1
|
De Ryck J, Jonckheere V, De Paepe B, De Keyser A, Peeters N, Van Vaerenbergh J, Debode J, Van Damme P, Goormachtig S. Exploring the Tomato Root Protein Network Exploited by Core Type 3 Effectors from the Ralstonia solanacearum Species Complex. J Proteome Res 2025; 24:696-709. [PMID: 39786355 DOI: 10.1021/acs.jproteome.4c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Proteomics has become a powerful approach for the identification and characterization of type III effectors (T3Es). Members of the Ralstonia solanacearum species complex (RSSC) deploy T3Es to manipulate host cells and to promote root infection of, among others, a wide range of solanaceous plants such as tomato, potato, and tobacco. Here, we used TurboID-mediated proximity labeling (PL) in tomato hairy root cultures to explore the proxeomes of the core RSSC T3Es RipU, RipD, and RipB. The RipU proxeome was enriched for multiple protein kinases, suggesting a potential impact on the two branches of the plant immune surveillance system, being the membrane-localized PAMP-triggered immunity (PTI) and the RIN4-dependent effector-triggered immunity (ETI) complexes. In agreement, a transcriptomics analysis in tomato revealed the potential involvement of RipU in modulating reactive oxygen species (ROS) signaling. The proxeome of RipB was putatively enriched for mitochondrial and chloroplast proteins and that of RipD for proteins potentially involved in the endomembrane system. Together, our results demonstrate that TurboID-PL in tomato hairy roots represents a promising tool to study Ralstonia T3E targets and functioning and that it can unravel potential host processes that can be hijacked by the bacterial pathogen.
Collapse
Affiliation(s)
- Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Brigitte De Paepe
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Nemo Peeters
- Laboratoire des Interactions Plantes Microorganismes Environnement (LIPME), INRAE, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Johan Van Vaerenbergh
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Jane Debode
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
2
|
Han P, Wang C, Li F, Li M, Nie J, Xu M, Feng H, Xu L, Jiang C, Guan Q, Huang L. Valsa mali PR1-like protein modulates an apple valine-glutamine protein to suppress JA signaling-mediated immunity. PLANT PHYSIOLOGY 2024; 194:2755-2770. [PMID: 38235781 DOI: 10.1093/plphys/kiae020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
Apple Valsa canker (AVC) is a devastating disease of apple (Malus × domestica), caused by Valsa mali (Vm). The Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1 (CAP) superfamily protein PATHOGENESIS-RELATED PROTEIN 1-LIKE PROTEIN c (VmPR1c) plays an important role in the pathogenicity of Vm. However, the mechanisms through which it exerts its virulence function in Vm-apple interactions remain unclear. In this study, we identified an apple valine-glutamine (VQ)-motif-containing protein, MdVQ29, as a VmPR1c target protein. MdVQ29-overexpressing transgenic apple plants showed substantially enhanced AVC resistance as compared with the wild type. MdVQ29 interacted with the transcription factor MdWRKY23, which was further shown to bind to the promoter of the jasmonic acid (JA) signaling-related gene CORONATINE INSENSITIVE 1 (MdCOI1) and activate its expression to activate the JA signaling pathway. Disease evaluation in lesion areas on infected leaves showed that MdVQ29 positively modulated apple resistance in a MdWRKY23-dependent manner. Furthermore, MdVQ29 promoted the transcriptional activity of MdWRKY23 toward MdCOI1. In addition, VmPR1c suppressed the MdVQ29-enhanced transcriptional activation activity of MdWRKY23 by promoting the degradation of MdVQ29 and inhibiting MdVQ29 expression and the MdVQ29-MdWRKY23 interaction, thereby interfering with the JA signaling pathway and facilitating Vm infection. Overall, our results demonstrate that VmPR1c targets MdVQ29 to manipulate the JA signaling pathway to regulate immunity. Thus, this study provides an important theoretical basis and guidance for mining and utilizing disease-resistance genetic resources for genetically improving apples.
Collapse
Affiliation(s)
- Pengliang Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengli Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fudong Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meilian Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiajun Nie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liangsheng Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Hsiao AS. Protein Disorder in Plant Stress Adaptation: From Late Embryogenesis Abundant to Other Intrinsically Disordered Proteins. Int J Mol Sci 2024; 25:1178. [PMID: 38256256 PMCID: PMC10816898 DOI: 10.3390/ijms25021178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Global climate change has caused severe abiotic and biotic stresses, affecting plant growth and food security. The mechanical understanding of plant stress responses is critical for achieving sustainable agriculture. Intrinsically disordered proteins (IDPs) are a group of proteins without unique three-dimensional structures. The environmental sensitivity and structural flexibility of IDPs contribute to the growth and developmental plasticity for sessile plants to deal with environmental challenges. This article discusses the roles of various disordered proteins in plant stress tolerance and resistance, describes the current mechanistic insights into unstructured proteins such as the disorder-to-order transition for adopting secondary structures to interact with specific partners (i.e., cellular membranes, membrane proteins, metal ions, and DNA), and elucidates the roles of liquid-liquid phase separation driven by protein disorder in stress responses. By comparing IDP studies in animal systems, this article provides conceptual principles of plant protein disorder in stress adaptation, reveals the current research gaps, and advises on the future research direction. The highlighting of relevant unanswered questions in plant protein disorder research aims to encourage more studies on these emerging topics to understand the mechanisms of action behind their stress resistance phenotypes.
Collapse
Affiliation(s)
- An-Shan Hsiao
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
4
|
Rufián JS, Rueda-Blanco J, Beuzón CR, Ruiz-Albert J. Suppression of NLR-mediated plant immune detection by bacterial pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6069-6088. [PMID: 37429579 PMCID: PMC10575702 DOI: 10.1093/jxb/erad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
The plant immune system is constituted of two functionally interdependent branches that provide the plant with an effective defense against microbial pathogens. They can be considered separate since one detects extracellular pathogen-associated molecular patterns by means of receptors on the plant surface, while the other detects pathogen-secreted virulence effectors via intracellular receptors. Plant defense depending on both branches can be effectively suppressed by host-adapted microbial pathogens. In this review we focus on bacterially driven suppression of the latter, known as effector-triggered immunity (ETI) and dependent on diverse NOD-like receptors (NLRs). We examine how some effectors secreted by pathogenic bacteria carrying type III secretion systems can be subject to specific NLR-mediated detection, which can be evaded by the action of additional co-secreted effectors (suppressors), implying that virulence depends on the coordinated action of the whole repertoire of effectors of any given bacterium and their complex epistatic interactions within the plant. We consider how ETI activation can be avoided by using suppressors to directly alter compromised co-secreted effectors, modify plant defense-associated proteins, or occasionally both. We also comment on the potential assembly within the plant cell of multi-protein complexes comprising both bacterial effectors and defense protein targets.
Collapse
Affiliation(s)
- José S Rufián
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | | | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
5
|
Fang J, Chai Z, Huang R, Huang C, Ming Z, Chen B, Yao W, Zhang M. Receptor-like cytoplasmic kinase ScRIPK in sugarcane regulates disease resistance and drought tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1191449. [PMID: 37304725 PMCID: PMC10248867 DOI: 10.3389/fpls.2023.1191449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 06/13/2023]
Abstract
Introduction Receptor-like cytoplastic kinases (RLCKs) are known in many plants to be involved in various processes of plant growth and development and regulate plant immunity to pathogen infection. Environmental stimuli such as pathogen infection and drought restrict the crop yield and interfere with plant growth. However, the function of RLCKs in sugarcane remains unclear. Methods and results In this study, a member of the RLCK VII subfamily, ScRIPK, was identified in sugarcane based on sequence similarity to the rice and Arabidopsis RLCKs. ScRIPK was localized to the plasma membrane, as predicted, and the expression of ScRIPK was responsive to polyethylene glycol treatment and Fusarium sacchari infection. Overexpression of ScRIPK in Arabidopsis enhanced drought tolerance and disease susceptibility of seedlings. Moreover, the crystal structure of the ScRIPK kinase domain (ScRIPK KD) and the mutant proteins (ScRIPK-KD K124R and ScRIPK-KD S253A|T254A) were characterized in order to determine the activation mechanism. We also identified ScRIN4 as the interacting protein of ScRIPK. Discussion Our work identified a RLCK in sugarcane, providing a potential target for sugarcane responses to disease infection and drought, and a structural basis for kinase activation mechanisms.
Collapse
Affiliation(s)
- Jinlan Fang
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Zhe Chai
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Run Huang
- College of Agricultural, Guangxi University, Nanning, China
| | - Cuilin Huang
- College of Agricultural, Guangxi University, Nanning, China
| | - Zhenhua Ming
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Wei Yao
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Zhang Y, Guo S, Zhang F, Gan P, Li M, Wang C, Li H, Gao G, Wang X, Kang Z, Zhang X. CaREM1.4 interacts with CaRIN4 to regulate Ralstonia solanacearum tolerance by triggering cell death in pepper. HORTICULTURE RESEARCH 2023; 10:uhad053. [PMID: 37213684 PMCID: PMC10199716 DOI: 10.1093/hr/uhad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/17/2023] [Indexed: 05/23/2023]
Abstract
Remorins, plant-specific proteins, have a significant role in conferring on plants the ability to adapt to adverse environments. However, the precise function of remorins in resistance to biological stress remains largely unknown. Eighteen CaREM genes were identified in pepper genome sequences based on the C-terminal conserved domain that is specific to remorin proteins in this research. Phylogenetic relations, chromosomal localization, motif, gene structures, and promoter regions of these remorins were analyzed and a remorin gene, CaREM1.4, was cloned for further study. The transcription of CaREM1.4 in pepper was induced by infection with Ralstonia solanacearum. Knocking down CaREM1.4 in pepper using virus-induced gene silencing (VIGS) technologies reduced the resistance of pepper plants to R. solanacearum and downregulated the expression of immunity-associated genes. Conversely, transient overexpression of CaREM1.4 in pepper and Nicotiana benthamiana plants triggered hypersensitive response-mediated cell death and upregulated expression of defense-related genes. In addition, CaRIN4-12, which interacted with CaREM1.4 at the plasma membrane and cell nucleus, was knocked down with VIGS, decreasing the susceptibility of Capsicum annuum to R. solanacearum. Furthermore, CaREM1.4 reduced ROS production by interacting with CaRIN4-12 upon co-injection in pepper. Taken together, our findings suggest that CaREM1.4 may function as a positive regulator of the hypersensitive response, and it interacts with CaRIN4-12, which negatively regulates plant immune responses of pepper to R. solanacearum. Our study provides new evidence for comprehending the molecular regulatory network of plant cell death.
