutants, resulting in pleiotropic defects in plant development. These results suggest that CLCs are key regulators in clathrin-mediated trafficking downstream of ABP1-mediated signaling and thus play a critical role in membrane trafficking from the TGN/EE and PM during plant development.
Collapse
Affiliation(s)
- Chao Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Xu Yan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Qian Chen
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Jiang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Wei Fu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Bojun Ma
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Jianzhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
- Address correspondence to
| |
Collapse
|