1
|
Zhang Q, Liu Y, Zhang C, Xu D, Medina-Fraga AL, Wu B, Guo C, Wangzha M, Yang G, Zhu D, Weiss D, Ballaré CL, Lin L, Yin R. SlSPA3 regulates the nuclear abundance of SlUVR8 in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2656-2667. [PMID: 39522175 DOI: 10.1111/tpj.17135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Tomato (Solanum lycopersicum L.) is an important model plant species in photomorphogenesis research. Ultraviolet B (UV-B) induces the dissociation of homodimers of the photoreceptor UV RESISTANCE LOCUS8 (UVR8) into monomers, which translocate into the nucleus. Nuclear accumulation of UVR8 is a prerequisite for its signaling function. Previous studies have reported that SUPPRESSOR OF PHYTOCHROME A-105 (SPA) family members may regulate UV-B signaling in Arabidopsis (Arabidopsis thaliana); however, the underlying mechanism is unknown. Here, we show that the tomato genome encodes four SPA (SlSPA) orthologs. Genome-edited Slspa3 mutants exhibited enhanced photomorphogenic responses in white light, suggesting that SlSPA3 inhibits general photomorphogenesis. By contrast, UVR8-mediated gene expression in response to UV-B was compromised in Slspa3 mutants, suggesting that SlSPA3 promotes UV-B signaling. UV-B-induced nuclear accumulation of UVR8, which is essential for UV-B signaling, was reduced in the Slspa3 mutants. Moreover, UV-B-induced nuclear accumulation of UVR8 was also reduced in the Arabidopsis spa1 spa2 spa3 and spa1 spa2 spa4 triple mutants, indicating a conserved mechanism in these two species. Notably, spa1 spa2 spa4 exhibited normal UV-B-induced interaction between UVR8 and the plant morphogenesis repressor CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). This suggests that the well-established mechanisms of UVR8 nuclear retention remained unaffected in spa1 spa2 spa4. Thus, our work uncovered a potentially unrecognized mechanism by which SPA proteins regulate UV-B signaling through the promotion of UVR8 nuclear abundance in land plants.
Collapse
Affiliation(s)
- Qianwen Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yue Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
| | - Chunli Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
| | - Dawei Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
| | - Ana L Medina-Fraga
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBIO), CONICET, Universidad Nacional de San Martın, Buenos Aires, Argentina
| | - Baoguo Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
| | - Chenyang Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
| | - MeLongying Wangzha
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
| | - Guoqian Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
| | - Carlos L Ballaré
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBIO), CONICET, Universidad Nacional de San Martın, Buenos Aires, Argentina
| | - Li Lin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ruohe Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
2
|
Rahul PV, Yadukrishnan P, Sasidharan A, Datta S. The B-box protein BBX13/COL15 suppresses photoperiodic flowering by attenuating the action of CONSTANS in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:5358-5371. [PMID: 39189944 DOI: 10.1111/pce.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
The optimal timing of transition from vegetative to floral reproductive phase is critical for plant productivity and agricultural yields. Light plays a decisive role in regulating this transition. The B-box (BBX) family of transcription factors regulates several light-mediated developmental processes in plants, including flowering. Here, we identify a previously uncharacterized group II BBX family member, BBX13/COL15, as a negative regulator of flowering under long-day conditions. BBX13 is primarily expressed in the leaf vasculature, buds, and flowers, showing a similar spatial expression pattern to the major flowering time regulators CO and FT. bbx13 mutants flower early, while BBX13-overexpressors exhibit delayed flowering under long days. Genetic analyses showed that BBX13 acts upstream to CO and FT and negatively regulates their expression. BBX13 physically interacts with CO and inhibits the CO-mediated transcriptional activation of FT. In addition, BBX13 directly binds to the CORE2 motif on the FT promoter, where CO also binds. Chromatin immunoprecipitation data indicates that BBX13 reduces the in vivo binding of CO on the FT promoter. Through luciferase assay, we found that BBX13 inhibits the CO-mediated transcriptional activation of FT. Together, these findings suggest that BBX13/COL15 represses flowering in Arabidopsis by attenuating the binding of CO on the FT promoter.
Collapse
Affiliation(s)
- Puthan Valappil Rahul
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Madhya Pradesh, India
| | - Premachandran Yadukrishnan
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Madhya Pradesh, India
| | - Anagha Sasidharan
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Madhya Pradesh, India
| | - Sourav Datta
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Madhya Pradesh, India
| |
Collapse
|
3
|
Xu M, Wang YY, Wu Y, Zhou X, Shan Z, Tao K, Qian K, Wang X, Li J, Wu Q, Deng XW, Ling JJ. Green light mediates atypical photomorphogenesis by dual modulation of Arabidopsis phytochromes B and A. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1915-1933. [PMID: 39023402 DOI: 10.1111/jipb.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Although green light (GL) is located in the middle of the visible light spectrum and regulates a series of plant developmental processes, the mechanism by which it regulates seedling development is largely unknown. In this study, we demonstrated that GL promotes atypical photomorphogenesis in Arabidopsis thaliana via the dual regulations of phytochrome B (phyB) and phyA. Although the Pr-to-Pfr conversion rates of phyB and phyA under GL were lower than those under red light (RL) in a fluence rate-dependent and time-dependent manner, long-term treatment with GL induced high Pfr/Pr ratios of phyB and phyA. Moreover, GL induced the formation of numerous small phyB photobodies in the nucleus, resulting in atypical photomorphogenesis, with smaller cotyledon opening angles and longer hypocotyls in seedlings compared to RL. The abundance of phyA significantly decreased after short- and long-term GL treatments. We determined that four major PHYTOCHROME-INTERACTING FACTORs (PIFs: PIF1, PIF3, PIF4, and PIF5) act downstream of phyB in GL-mediated cotyledon opening. In addition, GL plays opposite roles in regulating different PIFs. For example, under continuous GL, the protein levels of all PIFs decreased, whereas the transcript levels of PIF4 and PIF5 strongly increased compared with dark treatment. Taken together, our work provides a detailed molecular framework for understanding the role of the antagonistic regulations of phyB and phyA in GL-mediated atypical photomorphogenesis.