Collapse
Affiliation(s)
- Yanqin Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuangyuan Guo
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Feng Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Pengfei Gan
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Min Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Cong Wang
- College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Huankun Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Gang Gao
- College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Xiaojie Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | | | | |
Collapse
|
7
|
Contreras E, Martinez M. Comparative and evolutionary analysis of Arabidopsis RIN4-like/NOI proteins induced by herbivory. PLoS One 2022; 17:e0270791. [PMID: 36166429 PMCID: PMC9514647 DOI: 10.1371/journal.pone.0270791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/18/2022] [Indexed: 01/09/2023] Open
Abstract
The spider mite Tetranychus urticae is an economically important agricultural pest, which feeds on a broad spectrum of plant species. In an RNAseq experiment performed in our laboratory, 4 of the 15 members of the RIN4-like/NOI family of Arabidopsis thaliana were significantly overexpressed after T. urticae infestation. Two of them (NOI3 and NOI5) are shorter and harbour one NOI domain, which characterises this family, and the other two (NOI10 and NOI11) have two-NOI domains. The only member of this family characterized is RIN4, a two-NOI intrinsically disordered protein anchored to the plasma membrane and involved in plant defence against bacterial pathogens. The function of all other members of the RIN4-like/NOI Arabidopsis family and their putative role in herbivore defence remains unknown. We perform a comparative genomic analysis of RIN4-like/NOI sequences to study the evolutionary features of this protein family and the distribution of its members among species. We show that short one-NOI proteins were more numerous and exhibited lower disorder propensity compared to two-NOI members. NOI10 and NOI11, from the two-NOI group, are included in a clade-specific expansion of Brassicaceae with unique predicted posttranslational modification sites and clear predicted structural differences from RIN4. Our analysis suggests that the members of the RIN4-like/NOI family upregulated after mite feeding have novel functions different from those assigned to RIN4, likely involving adaptation to stress specialisation.
Collapse
Affiliation(s)
- Estefania Contreras
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
8
|
Cheng C, Zhong Y, Wang B, Zhang Y, Wu H, Jiang N, Wu B, Lv Y, Jiang B. The Upregulated Expression of the Citrus RIN4 Gene in HLB Diseased Citrus Aids Candidatus Liberibacter Asiaticus Infection. Int J Mol Sci 2022; 23:ijms23136971. [PMID: 35805971 PMCID: PMC9266415 DOI: 10.3390/ijms23136971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
The citrus industry has been threatened by Huanglongbing (HLB) for over a century. Here, an HLB-induced Arabidopsis RPM1-interacting protein 4 (RIN4) homologous gene was cloned from Citrus clementina, and its characteristics and function were analyzed to determine its role during citrus–Candidatus Liberibacter asiaticus (CLas) interactions. Quantitative real-time PCR showed that RIN4 was expressed in roots, stems, leaves and flowers, with the greatest expression level in leaves. Its expression was suppressed by gibberellic acid, indole-3-acetic acid, salicylic acid and jasmonic acid treatments, but was induced by abscisic acid and salt treatments, as well as wounding. The transient expression of a RIN4-GFP showed that RIN4 was localized in the cell membrane. RIN4-overexpressing transgenic C. maxima cv. ‘Shatianyou’ plants were obtained, and some transgenic plants showed greater sensitivity to CLas infection and earlier HLB symptoms appearance than non-transgenic controls. Results obtained in this study indicated that the upregulated expression of RIN4 in HLB diseased citrus may aid CLas infection.
Collapse
Affiliation(s)
- Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (C.C.); (B.W.); (Y.Z.); (H.W.)
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (N.J.); (B.W.); (B.J.)
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China;
| | - Yun Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (N.J.); (B.W.); (B.J.)
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China;
- Correspondence:
| | - Bin Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (C.C.); (B.W.); (Y.Z.); (H.W.)
| | - Yongyan Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (C.C.); (B.W.); (Y.Z.); (H.W.)
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (N.J.); (B.W.); (B.J.)
| | - Huan Wu
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (C.C.); (B.W.); (Y.Z.); (H.W.)
| | - Nonghui Jiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (N.J.); (B.W.); (B.J.)
| | - Bo Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (N.J.); (B.W.); (B.J.)
| | - Yuanda Lv
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China;
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Bo Jiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (N.J.); (B.W.); (B.J.)
| |
Collapse
|
9
|
Zhang J, Zhou M, Liu W, Nie J, Huang L. Pseudomonas syringae pv. actinidiae Effector HopAU1 Interacts with Calcium-Sensing Receptor to Activate Plant Immunity. Int J Mol Sci 2022; 23:508. [PMID: 35008934 PMCID: PMC8745740 DOI: 10.3390/ijms23010508] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Kiwifruit canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a destructive pathogen that globally threatens the kiwifruit industry. Understanding the molecular mechanism of plant-pathogen interaction can accelerate applying resistance breeding and controlling plant diseases. All known effectors secreted by pathogens play an important role in plant-pathogen interaction. However, the effectors in Psa and their function mechanism remain largely unclear. Here, we successfully identified a T3SS effector HopAU1 which had no virulence contribution to Psa, but could, however, induce cell death and activate a series of immune responses by agroinfiltration in Nicotiana benthamiana, including elevated transcripts of immune-related genes, accumulation of reactive oxygen species (ROS), and callose deposition. We found that HopAU1 interacted with a calcium sensing receptor in N. benthamiana (NbCaS) as well as its close homologue in kiwifruit (AcCaS). More importantly, silencing CaS by RNAi in N. benthamiana greatly attenuated HopAU1-triggered cell death, suggesting CaS is a crucial component for HopAU1 detection. Further researches showed that overexpression of NbCaS in N. benthamiana significantly enhanced plant resistance against Sclerotinia sclerotiorum and Phytophthora capsici, indicating that CaS serves as a promising resistance-related gene for disease resistance breeding. We concluded that HopAU1 is an immune elicitor that targets CaS to trigger plant immunity.
Collapse
Affiliation(s)
| | | | | | | | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (J.Z.); (M.Z.); (W.L.); (J.N.)
| |
Collapse
|
10
|
Hsiao AS. Plant Protein Disorder: Spatial Regulation, Broad Specificity, Switch of Signaling and Physiological Status. FRONTIERS IN PLANT SCIENCE 2022; 13:904446. [PMID: 35685011 PMCID: PMC9171514 DOI: 10.3389/fpls.2022.904446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 05/14/2023]
Affiliation(s)
- An-Shan Hsiao
- *Correspondence: An-Shan Hsiao ; orcid.org/0000-0002-2485-9034
| |
Collapse
|
11
|
Alam M, Tahir J, Siddiqui A, Magzoub M, Shahzad-Ul-Hussan S, Mackey D, Afzal AJ. RIN4 homologs from important crop species differentially regulate the Arabidopsis NB-LRR immune receptor, RPS2. PLANT CELL REPORTS 2021; 40:2341-2356. [PMID: 34486076 DOI: 10.1007/s00299-021-02771-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE RIN4 homologs from important crop species differ in their ability to prevent ectopic activity of the nucleotide binding-leucine rich repeat resistance protein, RPS2. Pathogens deploy virulence effectors to perturb host processes. Plants utilize intracellular resistance (R) proteins to recognize pathogen effectors either by direct interaction or indirectly via effector-mediated perturbations of host components. RPM1-INTERACTING PROTEIN4 (RIN4) is a plant immune regulator that mediates the indirect activation of multiple, independently evolved R-proteins by multiple, unrelated effector proteins. One of these, RPS2 (RESISTANT TO P. SYRINGAE2), is activated upon cleavage of Arabidopsis (At)RIN4 by the Pseudomonas syringae effector AvrRpt2. To gain insight into the AvrRpt2-RIN4-RPS2 defense-activation module, we compared the function of AtRIN4 with RIN4 homologs present in a diverse range of plant species. We selected seven homologs containing conserved features of AtRIN4, including two NOI (Nitrate induced) domains, each containing a predicted cleavage site for AvrRpt2, and a C-terminal palmitoylation site predicted to mediate membrane tethering of the proteins. Palmitoylation-mediated tethering of AtRIN4 to the plasma membrane and cleavage by AvrRpt2 are required for suppression and activation of RPS2, respectively. While all seven homologs are localized at the plasma membrane, only four suppress RPS2 when transiently expressed in Nicotiana benthamiana. All seven homologs are cleaved by AvrRpt2 and, for those homologs that are able to suppress RPS2, cleavage relieves suppression of RPS2. Further, we demonstrate that the membrane-tethered, C-terminal AvrRpt2-generated cleavage fragment is sufficient for the suppression of RPS2. Lastly, we show that the membrane localization of RPS2 is unaffected by its suppression or activation status.