Collapse
Affiliation(s)
- Miqi Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yi-Yuan Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yujie Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiuhong Zhou
- Biotechnology Center, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ziyan Shan
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kunying Tao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kaiqiang Qian
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qingqing Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, and School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, China
| | - Jun-Jie Ling
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
4
|
Fang K, Yao X, Tian Y, He Y, Lin Y, Lei W, Peng S, Pan G, Shi H, Zhang D, Lin H. Ubiquitin-specific protease UBP14 stabilizes HY5 by deubiquitination to promote photomorphogenesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2024; 121:e2404883121. [PMID: 39102535 PMCID: PMC11331110 DOI: 10.1073/pnas.2404883121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/12/2024] [Indexed: 08/07/2024] Open
Abstract
Transcription factor ELONGATED HYPOCOTYL5 (HY5) is the central hub for seedling photomorphogenesis. E3 ubiquitin (Ub) ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) inhibits HY5 protein accumulation through ubiquitination. However, the process of HY5 deubiquitination, which antagonizes E3 ligase-mediated ubiquitination to maintain HY5 homeostasis has never been studied. Here, we identified that Arabidopsis thaliana deubiquitinating enzyme, Ub-SPECIFIC PROTEASE 14 (UBP14) physically interacts with HY5 and enhances its protein stability by deubiquitination. The da3-1 mutant lacking UBP14 function exhibited a long hypocotyl phenotype, and UBP14 deficiency led to the failure of rapid accumulation of HY5 during dark to light. In addition, UBP14 preferred to stabilize nonphosphorylated form of HY5 which is more readily bound to downstream target genes. HY5 promoted the expression and protein accumulation of UBP14 for positive feedback to facilitate photomorphogenesis. Our findings thus established a mechanism by which UBP14 stabilizes HY5 protein by deubiquitination to promote photomorphogenesis in A. thaliana.
Collapse
Affiliation(s)
- Ke Fang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin644000, China
| | - Yu’ang Tian
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Yang He
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Yingru Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Wei Lei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Sihan Peng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Guohui Pan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Haoyu Shi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| |
Collapse
|
5
|
Cui Y, Su Y, Bian J, Han X, Guo H, Yang Z, Chen Y, Li L, Li T, Deng XW, Liu X. Single-nucleus RNA and ATAC sequencing analyses provide molecular insights into early pod development of peanut fruit. PLANT COMMUNICATIONS 2024; 5:100979. [PMID: 38794796 PMCID: PMC11369777 DOI: 10.1016/j.xplc.2024.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Peanut (Arachis hypogaea L.) is an important leguminous oil and economic crop that produces flowers aboveground and fruits belowground. Subterranean fruit-pod development, which significantly affects peanut production, involves complex molecular mechanisms that likely require the coordinated regulation of multiple genes in different tissues. To investigate the molecular mechanisms that underlie peanut fruit-pod development, we characterized the anatomical features of early fruit-pod development and integrated single-nucleus RNA-sequencing (snRNA-seq) and single-nucleus assay for transposase-accessible chromatin with sequencing (snATAC-seq) data at the single-cell level. We identified distinct cell types, such as meristem, embryo, vascular tissue, cuticular layer, and stele cells within the shell wall. These specific cell types were used to examine potential molecular changes unique to each cell type during pivotal stages of fruit-pod development. snRNA-seq analyses of differentially expressed genes revealed cell-type-specific insights that were not previously obtainable from transcriptome analyses of bulk RNA. For instance, we identified MADS-box genes that contributes to the formation of parenchyma cells and gravity-related genes that are present in the vascular cells, indicating an essential role for the vascular cells in peg gravitropism. Overall, our single-nucleus analysis provides comprehensive and novel information on specific cell types, gene expression, and chromatin accessibility during the early stages of fruit-pod development. This information will enhance our understanding of the mechanisms that underlie fruit-pod development in peanut and contribute to efforts aimed at improving peanut production.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China
| | - Yanning Su
- School of Advanced Agricultural Sciences, Peking University, Beijing 100083, China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China
| | - Xue Han
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China
| | - Haosong Guo
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100083, China
| | - Zhiyuan Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China
| | - Yijun Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China
| | - Lihui Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China
| | - Tianyu Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100083, China
| | - Xiaoqin Liu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China.
| |
Collapse
|
6
|
Boycheva I, Bonchev G, Manova V, Stoilov L, Vassileva V. How Histone Acetyltransferases Shape Plant Photomorphogenesis and UV Response. Int J Mol Sci 2024; 25:7851. [PMID: 39063093 PMCID: PMC11276938 DOI: 10.3390/ijms25147851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Higher plants have developed complex mechanisms to adapt to fluctuating environmental conditions with light playing a vital role in photosynthesis and influencing various developmental processes, including photomorphogenesis. Exposure to ultraviolet (UV) radiation can cause cellular damage, necessitating effective DNA repair mechanisms. Histone acetyltransferases (HATs) play a crucial role in regulating chromatin structure and gene expression, thereby contributing to the repair mechanisms. HATs facilitate chromatin relaxation, enabling transcriptional activation necessary for plant development and stress responses. The intricate relationship between HATs, light signaling pathways and chromatin dynamics has been increasingly understood, providing valuable insights into plant adaptability. This review explores the role of HATs in plant photomorphogenesis, chromatin remodeling and gene regulation, highlighting the importance of chromatin modifications in plant responses to light and various stressors. It emphasizes the need for further research on individual HAT family members and their interactions with other epigenetic factors. Advanced genomic approaches and genome-editing technologies offer promising avenues for enhancing crop resilience and productivity through targeted manipulation of HAT activities. Understanding these mechanisms is essential for developing strategies to improve plant growth and stress tolerance, contributing to sustainable agriculture in the face of a changing climate.
Collapse
Affiliation(s)
| | | | | | | | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.B.); (G.B.); (V.M.); (L.S.)
| |
Collapse
|
7
|
Lin WC, Chang HH, Huang ZB, Huang LC, Kuo WC, Cheng MC. COP1-ERF1-SCE1 regulatory module fine-tunes stress response under light-dark cycle in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:1877-1894. [PMID: 38343027 DOI: 10.1111/pce.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 04/06/2024]
Abstract
ETHYLENE RESPONSE FACTOR 1 (ERF1) plays an important role in integrating hormone crosstalk and stress responses. Previous studies have shown that ERF1 is unstable in the dark and its degradation is mediated by UBIQUITIN-CONJUGATING ENZYME 18. However, whether there are other enzymes regulating ERF1's stability remains unclear. Here, we use various in vitro and in vivo biochemical, genetic and stress-tolerance tests to demonstrate that both CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUMO-CONJUGATING ENZYME 1 (SCE1) regulate the stability of ERF1. We also performed transcriptomic analyses to understand their common regulatory pathways. We show that COP1 mediates ERF1 ubiquitination in the dark while SCE1 mediates ERF1 sumoylation in the light. ERF1 stability is positively regulated by SCE1 and negatively regulated by COP1. Upon abiotic stress, SCE1 plays a positive role in stress defence by regulating the expression of ERF1's downstream stress-responsive genes, whereas COP1 plays a negative role in stress response. Moreover, ERF1 also promotes photomorphogenesis and the expression of light-responsive genes. Our study reveals the molecular mechanism of how COP1 and SCE1 counteract to regulate ERF1's stability and light-stress signalling crosstalk.
Collapse
Affiliation(s)
- Wen-Chi Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Hui-Hsien Chang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Zi-Bin Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Lin-Chen Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wen-Chieh Kuo
- Fruit and Flower Industry Division, Agriculture and Food Agency, Ministry of Agriculture, Nantou, Taiwan
| | - Mei-Chun Cheng
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Qu GP, Jiang B, Lin C. The dual-action mechanism of Arabidopsis cryptochromes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:883-896. [PMID: 37902426 DOI: 10.1111/jipb.13578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co-factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light-regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini-review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the "Lock-and-Key" and the "Liquid-Liquid Phase Separation (LLPS)" mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY-interacting proteins and the functional diversity of the CRY photoreceptors.
Collapse
Affiliation(s)
- Gao-Ping Qu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bochen Jiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
9
|
Cho SW, Lokhandwala J, Park JS, Kang HW, Choi M, Yang HQ, Imaizumi T, Zoltowski BD, Song YH. Disrupting FKF1 homodimerization increases FT transcript levels in the evening by enhancing CO stabilization. PLANT CELL REPORTS 2024; 43:121. [PMID: 38635077 PMCID: PMC11026275 DOI: 10.1007/s00299-024-03207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
KEY MESSAGE FKF1 dimerization is crucial for proper FT levels to fine-tune flowering time. Attenuating FKF1 homodimerization increased CO abundance by enhancing its COP1 binding, thereby accelerating flowering under long days. In Arabidopsis (Arabidopsis thaliana), the blue-light photoreceptor FKF1 (FLAVIN-BINDING, KELCH REPEAT, F-BOX 1) plays a key role in inducing the expression of FLOWERING LOCUS T (FT), encoding the main florigenic signal in plants, in the late afternoon under long-day conditions (LDs) by forming dimers with FT regulators. Although structural studies have unveiled a variant of FKF1 (FKF1 I160R) that disrupts homodimer formation in vitro, the mechanism by which disrupted FKF1 homodimer formation regulates flowering time remains elusive. In this study, we determined that the attenuation of FKF1 homodimer formation enhances FT expression in the evening by promoting the increased stability of CONSTANS (CO), a primary activator of FT, in the afternoon, thereby contributing to early flowering. In contrast to wild-type FKF1, introducing the FKF1 I160R variant into the fkf1 mutant led to increased FT expression under LDs. In addition, the FKF1 I160R variant exhibited diminished dimerization with FKF1, while its interaction with GIGANTEA (GI), a modulator of FKF1 function, was enhanced under LDs. Furthermore, the FKF1 I160R variant increased the level of CO in the afternoon under LDs by enhancing its binding to COP1, an E3 ubiquitin ligase responsible for CO degradation. These findings suggest that the regulation of FKF1 homodimerization and heterodimerization allows plants to finely adjust FT expression levels around dusk by modulating its interactions with GI and COP1.