Collapse
Affiliation(s)
- Maheen Alam
- Department of Biology, Lahore University of Management Sciences, Sector U, DHA, Lahore, Pakistan
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92-169, Auckland, 1025, New Zealand
| | - Anam Siddiqui
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL52JQ, UK
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, Lahore University of Management Sciences, Sector U, DHA, Lahore, Pakistan
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Genetics and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - A J Afzal
- Biology Program, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
12
|
Jeleńska J, Lee J, Manning AJ, Wolfgeher DJ, Ahn Y, Walters-Marrah G, Lopez IE, Garcia L, McClerklin SA, Michelmore RW, Kron SJ, Greenberg JT. Pseudomonas syringae effector HopZ3 suppresses the bacterial AvrPto1-tomato PTO immune complex via acetylation. PLoS Pathog 2021; 17:e1010017. [PMID: 34724007 PMCID: PMC8584673 DOI: 10.1371/journal.ppat.1010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/11/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
The plant pathogen Pseudomonas syringae secretes multiple effectors that modulate plant defenses. Some effectors trigger defenses due to specific recognition by plant immune complexes, whereas others can suppress the resulting immune responses. The HopZ3 effector of P. syringae pv. syringae B728a (PsyB728a) is an acetyltransferase that modifies not only components of plant immune complexes, but also the Psy effectors that activate these complexes. In Arabidopsis, HopZ3 acetylates the host RPM1 complex and the Psy effectors AvrRpm1 and AvrB3. This study focuses on the role of HopZ3 during tomato infection. In Psy-resistant tomato, the main immune complex includes PRF and PTO, a RIPK-family kinase that recognizes the AvrPto effector. HopZ3 acts as a virulence factor on tomato by suppressing AvrPto1Psy-triggered immunity. HopZ3 acetylates AvrPto1Psy and the host proteins PTO, SlRIPK and SlRIN4s. Biochemical reconstruction and site-directed mutagenesis experiments suggest that acetylation acts in multiple ways to suppress immune signaling in tomato. First, acetylation disrupts the critical AvrPto1Psy-PTO interaction needed to initiate the immune response. Unmodified residues at the binding interface of both proteins and at other residues needed for binding are acetylated. Second, acetylation occurs at residues important for AvrPto1Psy function but not for binding to PTO. Finally, acetylation reduces specific phosphorylations needed for promoting the immune-inducing activity of HopZ3’s targets such as AvrPto1Psy and PTO. In some cases, acetylation competes with phosphorylation. HopZ3-mediated acetylation suppresses the kinase activity of SlRIPK and the phosphorylation of its SlRIN4 substrate previously implicated in PTO-signaling. Thus, HopZ3 disrupts the functions of multiple immune components and the effectors that trigger them, leading to increased susceptibility to infection. Finally, mass spectrometry used to map specific acetylated residues confirmed HopZ3’s unusual capacity to modify histidine in addition to serine, threonine and lysine residues. By secreting virulence proteins (effectors) into their hosts, pathogenic bacteria hijack host cellular processes to promote bacterial colonization and disease development. For the plant pathogen Pseudomonas syringae, the coordinated action of effectors often mediates modifications of host defense proteins to inhibit their function. However, plants have evolved the ability to induce innate immunity upon recognition of effector-induced modifications of host proteins. How do pathogens circumvent the immune-inducing activity of certain effectors? They deploy more effectors to suppress these defenses. HopZ3, an acetyltransferase from P. syringae, is unique among plant pathogen effectors characterized so far in its ability to modify not only multiple components of the effector-triggered immune pathway, but also the triggering effector itself. Through the direct acetylation of residues involved in the interaction and activation of the bacterial effector AvrPto1Psy and tomato kinase PTO, HopZ3 modifications disrupt their binding and block phosphorylations necessary for immune induction. Additionally, HopZ3 acetylates other possible components in the PTO signaling pathway, including activation sites in SlRIPK kinase, leading to suppression of its activity and reduced phosphorylation of SlRIN4s. Our study emphasizes the importance of HopZ3-dependent acetylation of immune complexes and bacterial effectors across plant species in the suppression of effector-induced immunity.
Collapse
Affiliation(s)
- Joanna Jeleńska
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jiyoung Lee
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Andrew J. Manning
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Donald J. Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Youngjoo Ahn
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - George Walters-Marrah
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Ivan E. Lopez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Lissette Garcia
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Sheri A. McClerklin
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Richard W. Michelmore
- The Genome Center & Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Stephen J. Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
13
|
Gough C, Sadanandom A. Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance. Biomolecules 2021; 11:1122. [PMID: 34439788 PMCID: PMC8392720 DOI: 10.3390/biom11081122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Plants are constantly threatened by pathogens, so have evolved complex defence signalling networks to overcome pathogen attacks. Post-translational modifications (PTMs) are fundamental to plant immunity, allowing rapid and dynamic responses at the appropriate time. PTM regulation is essential; pathogen effectors often disrupt PTMs in an attempt to evade immune responses. Here, we cover the mechanisms of disease resistance to pathogens, and how growth is balanced with defence, with a focus on the essential roles of PTMs. Alteration of defence-related PTMs has the potential to fine-tune molecular interactions to produce disease-resistant crops, without trade-offs in growth and fitness.
Collapse
Affiliation(s)
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK;
| |
Collapse
|
14
|
Ramachandran P, J BJ, Maupin-Furlow JA, Uthandi S. Bacterial effectors mimicking ubiquitin-proteasome pathway tweak plant immunity. Microbiol Res 2021; 250:126810. [PMID: 34246833 DOI: 10.1016/j.micres.2021.126810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
Plant pathogenic Gram-negative bacteria evade the host plant immune system by secreting Type III (T3E) and Type IV effector (T4E) proteins into the plant cytoplasm. Mostly T3Es are secreted into the plant cells to establish pathogenicity by affecting the vital plant process viz. metabolic pathways, signal transduction and hormonal regulation. Ubiquitin-26S proteasome system (UPS) exists as one of the important pathways in plants to control plant immunity and various cellular processes by employing several enzymes and enzyme components. Pathogenic and non-pathogenic bacteria are found to secrete effectors into plants with structural and/or functional similarity to UPS pathway components like ubiquitin E3 ligases, F-box domains, cysteine proteases, inhibitor of host UPS or its components, etc. The bacterial effectors mimic UPS components and target plant resistance proteins for degradation by proteasomes, thereby taking control over the host cellular activities as a strategy to exert virulence. Thus, the bacterial effectors circumvent plant cellular pathways leading to infection and disease development. This review highlights known bacterial T3E and T4E proteins that function and interfere with the ubiquitination pathway to regulate the immune system of plants.
Collapse
Affiliation(s)
- Priyadharshini Ramachandran
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Beslin Joshi J
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
15
|
Yang Q, Guo J, Zeng H, Xu L, Xue J, Xiao S, Li JF. The receptor-like cytoplasmic kinase CDG1 negatively regulates Arabidopsis pattern-triggered immunity and is involved in AvrRpm1-induced RIN4 phosphorylation. THE PLANT CELL 2021; 33:1341-1360. [PMID: 33619522 DOI: 10.1093/plcell/koab033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Arabidopsis CDG1 negatively regulates flg22- and chitin-triggered immunity by promoting FLS2 and CERK1 degradation and is partially required for bacterial effector AvrRpm1-induced RIN4 phosphorylation. Negative regulators play indispensable roles in pattern-triggered immunity in plants by preventing sustained immunity impeding growth. Here, we report Arabidopsis thaliana CONSTITUTIVE DIFFERENTIAL GROWTH1 (CDG1), a receptor-like cytoplasmic kinase VII member, as a negative regulator of bacterial flagellin/flg22- and fungal chitin-triggered immunity. CDG1 can interact with the flg22 receptor FLAGELLIN SENSITIVE2 (FLS2) and chitin co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (CERK1). CDG1 overexpression impairs flg22 and chitin responses by promoting the degradation of FLS2 and CERK1. This process requires the kinase activity of MEK KINASE1 (MEKK1), but not the Plant U-Box (PUB) ubiquitin E3 ligases PUB12 and PUB13. Interestingly, the Pseudomonas syringae effector AvrRpm1 can induce CDG1 to interact with its host target RPM1-INTERACTING PROTEIN4 (RIN4), which depends on the ADP-ribosyl transferase activity of AvrRpm1. CDG1 is capable of phosphorylating RIN4 in vitro at multiple sites including Thr166 and the AvrRpm1-induced Thr166 phosphorylation of RIN4 is diminished in cdg1 null plants. Accordingly, CDG1 knockout attenuates AvrRpm1-induced hypersensitive response and increases the growth of AvrRpm1-secreting bacteria in plants. Unexpectedly, AvrRpm1 can also induce FLS2 depletion, which is fully dependent on RIN4 and partially dependent on CDG1, but does not require the kinase activity of MEKK1. Collectively, this study reveals previously unknown functions of CDG1 in both pattern-triggered immunity and effector-triggered susceptibility in plants.
Collapse
Affiliation(s)
- Qiujiao Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianhang Guo
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hairuo Zeng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lahong Xu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiao Xue
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi Xiao
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
16
|
Wang Y, Zhou M, Zou Q, Xu L. Machine learning for phytopathology: from the molecular scale towards the network scale. Brief Bioinform 2021; 22:6204793. [PMID: 33787847 DOI: 10.1093/bib/bbab037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/26/2021] [Indexed: 01/16/2023] Open
Abstract
With the increasing volume of high-throughput sequencing data from a variety of omics techniques in the field of plant-pathogen interactions, sorting, retrieving, processing and visualizing biological information have become a great challenge. Within the explosion of data, machine learning offers powerful tools to process these complex omics data by various algorithms, such as Bayesian reasoning, support vector machine and random forest. Here, we introduce the basic frameworks of machine learning in dissecting plant-pathogen interactions and discuss the applications and advances of machine learning in plant-pathogen interactions from molecular to network biology, including the prediction of pathogen effectors, plant disease resistance protein monitoring and the discovery of protein-protein networks. The aim of this review is to provide a summary of advances in plant defense and pathogen infection and to indicate the important developments of machine learning in phytopathology.
Collapse
Affiliation(s)
- Yansu Wang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, China
| | | | - Quan Zou
- University of Electronic Science and Technology of China
| | - Lei Xu
- Shenzhen Polytechnic, China
| |
Collapse
|
17
|
Zhao G, Guo D, Wang L, Li H, Wang C, Guo X. Functions of RPM1-interacting protein 4 in plant immunity. PLANTA 2021; 253:11. [PMID: 33389186 DOI: 10.1007/s00425-020-03527-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/02/2020] [Indexed: 05/20/2023]
Abstract
We reviewed recent advances related to RIN4, including its involvement in the immune process through posttranslational modifications, PM H+-ATPase activity regulation, interaction with EXO70 and identification of RIN4-associated NLR proteins. RPM1-interacting protein 4 (RIN4) is a conserved plant immunity regulator that has been extensively studied and can be modified by pathogenic effector proteins. RIN4 plays an important role in both PTI and ETI. In this article, we review the functions of the two conserved NOI domains of RIN4, the C-terminal cysteine residues required for membrane localization and the sites targeted and modified by effector proteins during plant immunity. In addition, we discuss the effect of RIN4 on the stomatal virulence of pathogens via the regulation of PM H+-ATPase activity, which is involved in the immune process through interactions with the exocyst subunit EXO70, and progress in the identification of RIN4-related R proteins in multiple species. This review provides new insights enhancing the current understanding of the immune function of RIN4.