Collapse
Affiliation(s)
- Sung Won Cho
- Department of Biology, Ajou University, Suwon, Korea
- Institute of Agricultural Life Sciences, Seoul National University, Seoul, Korea
| | | | - Jun Sang Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Hye Won Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Mingi Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Brian D Zoltowski
- Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Young Hun Song
- Institute of Agricultural Life Sciences, Seoul National University, Seoul, Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
10
|
Kanojia A, Bhola D, Mudgil Y. Light signaling as cellular integrator of multiple environmental cues in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1485-1503. [PMID: 38076763 PMCID: PMC10709290 DOI: 10.1007/s12298-023-01364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 12/17/2023]
Abstract
Plants being sessile need to rapidly adapt to the constantly changing environment through modifications in their internal clock, metabolism, and gene expression. They have evolved an intricate system to perceive and transfer the signals from the primary environmental factors namely light, temperature and water to regulate their growth development and survival. Over past few decades rigorous research using molecular genetics approaches, especially in model plant Arabidopsis, has resulted in substantial progress in discovering various photoreceptor systems and light signaling components. In parallel several molecular pathways operating in response to other environmental cues have also been elucidated. Interestingly, the studies have shown that expression profiles of genes involved in photomorphogenesis can undergo modulation in response to other cues from the environment. Recently, the photoreceptor, PHYB, has been shown to function as a thermosensor. Downstream components of light signaling pathway like COP1 and PIF have also emerged as integrating hubs for various kinds of signals. All these findings indicate that light signaling components may act as central integrator of various environmental cues to regulate plant growth and development processes. In this review, we present a perspective on cross talk of signaling mechanisms induced in response to myriad array of signals and their integration with the light signaling components. By putting light signals on the central stage, we propose the possibilities of enhancing plant resilience to the changing environment by fine-tuning the genetic manipulation of its signaling components in the future.
Collapse
Affiliation(s)
- Abhishek Kanojia
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - Diksha Bhola
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - Yashwanti Mudgil
- Department of Botany, University of Delhi, New Delhi, 110007 India
| |
Collapse
|
11
|
Jiang B, Zhong Z, Su J, Zhu T, Yueh T, Bragasin J, Bu V, Zhou C, Lin C, Wang X. Co-condensation with photoexcited cryptochromes facilitates MAC3A to positively control hypocotyl growth in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadh4048. [PMID: 37556549 PMCID: PMC10411877 DOI: 10.1126/sciadv.adh4048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023]
Abstract
Cryptochromes (CRYs) are blue light receptors that mediate plant photoresponses through regulating gene expressions. We recently reported that Arabidopsis CRY2 could form light-elicited liquid condensates to control RNA methylation. However, whether CRY2 condensation is involved in other gene expression-regulatory processes remains unclear. Here, we show that MOS4-associated complex subunits 3A and 3B (MAC3A/3B) are CRY-interacting proteins and assembled into nuclear CRY condensates. mac3a3b double mutants exhibit hypersensitive photoinhibition of hypocotyl elongation, suggesting that MAC3A/3B positively control hypocotyl growth. We demonstrate the noncanonical activity of MAC3A as a DNA binding protein that modulates transcription. Genome-wide mapping of MAC3A-binding sites reveals that blue light enhances the association of MAC3A with its DNA targets, which requires CRYs. Further evidence indicates that MAC3A and ELONGATED HYPOCOTYL 5 (HY5) occupy overlapping genomic regions and compete for the same targets. These results argue that photocondensation of CRYs fine-tunes light-responsive hypocotyl growth by balancing the opposed effects of HY5 and MAC3A.
Collapse
Affiliation(s)
- Bochen Jiang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Zhenhui Zhong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tengfei Zhu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| | - Timothy Yueh
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Jielena Bragasin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Victoria Bu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Charles Zhou
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
12
|
Kreiss M, Haas FB, Hansen M, Rensing SA, Hoecker U. Co-action of COP1, SPA and cryptochrome in light signal transduction and photomorphogenesis of the moss Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:159-175. [PMID: 36710658 DOI: 10.1111/tpj.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The Arabidopsis COP1/SPA ubiquitin ligase suppresses photomorphogenesis in darkness. In the light, photoreceptors inactivate COP1/SPA to allow a light response. While SPA genes are specific to the green lineage, COP1 also exists in humans. This raises the question of when in evolution plant COP1 acquired the need for SPA accessory proteins. We addressed this question by generating Physcomitrium Ppcop1 mutants and comparing their visible and molecular phenotypes with those of Physcomitrium Ppspa mutants. The phenotype of Ppcop1 nonuple mutants resembles that of Ppspa mutants. Most importantly, both mutants produce green chloroplasts in complete darkness. They also exhibit dwarfed gametophores, disturbed branching of protonemata and absent gravitropism. RNA-sequencing analysis indicates that both mutants undergo weak constitutive light signaling in darkness. PpCOP1 and PpSPA proteins form a complex and they interact via their WD repeat domains with the VP motif of the cryptochrome CCE domain in a blue light-dependent manner. This resembles the interaction of Arabidopsis SPA proteins with Arabidopsis CRY1, and is different from that with Arabidopsis CRY2. Taken together, the data indicate that PpCOP1 and PpSPA act together to regulate growth and development of Physcomitrium. However, in contrast to their Arabidopsis orthologs, PpCOP1 and PpSPA proteins execute only partial suppression of light signaling in darkness. Hence, additional repressors may exist that contribute to the repression of a light response in dark-exposed Physcomitrium.