Collapse
Affiliation(s)
- Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
18
|
Yoon M, Rikkerink EHA. Rpa1 mediates an immune response to avrRpm1 Psa and confers resistance against Pseudomonas syringae pv. actinidiae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:688-702. [PMID: 31849122 DOI: 10.1111/tpj.14654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The type three effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola (Pma) triggers an RPM1-mediated immune response linked to phosphorylation of RIN4 (RPM1-interacting protein 4) in Arabidopsis. However, the effector-resistance (R) gene interaction is not well established with different AvrRpm1 effectors from other pathovars. We investigated the AvrRpm1-triggered immune responses in Nicotiana species and isolated Rpa1 (Resistance to Pseudomonas syringae pv. actinidiae 1) via a reverse genetic screen in Nicotiana tabacum. Transient expression and gene silencing were performed in combination with co-immunoprecipitation and growth assays to investigate the specificity of interactions that lead to inhibition of pathogen growth. Two closely related AvrRpm1 effectors derived from Pseudomonas syringae pv. actinidiae biovar 3 (AvrRpm1Psa ) and Pseudomonas syringae pv. syringae strain B728a (AvrRpm1Psy ) trigger immune responses mediated by RPA1, a nucleotide-binding leucine-rich repeat protein with an N-terminal coiled-coil domain. In a display of contrasting specificities, RPA1 does not respond to AvrRpm1Pma , and correspondingly AvrRpm1Psa and AvrRpm1Psy do not trigger the RPM1-mediated response, demonstrating that separate R genes mediate specific immune responses to different AvrRpm1 effectors. AvrRpm1Psa co-immunoprecipitates with RPA1, and both proteins co-immunoprecipitate with RIN4. In contrast with RPM1, however, RPA1 was not activated by the phosphomimic RIN4T166D and silencing of RIN4 did not affect the RPA1 activity. Delivery of AvrRpm1Psa by Pseudomonas syringae pv. tomato (Pto) in combination with transient expression of Rpa1 resulted in inhibition of the pathogen growth in N. benthamiana. Psa growth was also inhibited by RPA1 in N. tabacum.
Collapse
Affiliation(s)
- Minsoo Yoon
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Erik H A Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
19
|
Prokchorchik M, Choi S, Chung EH, Won K, Dangl JL, Sohn KH. A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors. THE NEW PHYTOLOGIST 2020; 225:1327-1342. [PMID: 31550400 DOI: 10.1111/nph.16218] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Some virulence effectors secreted from pathogens target host proteins and induce biochemical modifications that are monitored by nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Arabidopsis RIN4 protein (AtRIN4: RPM1-interacting protein 4) homologs are present in diverse plant species and targeted by several bacterial type III effector proteins including the cysteine protease AvrRpt2. RIN4 is 'guarded' by several independently evolved NLRs from various plant species, including Arabidopsis RPS2. Recently, it was shown that the MR5 NLR from a wild apple relative can recognize the AvrRpt2 effector from Erwinia amylovora, but the details of this recognition remained unclear. The present contribution reports the mechanism of AvrRpt2 recognition by independently evolved NLRs, MR5 from apple and RPS2, both of which require proteolytically processed RIN4 for activation. It shows that the C-terminal cleaved product of apple RIN4 (MdRIN4) but not AtRIN4 is necessary and sufficient for MR5 activation. Additionally, two polymorphic residues in AtRIN4 and MdRIN4 are identified that are crucial in the regulation of and physical association with NLRs. It is proposed that polymorphisms in RIN4 from distantly related plant species allow it to remain an effector target while maintaining compatibility with multiple NLRs.
Collapse
Affiliation(s)
- Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
| | - Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Eui-Hwan Chung
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - Kyungho Won
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Naju, 54875, Korea
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
20
|
Turrà D, Vitale S, Marra R, Woo SL, Lorito M. Heterologous Expression of PKPI and Pin1 Proteinase Inhibitors Enhances Plant Fitness and Broad-Spectrum Resistance to Biotic Threats. FRONTIERS IN PLANT SCIENCE 2020; 11:461. [PMID: 32425963 PMCID: PMC7204852 DOI: 10.3389/fpls.2020.00461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/27/2020] [Indexed: 05/05/2023]
Abstract
Kunitz-type (PKPI) and Potato type I (Pin1) protease inhibitors (PIs) are two families of serine proteinase inhibitors often associated to plant storage organs and with well known insecticidal and nematicidal activities. Noteworthy, their ability to limit fungal and bacterial pathogenesis in vivo or to influence plant physiology has not been investigated in detail. To this aim, we generated a set of PVX-based viral constructs to transiently and heterologously express two potato PKPI (PKI1, PKI2) and three potato Pin1 (PPI3A2, PPI3B2, PPI2C4) genes in Nicotiana benthamiana plants, a widely used model for plant-pathogen interaction studies. Interestingly, transgenic plants expressing most of the tested PIs showed to be highly resistant against two economically important necrotrophic fungal pathogens, Botrytis cinerea and Alternaria alternata. Unexpectedly, overexpression of the PKI2 Kunitz-type or of the PPI2C4 and PPI3A2 Potato type I inhibitor genes also lead to a dramatic reduction in the propagation and symptom development produced by the bacterial pathogen Pseudomonas syringae. We further found that localized expression of PPI2C4 and PKI2 in N. benthamiana leaves caused an increase in cell expansion and proliferation which lead to tissue hypertrophy and trichome accumulation. In line with this, the systemic expression of these proteins resulted in plants with enhanced shoot and root biomass. Collectively, our results indicate that PKPI and Pin1 PIs might represent valuable tools to simultaneously increase plant fitness and broad-spectrum resistance toward phytopathogens.
Collapse
Affiliation(s)
- David Turrà
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: David Turrà,
| | - Stefania Vitale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Sheridan L. Woo
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Naples, Italy
- Matteo Lorito,
| |
Collapse
|
21
|
Ray SK, Macoy DM, Kim WY, Lee SY, Kim MG. Role of RIN4 in Regulating PAMP-Triggered Immunity and Effector-Triggered Immunity: Current Status and Future Perspectives. Mol Cells 2019; 42:503-511. [PMID: 31362467 PMCID: PMC6681865 DOI: 10.14348/molcells.2019.2433] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
As sessile organisms, plants have developed sophisticated system to defend themselves against microbial attack. Since plants do not have specialized immune cells, all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. The plant innate immune system has two major branches: PAMPs (pathogen associated molecular patterns)-triggered immunity (PTI) and effector-triggered immunity (ETI). The ability to discriminate between self and non-self is a fundamental feature of living organisms, and it is a prerequisite for the activation of plant defenses specific to microbial infection. Arabidopsis cells express receptors that detect extracellular molecules or structures of the microbes, which are called collectively PAMPs and activate PTI. However, nucleotidebinding site leucine-rich repeats (NB-LRR) proteins mediated ETI is induced by direct or indirect recognition of effector molecules encoded by avr genes. In Arabidopsis, plasmamembrane localized multifunctional protein RIN4 (RPM1interacting protein 4) plays important role in both PTI and ETI. Previous studies have suggested that RIN4 functions as a negative regulator of PTI. In addition, many different bacterial effector proteins modify RIN4 to destabilize plant immunity and several NB-LRR proteins, including RPM1 (resistance to Pseudomonas syringae pv. maculicola 1), RPS2 (resistance to P. syringae 2) guard RIN4. This review summarizes the current studies that have described signaling mechanism of RIN4 function, modification of RIN4 by bacterial effectors and different interacting partner of RIN4 in defense related pathway. In addition, the emerging role of the RIN4 in plant physiology and intercellular signaling as it presents in exosomes will be discussed.
Collapse
Affiliation(s)
- Sujit Kumar Ray
- College of Pharmacy, Research Institute of Pharmaceutical Science, and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828,
Korea
| | - Donah Mary Macoy
- College of Pharmacy, Research Institute of Pharmaceutical Science, and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828,
Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Science (RILS), Gyeongsang National University, Jinju 52828,
Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21 Plus), Graduate School of Gyeongsang National University, Jinju 52828,
Korea
| | - Min Gab Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
22
|
Toruño TY, Shen M, Coaker G, Mackey D. Regulated Disorder: Posttranslational Modifications Control the RIN4 Plant Immune Signaling Hub. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:56-64. [PMID: 30418084 PMCID: PMC6501815 DOI: 10.1094/mpmi-07-18-0212-fi] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RIN4 is an intensively studied immune regulator in Arabidopsis and is involved in perception of microbial features outside and bacterial effectors inside plant cells. Furthermore, RIN4 is conserved in land plants and is targeted for posttranslational modifications by several virulence proteins from the bacterial pathogen Pseudomonas syringae. Despite the important roles of RIN4 in plant immune responses, its molecular function is not known. RIN4 is an intrinsically disordered protein (IDP), except at regions where pathogen-induced posttranslational modifications take place. IDP act as hubs for protein complex formation due to their ability to bind to multiple client proteins and, thus, are important players in signal transduction pathways. RIN4 is known to associate with multiple proteins involved in immunity, likely acting as an immune-signaling hub for the formation of distinct protein complexes. Genetically, RIN4 is a negative regulator of immunity, but diverse posttranslational modifications can either enhance its negative regulatory function or, on the contrary, render it a potent immune activator. In this review, we describe the structural domains of RIN4 proteins, their intrinsically disordered regions, posttranslational modifications, and highlight the implications that these features have on RIN4 function. In addition, we will discuss the potential role of plasma membrane subdomains in mediating RIN4 protein complex formations.
Collapse
Affiliation(s)
- Tania Y. Toruño
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Mingzhe Shen
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, U.S.A
- Corresponding author: D. Mackey;
| |
Collapse
|
23
|
Wang W, Liu N, Gao C, Rui L, Tang D. The Pseudomonas Syringae Effector AvrPtoB Associates With and Ubiquitinates Arabidopsis Exocyst Subunit EXO70B1. FRONTIERS IN PLANT SCIENCE 2019; 10:1027. [PMID: 31555308 PMCID: PMC6726739 DOI: 10.3389/fpls.2019.01027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/23/2019] [Indexed: 05/20/2023]
Abstract
Many bacterial pathogens secret effectors into host cells to disable host defenses and thus promote infection. The exocyst complex functions in the transport and secretion of defense molecules, and loss of function of the EXO70B1 subunit leads to autoimmunity by activation of a truncated Toll/interleukin-1 receptor-nucleotide-binding sequence protein (TIR-NBS2; herein referred to as TN2). Here, we show that EXO70B1 is required for pathogen-associated molecular pattern-triggered immune responses in Arabidopsis thaliana. The effector AvrPtoB, an E3 ligase from Pseudomonas syringae pv. tomato (Pto) strain DC3000, associates with EXO70B1. AvrPtoB ubiquitinates EXO70B1 and mediates EXO70B1 degradation via the host's 26S proteasome in a manner requiring E3 ligase activity. AvrPtoB enhances Pto DC3000 virulence by overcoming EXO70B1-mediated resistance. Moreover, overexpression of AvrPtoB in Arabidopsis leads to autoimmunity, which is partially dependent on TN2. Expression of TN2 in tobacco (Nicotiana tabacum and Nicotiana benthamiana) triggers strong and rapid cell death, which is suppressed by co-expression with EXO70B1 but reoccurs when co-expressed with AvrPtoB. Taken together, our data highlight that AvrPtoB targets the Arabidopsis thaliana EXO70 protein family member EXO70B1 to manipulate the defense molecule secretion machinery or immunity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Na Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Rui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Dingzhong Tang,
| |
Collapse
|
24
|
Habachi-Houimli Y, Khalfallah Y, Mezghani-Khemakhem M, Makni H, Makni M, Bouktila D. Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley. 3 Biotech 2018; 8:453. [PMID: 30370194 DOI: 10.1007/s13205-018-1478-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/11/2018] [Indexed: 12/29/2022] Open
Abstract
In this study, a systematic analysis of Nucleotide-Binding Site (NBS) disease resistance (R) gene family in the barley, Hordeum vulgare L. cv. Bowman, genome was performed. Using multiple computational analyses, we could identify 96 regular NBS-encoding genes and characterize them on the bases of structural diversity, conserved protein signatures, genomic distribution, gene duplications, differential expression, selection pressure, codon usage, regulation by microRNAs and phylogenetic relationships. Depending on the presence or absence of CC and LRR domains; the identified NBS genes were assigned to four distinct groups; NBS-LRR (53.1%), CC-NBS-LRR (14.6%), NBS (26%), and CC-NBS (6.3%). NBS-associated domain analysis revealed the presence of signal peptides, zinc fingers, diverse kinases, and other structural features. Eighty-five of the identified NBS-encoding genes were mapped onto the seven barley chromosomes, revealing that 50% of them were located on chromosomes 7H, 2H, and 3H, with a tendency of NBS genes to be clustered in the distal telomeric regions of the barley chromosomes. Nine gene clusters, representing 22.35% of total mapped barley NBS-encoding genes, were found, suggesting that tandem duplication stands for an important mechanism in the expansion of this gene family in barley. Phylogenetic analysis determined 31 HvNBS orthologs from rice and Brachypodium. 87 out of 96 HvNBSs were supported by expression evidence, exhibiting various and quantitatively uneven expression patterns across distinct tissues, organs, and development stages. Fourteen potential miRNA-R gene target pairs were further identified, providing insight into the regulation of NBS genes expression. These findings offer candidate target genes to engineer disease-resistant barley genotypes, and promote our understanding of the evolution of NBS-encoding genes in Poaceae crops.
Collapse
Affiliation(s)
- Yosra Habachi-Houimli
- 1Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique (GIRC, UR11ES10), El Manar, 2092 Tunis, Tunisia
| | - Yosra Khalfallah
- 1Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique (GIRC, UR11ES10), El Manar, 2092 Tunis, Tunisia
| | - Maha Mezghani-Khemakhem
- 1Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique (GIRC, UR11ES10), El Manar, 2092 Tunis, Tunisia
| | - Hanem Makni
- 1Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique (GIRC, UR11ES10), El Manar, 2092 Tunis, Tunisia
- 2Université de Tunis, Institut Supérieur de l'Animation pour la Jeunesse et la Culture (ISAJC), Bir El Bey, Tunisia
| | - Mohamed Makni
- 1Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique (GIRC, UR11ES10), El Manar, 2092 Tunis, Tunisia
| | - Dhia Bouktila
- 1Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique (GIRC, UR11ES10), El Manar, 2092 Tunis, Tunisia
- 3Université de Jendouba, Institut Supérieur de Biotechnologie de Béja (ISBB), 9000 Béja, Tunisia
| |
Collapse
|
25
|
Abstract
Pseudomonas syringae is one of the best-studied plant pathogens and serves as a model for understanding host-microorganism interactions, bacterial virulence mechanisms and host adaptation of pathogens as well as microbial evolution, ecology and epidemiology. Comparative genomic studies have identified key genomic features that contribute to P. syringae virulence. P. syringae has evolved two main virulence strategies: suppression of host immunity and creation of an aqueous apoplast to form its niche in the phyllosphere. In addition, external environmental conditions such as humidity profoundly influence infection. P. syringae may serve as an excellent model to understand virulence and also of how pathogenic microorganisms integrate environmental conditions and plant microbiota to become ecologically robust and diverse pathogens of the plant kingdom.
Collapse
|
26
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
27
|
Conlan B, Stoll T, Gorman JJ, Saur I, Rathjen JP. Development of a Rapid in planta BioID System as a Probe for Plasma Membrane-Associated Immunity Proteins. FRONTIERS IN PLANT SCIENCE 2018; 9:1882. [PMID: 30619431 PMCID: PMC6305590 DOI: 10.3389/fpls.2018.01882] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/05/2018] [Indexed: 05/15/2023]
Abstract
Plant pathogens secrete effector molecules that suppress the plant immune response to facilitate disease development. AvrPto is a well-studied effector from the phytopathogenic bacterium Pseudomonas syringae. Here we utilize an in planta proximity dependent biotin ligase labeling technique (BioID) in combination with AvrPto to identify proximal proteins that are potential immune system components. The labeling technique biotinylated proteins proximal to AvrPto at the plasma-membrane allowing their isolation and identification by mass spectrometry. Five AvrPto proximal plant proteins (APPs) were identified and their effect on plant immune function and growth was examined in Nicotiana benthamiana leaves. One protein identified, RIN4, is a central immune component previously shown to interact with AvrPto. Two other proteins were identified which form a complex and when silenced significantly reduced P. syringae tabaci growth. The first was a receptor like protein kinase (APK1) which was required for Pto/Prf signaling and the second was Target of Myb1 (TOM1), a membrane associated protein with a phosphatidylinositol 5-phosphate (PtdIns5P) binding motif. We have developed a technology to rapidly determine protein interactions within living plant tissue. It is particularly useful for identifying plant immune system components by defining pathogenic effector protein interactions within their plant hosts.
Collapse
Affiliation(s)
- Brendon Conlan
- Research School of Biology, The Australian National University, Acton, ACT, Australia
- *Correspondence: Brendon Conlan,
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Isabel Saur
- Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - John P. Rathjen
- Research School of Biology, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
28
|
Kachroo A, Vincelli P, Kachroo P. Signaling Mechanisms Underlying Resistance Responses: What Have We Learned, and How Is It Being Applied? PHYTOPATHOLOGY 2017; 107:1452-1461. [PMID: 28609156 DOI: 10.1094/phyto-04-17-0130-rvw] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plants have evolved highly specific mechanisms to resist pathogens including preformed barriers and the induction of elaborate signaling pathways. Induced signaling requires recognition of the pathogen either via conserved pathogen-derived factors or specific pathogen-encoded proteins called effectors. Recognition of these factors by host encoded receptor proteins can result in the elicitation of different tiers of resistance at the site of pathogen infection. In addition, plants induce a type of systemic immunity which is effective at the whole plant level and protects against a broad spectrum of pathogens. Advances in our understanding of pathogen-recognition mechanisms, identification of the underlying molecular components, and their significant conservation across diverse plant species has enabled the development of novel strategies to combat plant diseases. This review discusses key advances in plant defense signaling that have been adapted or have the potential to be adapted for plant protection against microbial diseases.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Paul Vincelli
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| |
Collapse
|
29
|
González AM, Godoy L, Santalla M. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar. Int J Mol Sci 2017; 18:E2503. [PMID: 29168746 PMCID: PMC5751106 DOI: 10.3390/ijms18122503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 11/25/2022] Open
Abstract
Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F₂ populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL), Natural Resistance Associated Macrophage (NRAMP) and Pentatricopeptide Repeat family (PPR) proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s) in UI3 genotype.