Collapse
Affiliation(s)
- Melanie Kreiss
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany
| | - Fabian B Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Maike Hansen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany
| |
Collapse
|
13
|
Ahn G, Park HJ, Jeong SY, Shin GI, Ji MG, Cha JY, Kim J, Kim MG, Yun DJ, Kim WY. HOS15 represses flowering by promoting GIGANTEA degradation in response to low temperature in Arabidopsis. PLANT COMMUNICATIONS 2023:100570. [PMID: 36864727 PMCID: PMC10363504 DOI: 10.1016/j.xplc.2023.100570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Flowering is the primary stage of the plant developmental transition and is tightly regulated by environmental factors such as light and temperature. However, the mechanisms by which temperature signals are integrated into the photoperiodic flowering pathway are still poorly understood. Here, we demonstrate that HOS15, which is known as a GI transcriptional repressor in the photoperiodic flowering pathway, controls flowering time in response to low ambient temperature. At 16°C, the hos15 mutant exhibits an early flowering phenotype, and HOS15 acts upstream of photoperiodic flowering genes (GI, CO, and FT). GI protein abundance is increased in the hos15 mutant and is insensitive to the proteasome inhibitor MG132. Furthermore, the hos15 mutant has a defect in low ambient temperature-mediated GI degradation, and HOS15 interacts with COP1, an E3 ubiquitin ligase for GI degradation. Phenotypic analyses of the hos15 cop1 double mutant revealed that repression of flowering by HOS15 is dependent on COP1 at 16°C. However, the HOS15-COP1 interaction was attenuated at 16°C, and GI protein abundance was additively increased in the hos15 cop1 double mutant, indicating that HOS15 acts independently of COP1 in GI turnover at low ambient temperature. This study proposes that HOS15 controls GI abundance through multiple modes as an E3 ubiquitin ligase and transcriptional repressor to coordinate appropriate flowering time in response to ambient environmental conditions such as temperature and day length.
Collapse
Affiliation(s)
- Gyeongik Ahn
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Song Yi Jeong
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyeong-Im Shin
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myung Geun Ji
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Yung Cha
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeongsik Kim
- Faculty of Science Education and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dae-Jin Yun
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Republic of Korea; Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Woe-Yeon Kim
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
14
|
Liu H, Li L, Fu X, Li Y, Chen T, Qin W, Yan X, Wu Z, Xie L, Kayani SL, Hassani D, Sun X, Tang K. AaMYB108 is the core factor integrating light and jasmonic acid signaling to regulate artemisinin biosynthesis in Artemisia annua. THE NEW PHYTOLOGIST 2023; 237:2224-2237. [PMID: 36564967 DOI: 10.1111/nph.18702] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Artemisinin, a sesquiterpene compound synthesized and stored in the glandular trichome of Artemisia annua leaves, has been used to treat malaria. Previous studies have shown that both light and jasmonic acid (JA) can promote the biosynthesis of artemisinin, and the promotion of artemisinin by JA is dependent on light. However, the specific molecular mechanism remains unclear. Here, we report a MYB transcription factor, AaMYB108, identified from transcriptome analysis of light and JA treatment, as a positive regulator of artemisinin biosynthesis in A. annua. AaMYB108 promotes artemisinin biosynthesis by interacting with a previously characterized positive regulator of artemisinin, AaGSW1. Then, we found that AaMYB108 interacted with AaCOP1 and AaJAZ8, respectively. The function of AaMYB108 was influenced by AaCOP1 and AaJAZ8. Through the treatment of AaMYB108 transgenic plants with light and JA, it was found that the promotion of artemisinin by light and JA depends on the presence of AaMYB108. Taken together, our results reveal the molecular mechanism of JA regulating artemisinin biosynthesis depending on light in A. annua. This study provides new insights into the integration of light and phytohormone signaling to regulate terpene biosynthesis in plants.
Collapse
Affiliation(s)
- Hang Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongpeng Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiantian Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Qin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Yan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhangkuanyu Wu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihui Xie
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sadaf-Llyas Kayani
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danial Hassani
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofen Sun
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Wang Y, Fan Y, Fan D, Zhou X, Jiao Y, Deng XW, Zhu D. The noncoding RNA HIDDEN TREASURE 1 promotes phytochrome B-dependent seed germination by repressing abscisic acid biosynthesis. THE PLANT CELL 2023; 35:700-716. [PMID: 36423345 PMCID: PMC9940872 DOI: 10.1093/plcell/koac334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Light is a major environmental factor for seed germination. Red light-activated phytochrome B (phyB) promotes seed germination by modulating the dynamic balance of two phytohormones, gibberellic acid (GA) and abscisic acid (ABA). How phyB modulates ABA biosynthesis after perceiving a light signal is not yet well understood. Here, we identified the noncoding RNA HIDDEN TREASURE 1 (HID1) as a repressor of ABA biosynthesis acting downstream of phyB during Arabidopsis thaliana seed germination. Loss of HID1 function led to delayed phyB-dependent seed germination. Photoactivated phyB promoted the accumulation of HID1 in the radicle within 48 h of imbibition. Our transcriptomics analysis showed that HID1 and phyB co-regulate the transcription of a common set of genes involved in ABA and GA metabolism. Through a forward genetic screen, we identified three ABA biosynthesis genes, ABA DEFICIENT 1 (ABA1), ABA2, and ABA3, as suppressors of HID1. We further demonstrated that HID1 directly inhibits the transcription of 9-CIS-EPOXYCAROTENOID DIOXYGENASE (NCED9), a gene encoding a key rate-limiting enzyme of ABA biosynthesis. HID1 interacts with ARABIDOPSIS TRITHORAX-RELATED7 (ATXR7), an H3K4me3 methyltransferase, inhibiting its occupancy and H3K4me3 modification at the NCED9 locus. Our study reveals a nuclear mechanism of phyB signaling transmitted through HID1 to control the internal homeostasis of ABA and GA, which gradually optimizes the transcriptional network during seed germination.
Collapse
Affiliation(s)
- Yuqiu Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yangyang Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - De Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Xiaoli Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuntong Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Sun G, Yang L, Zhan W, Chen S, Song M, Wang L, Jiang L, Guo L, Wang K, Ye X, Gou M, Zheng X, Yang J, Yan Z. HFR1, a bHLH Transcriptional Regulator from Arabidopsis thaliana, Improves Grain Yield, Shade and Osmotic Stress Tolerances in Common Wheat. Int J Mol Sci 2022; 23:ijms231912057. [PMID: 36233359 PMCID: PMC9569703 DOI: 10.3390/ijms231912057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Common wheat, Triticum aestivum, is the most widely grown staple crop worldwide. To catch up with the increasing global population and cope with the changing climate, it is valuable to breed wheat cultivars that are tolerant to abiotic or shade stresses for density farming. Arabidopsis LONG HYPOCOTYL IN FAR-RED 1 (AtHFR1), a photomorphogenesis-promoting factor, is involved in multiple light-related signaling pathways and inhibits seedling etiolation and shade avoidance. We report that overexpression of AtHFR1 in wheat inhibits etiolation phenotypes under various light and shade conditions, leading to shortened plant height and increased spike number relative to non-transgenic plants in the field. Ectopic expression of AtHFR1 in wheat increases the transcript levels of TaCAB and TaCHS as observed previously in Arabidopsis, indicating that the AtHFR1 transgene can activate the light signal transduction pathway in wheat. AtHFR1 transgenic seedlings significantly exhibit tolerance to osmotic stress during seed germination compared to non-transgenic wheat. The AtHFR1 transgene represses transcription of TaFT1, TaCO1, and TaCO2, delaying development of the shoot apex and heading in wheat. Furthermore, the AtHFR1 transgene in wheat inhibits transcript levels of PHYTOCHROME-INTERACTING FACTOR 3-LIKEs (TaPIL13, TaPIL15-1B, and TaPIL15-1D), downregulating the target gene STAYGREEN (TaSGR), and thus delaying dark-induced leaf senescence. In the field, grain yields of three AtHFR1 transgenic lines were 18.2–48.1% higher than those of non-transgenic wheat. In summary, genetic modification of light signaling pathways using a photomorphogenesis-promoting factor has positive effects on grain yield due to changes in plant architecture and resource allocation and enhances tolerances to osmotic stress and shade avoidance response.
Collapse
Affiliation(s)
- Guanghua Sun
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Luhao Yang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Weimin Zhan
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Shizhan Chen
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijian Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Liangliang Jiang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Lin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Xu Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianping Yang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (J.Y.); (Z.Y.)
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (J.Y.); (Z.Y.)
| |
Collapse
|
17
|
Lin M, Ma S, Quan K, Yang E, Hu L, Chen X. Comparative transcriptome analysis provides insight into the molecular mechanisms of long-day photoperiod in Moringa oleifera. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:935-946. [PMID: 35722507 PMCID: PMC9203643 DOI: 10.1007/s12298-022-01186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 05/03/2023]
Abstract
Moringa oleifera, is commonly cultivated as a vegetable in tropical and subtropical regions because of nutritional and medicinal benefits of its fruits, immature pods, leaves, and flowers. Flowering at the right time is one of the important traits for crop yield in M.oleifera. Under normal conditions, photoperiod is one of the key factors in determining when plant flower. However, the molecular mechanism underlying the effects of a long-day photoperiod on Moringa is not clearly understood. In the present study, deep RNA sequencing and sugar metabolome were conducted of Moringa leaves under long-day photoperiod. As a result, differentially expressed genes were significantly associated with starch and sucrose pathway and the circadian rhythm-plant pathway. In starch and sucrose pathway, sucrose, fructose, trehalose, glucose, and maltose exhibited pronounced rhythmicity over 24 h, and TPS (trehalose-6-phosphate synthase) genes constituted key regulatory genes. In an Arabidopsis overexpression line hosting the MoTPS1 or MoTPS2 genes, flowering occurred earlier under a short-day photoperiod. These results will support molecular breeding of Moringa and may help clarify to genetic architecture of long-day photoperiod related traits. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01186-4.