Collapse
Affiliation(s)
- Ana M González
- Grupo de Biología de Agrosistemas (BAS, www.bas-group.es), Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain.
| | - Luís Godoy
- Grupo de Biología de Agrosistemas (BAS, www.bas-group.es), Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain.
| | - Marta Santalla
- Grupo de Biología de Agrosistemas (BAS, www.bas-group.es), Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain.
| |
Collapse
|
30
|
Zhang X, Dodds PN, Bernoux M. What Do We Know About NOD-Like Receptors in Plant Immunity? ANNUAL REVIEW OF PHYTOPATHOLOGY 2017. [PMID: 28637398 DOI: 10.1146/annurev-phyto-080516-035250] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The first plant disease resistance (R) genes were identified and cloned more than two decades ago. Since then, many more R genes have been identified and characterized in numerous plant pathosystems. Most of these encode members of the large family of intracellular NLRs (NOD-like receptors), which also includes animal immune receptors. New discoveries in this expanding field of research provide new elements for our understanding of plant NLR function. But what do we know about plant NLR function today? Genetic, structural, and functional analyses have uncovered a number of commonalities and differences in pathogen recognition strategies as well as how NLRs are regulated and activate defense signaling, but many unknowns remain. This review gives an update on the latest discoveries and breakthroughs in this field, with an emphasis on structural findings and some comparison to animal NLRs, which can provide additional insights and paradigms in plant NLR function.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Maud Bernoux
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| |
Collapse
|
31
|
Andolfo G, Iovieno P, Frusciante L, Ercolano MR. Genome-Editing Technologies for Enhancing Plant Disease Resistance. FRONTIERS IN PLANT SCIENCE 2016; 7:1813. [PMID: 27990151 PMCID: PMC5130979 DOI: 10.3389/fpls.2016.01813] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/16/2016] [Indexed: 05/23/2023]
Abstract
One of the greatest challenges for agricultural science in the 21st century is to improve yield stability through the progressive development of superior cultivars. The increasing numbers of infectious plant diseases that are caused by plant-pathogens make it ever more necessary to develop new strategies for plant disease resistance breeding. Targeted genome engineering allows the introduction of precise modifications directly into a commercial variety, offering a viable alternative to traditional breeding methods. Genome editing is a powerful tool for modifying crucial players in the plant immunity system. In this work, we propose and discuss genome-editing strategies and targets for improving resistance to phytopathogens. First of all, we present the opportunities to rewrite the effector-target sequence for avoiding effector-target molecular interaction and also to modify effector-target promoters for increasing the expression of target genes involved in the resistance process. In addition, we describe potential approaches for obtaining synthetic R-genes through genome-editing technologies (GETs). Finally, we illustrate a genome editing flowchart to modify the pathogen recognition sites and engineer an R-gene that mounts resistance to some phylogenetically divergent pathogens. GETs potentially mark the beginning of a new era, in which synthetic biology affords a basis for obtaining a reinforced plant defense system. Nowadays it is conceivable that by modulating the function of the major plant immunity players, we will be able to improve crop performance for a sustainable agriculture.
Collapse
Affiliation(s)
| | | | | | - Maria R. Ercolano
- Department of Agricultural Sciences, University of Naples ‘Federico II’Portici, Italy
| |
Collapse
|
32
|
Lee D, Bourdais G, Yu G, Robatzek S, Coaker G. Phosphorylation of the Plant Immune Regulator RPM1-INTERACTING PROTEIN4 Enhances Plant Plasma Membrane H⁺-ATPase Activity and Inhibits Flagellin-Triggered Immune Responses in Arabidopsis. THE PLANT CELL 2015; 27. [PMID: 26198070 PMCID: PMC4531345 DOI: 10.1105/tpc.114.132308] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Pseudomonas syringae effector AvrB targets multiple host proteins during infection, including the plant immune regulator RPM1-INTERACTING PROTEIN4 (RIN4) and RPM1-INDUCED PROTEIN KINASE (RIPK). In the presence of AvrB, RIPK phosphorylates RIN4 at Thr-21, Ser-160, and Thr-166, leading to activation of the immune receptor RPM1. Here, we investigated the role of RIN4 phosphorylation in susceptible Arabidopsis thaliana genotypes. Using circular dichroism spectroscopy, we show that RIN4 is a disordered protein and phosphorylation affects protein flexibility. RIN4 T21D/S160D/T166D phosphomimetic mutants exhibited enhanced disease susceptibility upon surface inoculation with P. syringae, wider stomatal apertures, and enhanced plasma membrane H(+)-ATPase activity. The plasma membrane H(+)-ATPase AHA1 is highly expressed in guard cells, and its activation can induce stomatal opening. The ripk knockout also exhibited a strong defect in pathogen-induced stomatal opening. The basal level of RIN4 Thr-166 phosphorylation decreased in response to immune perception of bacterial flagellin. RIN4 Thr166D lines exhibited reduced flagellin-triggered immune responses. Flagellin perception did not lower RIN4 Thr-166 phosphorylation in the presence of strong ectopic expression of AvrB. Taken together, these results indicate that the AvrB effector targets RIN4 in order to enhance pathogen entry on the leaf surface as well as dampen responses to conserved microbial features.
Collapse
Affiliation(s)
- DongHyuk Lee
- Department of Plant Pathology, University of California, Davis, California 95616
| | | | - Gang Yu
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California 95616
| |
Collapse
|
33
|
Cui H, Tsuda K, Parker JE. Effector-triggered immunity: from pathogen perception to robust defense. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:487-511. [PMID: 25494461 DOI: 10.1146/annurev-arplant-050213-040012] [Citation(s) in RCA: 810] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; , ,
| | | | | |
Collapse
|
34
|
Li M, Ma X, Chiang YH, Yadeta KA, Ding P, Dong L, Zhao Y, Li X, Yu Y, Zhang L, Shen QH, Xia B, Coaker G, Liu D, Zhou JM. Proline isomerization of the immune receptor-interacting protein RIN4 by a cyclophilin inhibits effector-triggered immunity in Arabidopsis. Cell Host Microbe 2014; 16:473-83. [PMID: 25299333 PMCID: PMC4768788 DOI: 10.1016/j.chom.2014.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/24/2014] [Accepted: 08/25/2014] [Indexed: 11/15/2022]
Abstract
In the absence of pathogen infection, plant effector-triggered immune (ETI) receptors are maintained in a preactivation state by intermolecular interactions with other host proteins. Pathogen effector-induced alterations activate the receptor. In Arabidopsis, the ETI receptor RPM1 is activated via bacterial effector AvrB-induced phosphorylation of the RPM1-interacting protein RIN4 at Threonine 166. We find that RIN4 also interacts with the prolyl-peptidyl isomerase (PPIase) ROC1, which is reduced upon RIN4 Thr166 phosphorylation. ROC1 suppresses RPM1 immunity in a PPIase-dependent manner. Consistent with this, RIN4 Pro149 undergoes cis/trans isomerization in the presence of ROC1. While the RIN4(P149V) mutation abolishes RPM1 resistance, the deletion of Pro149 leads to RPM1 activation in the absence of RIN4 phosphorylation. These results support a model in which RPM1 directly senses conformational changes in RIN4 surrounding Pro149 that is controlled by ROC1. RIN4 Thr166 phosphorylation indirectly regulates RPM1 resistance by modulating the ROC1-mediated RIN4 isomerization.
Collapse
Affiliation(s)
- Meng Li
- College of Life Sciences, Peking University, No. 5 YiheYuan Road, Beijing 100871, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, No. 1 West Beichen Road, Beijing 100101, China
| | - Xiqing Ma
- Center for Plant Biology, MOE Key Laboratory of Bioinformatics, Tsinghua Yuan 1, School of Life Sciences, Beijing 100084, China
| | - Yi-Hsuan Chiang
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Koste A Yadeta
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Pengfei Ding
- College of Life Sciences, Peking University, No. 5 YiheYuan Road, Beijing 100871, China
| | - Liansai Dong
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, No. 1 West Beichen Road, Beijing 100101, China
| | - Yan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, No. 1 West Beichen Road, Beijing 100101, China
| | - Xiuming Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, No. 1 West Beichen Road, Beijing 100101, China
| | - Yufei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, No. 1 West Beichen Road, Beijing 100101, China
| | - Ling Zhang
- Center for Molecular Agrobiology and State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, CAS, No. 1 West Beichen Road, Beijing 100101, China
| | - Qian-Hua Shen
- Center for Molecular Agrobiology and State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, CAS, No. 1 West Beichen Road, Beijing 100101, China
| | - Bin Xia
- College of Life Sciences, Peking University, No. 5 YiheYuan Road, Beijing 100871, China
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Dong Liu
- Center for Plant Biology, MOE Key Laboratory of Bioinformatics, Tsinghua Yuan 1, School of Life Sciences, Beijing 100084, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, No. 1 West Beichen Road, Beijing 100101, China.
| |
Collapse
|
35
|
Sun X, Greenwood DR, Templeton MD, Libich DS, McGhie TK, Xue B, Yoon M, Cui W, Kirk CA, Jones WT, Uversky VN, Rikkerink EHA. The intrinsically disordered structural platform of the plant defence hub protein RPM1-interacting protein 4 provides insights into its mode of action in the host-pathogen interface and evolution of the nitrate-induced domain protein family. FEBS J 2014; 281:3955-79. [DOI: 10.1111/febs.12937] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/01/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaolin Sun
- The New Zealand Institute of Plant & Food Research (PFR); Palmerston North New Zealand
| | - David R. Greenwood
- PFR; Auckland New Zealand
- School of Biological Sciences; University of Auckland; New Zealand
| | - Matthew D. Templeton
- PFR; Auckland New Zealand
- School of Biological Sciences; University of Auckland; New Zealand
| | - David S. Libich
- Centre for Structural Biology; Institute of Fundamental Sciences; Massey University; Palmerston North New Zealand
| | - Tony K. McGhie
- The New Zealand Institute of Plant & Food Research (PFR); Palmerston North New Zealand
| | - Bin Xue
- Department of Cell Biology; Microbiology and Molecular Biology; College of Fine Arts and Sciences; University of South Florida; Tampa FL USA
| | | | | | - Christopher A. Kirk
- The New Zealand Institute of Plant & Food Research (PFR); Palmerston North New Zealand
| | - William T. Jones
- The New Zealand Institute of Plant & Food Research (PFR); Palmerston North New Zealand
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa FL USA
- Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino Moscow Region Russia
- Biology Department; Faculty of Science; King Abdulaziz University; Jeddah Kingdom of Saudi Arabia
| | | |
Collapse
|
36
|
Abstract
Over the past decade, considerable advances have been made in understanding the molecular mechanisms that underpin the arms race between plant pathogens and their hosts. Alongside genomic, bioinformatic, proteomic, biochemical and cell biological analyses of plant-pathogen interactions, three-dimensional structural studies of virulence proteins deployed by pathogens to promote infection, in some cases complexed with their plant cell targets, have uncovered key insights into the functions of these molecules. Structural information on plant immune receptors, which regulate the response to pathogen attack, is also starting to emerge. Structural studies of bacterial plant pathogen-host systems have been leading the way, but studies of filamentous plant pathogens are gathering pace. In this Review, we summarize the key developments in the structural biology of plant pathogen-host interactions.