Collapse
Affiliation(s)
- Mengfei Lin
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China 410001
| | - Shiying Ma
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China 410001
| | - Kehui Quan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China 410001
| | - Endian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China 510642
| | - Lei Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China 510642
| | - Xiaoyang Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China 410001
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China 510642
| |
Collapse
|
18
|
Su L, Zhou P, Guo L, Jia X, Wang S, Gao J, Li H, Liu B, Song M, Yang J. Arabidopsis SPA2 represses seedling de-etiolation under multiple light conditions. PLANT DIRECT 2022; 6:e403. [PMID: 35662851 PMCID: PMC9148924 DOI: 10.1002/pld3.403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/05/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis, phytochrome (phy) A, phyB, and cryptochrome 1 (cry1) are representative far-red, red, and blue light photoreceptors, respectively. Members of the SUPPRESSOR OF PHYA-105 (SPA) protein family (SPA1-SPA4) form E3 ubiquitin ligase complexes with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), which mediates the degradation of photomorphogenesis-promoting factors to desensitize light signaling. SPA2 has been reported to promote seedling etiolation in the dark. However, the unique roles of SPA2 and its three functional domains in suppressing photomorphogenesis under different light conditions are largely unknown. Here, we demonstrate that overexpression of the full-length or the central coiled-coil and C-terminal WD-repeat domains of SPA2 cause hyper-etiolation phenotypes under several light conditions. The SPA2 central coiled-coil and C-terminal WD-repeat domains are necessary and sufficient for repressing seedling de-etiolation, cotyledon unfolding, and promoting hypocotyl negative gravitropism under several light conditions. Furthermore, phyA, phyB, cry1, and COP1 repress protein accumulation or nuclear translocation of SPA2 through direct interactions with its kinase-like and coiled-coil domains located in the N-terminus in response to far-red, red, and blue light treatments, respectively. Taken together, our results demonstrate that SPA2 functions under multiple light conditions; moreover, light-activated photoreceptors rapidly suppress SPA2 activity via direct interactions in response to different light treatments.
Collapse
Affiliation(s)
- Liang Su
- Institute of Radiation TechnologyBeijing Academy of Science and TechnologyBeijingChina
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Peng Zhou
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
- China Agricultural Science and Technology PressBeijingChina
| | - Lin Guo
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaolin Jia
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Shaoci Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Jianwei Gao
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetable ResearchShandong Academy of Agricultural SciencesJinanChina
| | - Hongyu Li
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Bin Liu
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Meifang Song
- Institute of Radiation TechnologyBeijing Academy of Science and TechnologyBeijingChina
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jianping Yang
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
19
|
Wang Y, Wang L, Guan Z, Chang H, Ma L, Shen C, Qiu L, Yan J, Zhang D, Li J, Deng XW, Yin P. Structural insight into UV-B-activated UVR8 bound to COP1. SCIENCE ADVANCES 2022; 8:eabn3337. [PMID: 35442727 PMCID: PMC9020657 DOI: 10.1126/sciadv.abn3337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The CONSTITUTIVE PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA-105 (COP1-SPA) complex is a central repressor of photomorphogenesis. This complex acts as an E3 ubiquitin ligase downstream of various light signaling transduced from multiple photoreceptors in plants. How the COP1-SPA activity is regulated by divergent light-signaling pathways remains largely elusive. Here, we reproduced the regulation pathway of COP1-SPA in ultraviolet-B (UV-B) signaling in vitro and determined the cryo-electron microscopy structure of UV-B receptor UVR8 in complex with COP1. The complex formation is mediated by two-interface interactions between UV-B-activated UVR8 and COP1. Both interfaces are essential for the competitive binding of UVR8 against the signaling hub component HY5 to the COP1-SPA complex. We also show that RUP2 dissociates UVR8 from the COP1-SPA41-464-UVR8 complex and facilitates its redimerization. Our results support a UV-B signaling model that the COP1-SPA activity is repressed by UV-B-activated UVR8 and derepressed by RUP2, owing to competitive binding, and provide a framework for studying the regulatory roles of distinct photoreceptors on photomorphogenesis.
Collapse
Affiliation(s)
- Yidong Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lixia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongfei Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuicui Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing Wang Deng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Ponnu J, Hoecker U. Signaling Mechanisms by Arabidopsis Cryptochromes. FRONTIERS IN PLANT SCIENCE 2022; 13:844714. [PMID: 35295637 PMCID: PMC8918993 DOI: 10.3389/fpls.2022.844714] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/04/2022] [Indexed: 05/29/2023]
Abstract
Cryptochromes (CRYs) are blue light photoreceptors that regulate growth, development, and metabolism in plants. In Arabidopsis thaliana (Arabidopsis), CRY1 and CRY2 possess partially redundant and overlapping functions. Upon exposure to blue light, the monomeric inactive CRYs undergo phosphorylation and oligomerization, which are crucial to CRY function. Both the N- and C-terminal domains of CRYs participate in light-induced interaction with multiple signaling proteins. These include the COP1/SPA E3 ubiquitin ligase, several transcription factors, hormone signaling intermediates and proteins involved in chromatin-remodeling and RNA N6 adenosine methylation. In this review, we discuss the mechanisms of Arabidopsis CRY signaling in photomorphogenesis and the recent breakthroughs in Arabidopsis CRY research.