Collapse
|
37
|
Gilbert BM, Wolpert TJ. Characterization of the LOV1-mediated, victorin-induced, cell-death response with virus-induced gene silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:903-17. [PMID: 23634836 DOI: 10.1094/mpmi-01-13-0014-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Victoria blight, caused by Cochliobolus victoriae, is a disease originally described on oat and recapitulated on Arabidopsis. C. victoriae pathogenesis depends upon production of the toxin victorin. In oat, victorin sensitivity is conferred by the Vb gene, which is genetically inseparable from the Pc2 resistance gene. Concurrently, in Arabidopsis, sensitivity is conferred by the LOCUS ORCHESTRATING VICTORIN EFFECTS1 (LOV1) gene. LOV1 encodes a nucleotide-binding site leucine-rich repeat protein, a type of protein commonly associated with disease resistance, and LOV1 "guards" the defense thioredoxin, TRX-h5. Expression of LOV1 and TRX-h5 in Nicotiana benthamiana is sufficient to confer victorin sensitivity. Virus-induced gene silencing was used to characterize victorin-induced cell death in N. benthamiana. We determined that SGT1 is required for sensitivity and involved in LOV1 protein accumulation. We screened a normalized cDNA library and identified six genes that, when silenced, suppressed LOV1-mediated, victorin-induced cell death and cell death induced by expression of the closely related RPP8 resistance gene: a mitochondrial phosphate transporter, glycolate oxidase, glutamine synthetase, glyceraldehyde 3-phosphate dehydrogenase, and the P- and T-protein of the glycine decarboxylase complex. Silencing the latter four also inhibited cell death and disease resistance mediated by the PTO resistance gene. Together, these results provide evidence that the victorin response mediated by LOV1 is a defense response.
Collapse
Affiliation(s)
- Brian M Gilbert
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
38
|
Afzal AJ, Kim JH, Mackey D. The role of NOI-domain containing proteins in plant immune signaling. BMC Genomics 2013; 14:327. [PMID: 23672422 PMCID: PMC3661340 DOI: 10.1186/1471-2164-14-327] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 03/26/2013] [Indexed: 02/04/2023] Open
Abstract
Here we present an overview of our existing knowledge on the function of RIN4 as a regulator of plant defense and as a guardee of multiple plant R-proteins. Domain analysis of RIN4 reveals two NOI domains. The NOI domain was originally identified in a screen for nitrate induced genes. The domain is comprised of approximately 30 amino acids and contains 2 conserved motifs (PXFGXW and Y/FTXXF). The NOI gene family contains members exclusively from the plant lineage as far back as moss. In addition to the conserved NOI domain, members within the family also contain conserved C-terminal cysteine residue(s) which are sites for acylation and membrane tethering. Other than these two characteristic features, the sequence of the family of NOI-containing proteins is diverse and, with the exception of RIN4, their functions are not known. Recently published interactome data showing interactions between RIN4 and components of the exocyst complex prompt us to raise the hypothesis that RIN4 might be involved in defense associated vesicle trafficking.
Collapse
Affiliation(s)
- Ahmed J Afzal
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA.
| | | | | |
Collapse
|
39
|
Xin XF, He SY. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:473-98. [PMID: 23725467 DOI: 10.1146/annurev-phyto-082712-102321] [Citation(s) in RCA: 386] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Since the early 1980s, various strains of the gram-negative bacterial pathogen Pseudomonas syringae have been used as models for understanding plant-bacterial interactions. In 1991, a P. syringae pathovar tomato (Pst) strain, DC3000, was reported to infect not only its natural host tomato but also Arabidopsis in the laboratory, a finding that spurred intensive efforts in the subsequent two decades to characterize the molecular mechanisms by which this strain causes disease in plants. Genomic analysis shows that Pst DC3000 carries a large repertoire of potential virulence factors, including proteinaceous effectors that are secreted through the type III secretion system and a polyketide phytotoxin called coronatine, which structurally mimics the plant hormone jasmonate (JA). Study of Pst DC3000 pathogenesis has not only provided several conceptual advances in understanding how a bacterial pathogen employs type III effectors to suppress plant immune responses and promote disease susceptibility but has also facilitated the discovery of the immune function of stomata and key components of JA signaling in plants. The concepts derived from the study of Pst DC3000 pathogenesis may prove useful in understanding pathogenesis mechanisms of other plant pathogens.
Collapse
Affiliation(s)
- Xiu-Fang Xin
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
40
|
Gawehns F, Cornelissen BJC, Takken FLW. The potential of effector-target genes in breeding for plant innate immunity. Microb Biotechnol 2012; 6:223-9. [PMID: 23279965 PMCID: PMC3815917 DOI: 10.1111/1751-7915.12023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/23/2012] [Accepted: 11/27/2012] [Indexed: 12/11/2022] Open
Abstract
Increasing numbers of infectious crop diseases that are caused by fungi and oomycetes urge the need to develop alternative strategies for resistance breeding. As an alternative for the use of resistance (R) genes, the application of mutant susceptibility (S) genes has been proposed as a potentially more durable type of resistance. Identification of S genes is hampered by their recessive nature. Here we explore the use of pathogen-derived effectors as molecular probes to identify S genes. Effectors manipulate specific host processes thereby contributing to disease. Effector targets might therefore represent S genes. Indeed, the Pseudomonas syringae effector HopZ2 was found to target MLO2, an Arabidopsis thaliana homologue of the barley S gene Mlo. Unfortunately, most effector targets identified so far are not applicable as S genes due to detrimental effects they have on other traits. However, some effector targets such as Mlo are successfully used, and with the increase in numbers of effector targets being identified, the numbers of S genes that can be used in resistance breeding will rise as well.
Collapse
Affiliation(s)
- Fleur Gawehns
- Department of Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | | | | |
Collapse
|
41
|
Deslandes L, Rivas S. Catch me if you can: bacterial effectors and plant targets. TRENDS IN PLANT SCIENCE 2012; 17:644-55. [PMID: 22796464 DOI: 10.1016/j.tplants.2012.06.011] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 05/18/2023]
Abstract
To suppress plant defense responses and favor the establishment of disease, phytopathogenic bacteria have gained the ability to deliver effector molecules inside host cells through the type III secretion system. Inside plant cells, bacterial effector proteins may be addressed to different subcellular compartments where they are able to manipulate a variety of host cellular components and molecular functions. Here we review how the recent identification and functional characterization of plant components targeted by bacterial effectors, as well as the discovery of new pathogen recognition capabilities evolved in turn by plant cells, have significantly contributed to further our knowledge about the intricate molecular interactions that are established between plants and their invading bacteria.
Collapse
Affiliation(s)
- Laurent Deslandes
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, F-31326 Castanet-Tolosan, France
| | | |
Collapse
|
42
|
Yao C, Wu Y, Nie H, Tang D. RPN1a, a 26S proteasome subunit, is required for innate immunity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:1015-28. [PMID: 22577987 DOI: 10.1111/j.1365-313x.2012.05048.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Accumulating evidence shows that proper degradation of proteins that affect defense responses in a positive or negative manner is critical in plant immunity. However, the role of plant degradation systems such as the 26S proteasome in plant immunity is not well understood. Loss-of-function mutations in EDR2 (ENHANCED DISEASE RESISTANCE 2) lead to increased resistance to the adapted biotrophic powdery mildew pathogen Golovinomyces cichoracearum. To study the molecular interactions between powdery mildew pathogen and Arabidopsis, we performed a screen for suppressors of edr2 and found that mutation in the gene that encodes RPN1a, a subunit of the 26S proteasome, suppressed edr2-associated disease resistance phenotypes. In addition, RPN1a is required for edr1- and pmr4-mediated powdery mildew resistance and mildew-induced cell death. Furthermore, we show that rpn1a displayed enhanced susceptibility to the fungal pathogen G. cichoracearum and to virulent and avirulent bacterial Pto DC3000 strains, which indicated that rpn1a has defects in basal defense and resistance (R) protein-mediated defense. RPN1a-GFP localizes to both the nucleus and cytoplasm. Accumulation of RPN1a is affected by salicylic acid (SA) and the rpn1a mutant has defects in SA accumulation upon Pto DC3000 infection. Further analysis revealed that two other subunits of the 26S proteasome, RPT2a and RPN8a are also involved in edr2-mediated disease resistance. Based on these results, we conclude that RPN1a is required for basal defense and R protein-mediated defense. Our data provide evidence that some subunits of the 26S proteasome are involved in innate immunity in Arabidopsis.
Collapse
Affiliation(s)
- Chunpeng Yao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
43
|
Fan R, Wang H, Wang Y, Yu D. Proteomic analysis of soybean defense response induced by cotton worm (prodenia litura, fabricius) feeding. Proteome Sci 2012; 10:16. [PMID: 22397523 PMCID: PMC3325874 DOI: 10.1186/1477-5956-10-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/08/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cotton worm is one of the main insects of soybean in southern China. Plants may acquire defense mechanisms that confer protection from predation by herbivores. Induced responses can lead to increased resistance against herbivores in many species. This study focuses on searching changed proteins in soybean defense response induced by cotton worm feeding. RESULTS Ten protein spots that are changed in abundance in response to cotton worm feeding were identified by Two-dimensional gel electrophoresis (2-DE). A total of 11 unique proteins from these spots were identified by MALDI-TOF MS. The mRNA and protein relative expression levels of most changed proteins were up-regulated. These proteins were mainly involved in physiological processes, including active oxygen removal, defense signal transduction, and metabolism regulation. CONCLUSION This is the first proteomic analysis of the soybean defense response induced by cotton worm. The differentially expressed proteins could work together to play a major role in the induced defense response. PAL and SAMS were up-regulated at both the protein and mRNA levels. These genes can be strongest candidates for further functional research.
Collapse
Affiliation(s)
- Rui Fan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | |
Collapse
|
44
|
González-Lamothe R, El Oirdi M, Brisson N, Bouarab K. The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development. THE PLANT CELL 2012; 24:762-77. [PMID: 22374398 PMCID: PMC3315245 DOI: 10.1105/tpc.111.095190] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/23/2012] [Accepted: 02/10/2012] [Indexed: 05/19/2023]
Abstract
Auxin is a pivotal plant hormone that regulates many aspects of plant growth and development. Auxin signaling is also known to promote plant disease caused by plant pathogens. However, the mechanism by which this hormone confers susceptibility to pathogens is not well understood. Here, we present evidence that fungal and bacterial plant pathogens hijack the host auxin metabolism in Arabidopsis thaliana, leading to the accumulation of a conjugated form of the hormone, indole-3-acetic acid (IAA)-Asp, to promote disease development. We also show that IAA-Asp increases pathogen progression in the plant by regulating the transcription of virulence genes. These data highlight a novel mechanism to promote plant susceptibility to pathogens through auxin conjugation.
Collapse
Affiliation(s)
- Rocío González-Lamothe
- Centre de Recherche en Amélioration Végétale, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1K2R1, Canada
- Department of Biochemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Mohamed El Oirdi
- Centre de Recherche en Amélioration Végétale, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1K2R1, Canada
- Department of Biochemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Normand Brisson
- Department of Biochemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Kamal Bouarab
- Centre de Recherche en Amélioration Végétale, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1K2R1, Canada
| |
Collapse
|
45
|
Rose LE, Grzeskowiak L, Hörger AC, Groth M, Stephan W. Targets of selection in a disease resistance network in wild tomatoes. MOLECULAR PLANT PATHOLOGY 2011; 12:921-7. [PMID: 21726387 PMCID: PMC6640331 DOI: 10.1111/j.1364-3703.2011.00720.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Studies combining comparative genomics and information on biochemical pathways have revealed that protein evolution can be affected by the amount of pleiotropy associated with a particular gene. The amount of pleiotropy, in turn, can be a function of the position at which a gene operates in a pathway and the pathway structure. Genes that serve as convergence points and have several partners (so-called hubs) often show the greatest constraint and hence the slowest rate of protein evolution. In this article, we have studied five genes (Pto, Fen, Rin4, Prf and Pfi) in a defence signalling network in a wild tomato species, Solanum peruvianum. These proteins operate together and contribute to bacterial resistance in tomato. We predicted that Prf (and possibly Pfi), which serves as a convergence point for upstream signals, should show greater evolutionary constraint. However, we found instead that two of the genes which potentially interact with pathogen ligands, Rin4 and Fen, have evolved under strong evolutionary constraint, whereas Prf and Pfi, which probably function further downstream in the network, show evidence of balancing selection. This counterintuitive observation may be probable in pathogen defence networks, because pathogens may target positions throughout resistance networks to manipulate or nullify host resistance, thereby leaving a molecular signature of host-parasite co-evolution throughout a single network.
Collapse
Affiliation(s)
- Laura E Rose
- Section of Evolutionary Biology, LMU Munich, Planegg, Germany.
| | | | | | | | | |
Collapse
|
46
|
Afzal AJ, da Cunha L, Mackey D. Separable fragments and membrane tethering of Arabidopsis RIN4 regulate its suppression of PAMP-triggered immunity. THE PLANT CELL 2011; 23:3798-811. [PMID: 21984695 PMCID: PMC3229150 DOI: 10.1105/tpc.111.088708] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
RPM1-interacting protein 4 (RIN4) is a multifunctional Arabidopsis thaliana protein that regulates plant immune responses to pathogen-associated molecular patterns (PAMPs) and bacterial type III effector proteins (T3Es). RIN4, which is targeted by multiple defense-suppressing T3Es, provides a mechanistic link between PAMP-triggered immunity (PTI) and effector-triggered immunity and effector suppression of plant defense. Here we report on a structure-function analysis of RIN4-mediated suppression of PTI. Separable fragments of RIN4, including those produced when the T3E AvrRpt2 cleaves RIN4 and each containing a plant-specific nitrate-induced (NOI) domain, suppress PTI. The N-terminal and C-terminal NOIs each contribute to PTI suppression and are evolutionarily conserved. Native RIN4 is anchored to the plasma membrane by C-terminal acylation. Nonmembrane-tethered derivatives of RIN4 activate a cell death response in wild-type Arabidopsis and are hyperactive PTI suppressors in a mutant background that lacks the cell death response. Our results indicate that RIN4 is a multifunctional suppressor of PTI and that a virulence function of AvrRpt2 may include cleaving RIN4 into active defense-suppressing fragments.
Collapse
Affiliation(s)
- Ahmed J. Afzal
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210
| | - Luis da Cunha
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210
| | - David Mackey
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
- Address correspondence to
| |
Collapse
|
47
|
Lu D, He P, Shan L. Bacterial effectors target BAK1-associated receptor complexes: One stone two birds. Commun Integr Biol 2011; 3:80-3. [PMID: 20585495 DOI: 10.4161/cib.3.2.10301] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 10/11/2009] [Indexed: 11/19/2022] Open
Abstract
The long-standing association between hosts and microbes has generated some of most intricate relationships. The studies on molecular mechanisms of host-microbe interaction have been revealing many fascinating stories. Here we zoom in on a specific topic on the interplay between bacterial effectors and plant innate immune signaling. In particular, we will summarize our recent discovery that bacterial effector proteins, AvrPto and AvrPtoB, target plant immune signaling receptor complexes to interfere with host immune responses and development.
Collapse
|
48
|
Hou S, Yang Y, Wu D, Zhang C. Plant immunity: evolutionary insights from PBS1, Pto, and RIN4. PLANT SIGNALING & BEHAVIOR 2011; 6:794-9. [PMID: 21494098 PMCID: PMC3218475 DOI: 10.4161/psb.6.6.15143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Two layers of plant immune systems are used by plants to defend against phytopathogens. The first layer is pathogen-associate molecular patterns (PAMPs)-triggered immunity (PTI), which is activated by plant cell-surface pattern recognition receptors (PRRs) upon perception of microbe general elicitors. The second layer is effector-triggered immunity (ETI), which is initiated by specific recognition of pathogen type III secreted effectors (T3SEs) with plant intracellular resistance (R) proteins. Current opinions agree that ETI was evolved from PTI, and the impetus for the evolution of plant immunity is pathogen T3SEs, which exhibit virulence functions through blocking PTI, but show avirulence functions for triggering ETI. A Decoy Model was put forward and explained that the avirulence targets of pathogen T3SEs were evolved as decoys to compete with the virulence targets for binding with pathogen T3SEs. However, little direct evidence for the evolutionary mode has been offered. Here, we reviewed the recent progresses about Pto, PBS1, and RIN4 to present our viewpoints about the evolution of plant immunity.
Collapse
Affiliation(s)
- Shuguo Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China.
| | | | | | | |
Collapse
|
49
|
Chung EH, da Cunha L, Wu AJ, Gao Z, Cherkis K, Afzal AJ, Mackey D, Dangl JL. Specific threonine phosphorylation of a host target by two unrelated type III effectors activates a host innate immune receptor in plants. Cell Host Microbe 2011; 9:125-36. [PMID: 21320695 DOI: 10.1016/j.chom.2011.01.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/13/2010] [Accepted: 01/13/2011] [Indexed: 11/26/2022]
Abstract
The Arabidopsis NB-LRR immune receptor RPM1 recognizes the Pseudomonas syringae type III effectors AvrB or AvrRpm1 to mount an immune response. Although neither effector is itself a kinase, AvrRpm1 and AvrB are known to target Arabidopsis RIN4, a negative regulator of basal plant defense, for phosphorylation. We show that RIN4 phosphorylation activates RPM1. RIN4(142-176) is necessary and, with appropriate localization sequences, sufficient to support effector-triggered RPM1 activation, with the threonine residue at position 166 being critical. Phosphomimic substitutions at T166 cause effector-independent RPM1 activation. RIN4 T166 is phosphorylated in vivo in the presence of AvrB or AvrRpm1. RIN4 mutants that lose interaction with AvrB cannot be coimmunoprecipitated with RPM1. This defines a common interaction platform required for RPM1 activation by phosphorylated RIN4 in response to pathogenic effectors. Conservation of an analogous threonine across all RIN4-like proteins suggests a key function for this residue beyond the regulation of RPM1.
Collapse
Affiliation(s)
- Eui-Hwan Chung
- Department of Biology, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. Cell Host Microbe 2011; 9:137-46. [PMID: 21320696 DOI: 10.1016/j.chom.2011.01.010] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/29/2010] [Accepted: 01/21/2011] [Indexed: 11/22/2022]
Abstract
Plants have evolved sophisticated surveillance systems to recognize pathogen effectors delivered into host cells. RPM1 is an NB-LRR immune receptor that recognizes the Pseudomonas syringae effectors AvrB and AvrRpm1. Both effectors associate with and affect the phosphorylation of RIN4, an immune regulator. Although the kinase and the specific mechanisms involved are unclear, it has been hypothesized that RPM1 recognizes phosphorylated RIN4. Here, we identify RIPK as a RIN4-interacting receptor-like protein kinase that phosphorylates RIN4. In response to bacterial effectors, RIPK phosphorylates RIN4 at amino acid residues T21, S160, and T166. RIN4 phosphomimetic mutants display constitutive activation of RPM1-mediated defense responses and RIN4 phosphorylation is induced by AvrB and AvrRpm1 during P. syringae infection. RIPK knockout lines exhibit reduced RIN4 phosphorylation and blunted RPM1-mediated defense responses. Taken together, our results demonstrate that the RIPK kinase associates with and modifies an effector-targeted protein complex to initiate host immunity.
Collapse
|