Collapse
Affiliation(s)
| | - Ute Hoecker
- *Correspondence: Ute Hoecker, , orcid.org/0000-0002-5636-9777
| |
Collapse
|
21
|
Li C, Wang X, Zhang L, Zhang C, Yu C, Zhao T, Liu B, Li H, Liu J. OsBIC1 Directly Interacts with OsCRYs to Regulate Leaf Sheath Length through Mediating GA-Responsive Pathway. Int J Mol Sci 2021; 23:ijms23010287. [PMID: 35008710 PMCID: PMC8745657 DOI: 10.3390/ijms23010287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Cryptochrome 1 and 2 (CRY1 and CRY2) are blue light receptors involved in the regulation of hypocotyl elongation, cotyledon expansion, and flowering time in Arabidopsisthaliana. Two cryptochrome-interacting proteins, Blue-light Inhibitor of Cryptochrome 1 and 2 (BIC1 and BIC2), have been found in Arabidopsis. BIC1 plays critical roles in suppressing the physiological activities of CRY2, which include the blue light-dependent dimerization, phosphorylation, photobody formation, and degradation process, but the functional characterization of BIC protein in other crops has not yet been performed. To investigate the function of BIC protein in rice (Oryza sativa), two homologous genes of Arabidopsis BIC1 and BIC2, namely OsBIC1 and OsBIC2 (OsBICs), were identified. The overexpression of OsBIC1 and OsBIC2 led to increased leaf sheath length, whereas mutations in OsBIC1 displayed shorter leaf sheath in a blue light intensity-dependent manner. OsBIC1 regulated blue light-induced leaf sheath elongation through direct interaction with OsCRY1a, OsCRY1b, and OsCRY2 (OsCRYs). Longitudinal sections of the second leaf sheath demonstrated that OsBIC1 and OsCRYs controlled leaf sheath length by influencing the ratio of epidermal cells with different lengths. RNA-sequencing (RNA-seq) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) analysis further proved that OsBIC1 and OsCRYs regulated similar transcriptome changes in regulating Gibberellic Acids (GA)-responsive pathway. Taken together, these results suggested that OsBIC1 and OsCRYs worked together to regulate epidermal cell elongation and control blue light-induced leaf sheath elongation through the GA-responsive pathway.
Collapse
Affiliation(s)
- Cong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xin Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Liya Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Chunyu Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Chunsheng Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Tao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Hongyu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
- Correspondence: (H.L.); (J.L.)
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
- Correspondence: (H.L.); (J.L.)
| |
Collapse
|
22
|
Xu H, Chen P, Tao Y. Understanding the Shade Tolerance Responses Through Hints From Phytochrome A-Mediated Negative Feedback Regulation in Shade Avoiding Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:813092. [PMID: 35003197 PMCID: PMC8727698 DOI: 10.3389/fpls.2021.813092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Based on how plants respond to shade, we typically classify them into two groups: shade avoiding and shade tolerance plants. Under vegetative shade, the shade avoiding species induce a series of shade avoidance responses (SARs) to outgrow their competitors, while the shade tolerance species induce shade tolerance responses (STRs) to increase their survival rates under dense canopy. The molecular mechanism underlying the SARs has been extensively studied using the shade avoiding model plant Arabidopsis thaliana, while little is known about STRs. In Aarabidopsis, there is a PHYA-mediated negative feedback regulation that suppresses exaggerated SARs. Recent studies revealed that in shade tolerance Cardamine hirsuta plants, a hyperactive PHYA was responsible for suppressing shade-induced elongation growth. We propose that similar signaling components may be used by shade avoiding and shade tolerance plants, and different phenotypic outputs may result from differential regulation or altered dynamic properties of these signaling components. In this review, we summarized the role of PHYA and its downstream components in shade responses, which may provide insights into understanding how both types of plants respond to shade.
Collapse
Affiliation(s)
| | | | - Yi Tao
- Key Laboratory of Xiamen Plant Genetics and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
23
|
Lin F, Cao J, Yuan J, Liang Y, Li J. Integration of Light and Brassinosteroid Signaling during Seedling Establishment. Int J Mol Sci 2021; 22:12971. [PMID: 34884771 PMCID: PMC8657978 DOI: 10.3390/ijms222312971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 01/02/2023] Open
Abstract
Light and brassinosteroid (BR) are external stimuli and internal cue respectively, that both play critical roles in a wide range of developmental and physiological process. Seedlings grown in the light exhibit photomorphogenesis, while BR promotes seedling etiolation. Light and BR oppositely control the development switch from shotomorphogenesis in the dark to photomorphogenesis in the light. Recent progress report that substantial components have been identified as hubs to integrate light and BR signals. Photomorphogenic repressors including COP1, PIFs, and AGB1 have been reported to elevate BR response, while photomorphogenesis-promoting factors such as HY5, BZS1, and NF-YCs have been proven to repress BR signal. In addition, BR components also modulate light signal. Here, we review the current research on signaling network associated with light and brassinosteroids, with a focus on the integration of light and BR signals enabling plants to thrive in the changeable environment.
Collapse
Affiliation(s)
- Fang Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (J.Y.); (Y.L.); (J.L.)
| | | | | | | | | |
Collapse
|
24
|
Péter C, Nagy F, Viczián A. SUMOylation of different targets fine-tunes phytochrome signaling. THE NEW PHYTOLOGIST 2021; 232:1201-1211. [PMID: 34289130 DOI: 10.1111/nph.17634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Plants monitor their surrounding ambient light environment by specialized photoreceptor proteins. Among them, phytochromes monitor red and far-red light. These molecules perceive photons, undergo a conformational change, and regulate diverse light signaling pathways, resulting in the mediation of key developmental and growth responses throughout the whole life of plants. Posttranslational modifications of the photoreceptors and their signaling partners may modify their function. For example, the regulatory role of phosphorylation has been investigated for decades by using different methodological approaches. In the past few years, a set of studies revealed that ubiquitin-like short protein molecules, called small ubiquitin-like modifiers (SUMOs) are attached reversibly to different members of phytochrome signaling pathways, including phytochrome B, the dominant receptor of red light signaling. Furthermore, SUMO attachment modifies the action of the target proteins, leading to altered light signaling and photomorphogenesis. This review summarizes recent results regarding SUMOylation of various target proteins, the regulation of their SUMOylation level, and the physiological consequences of SUMO attachment. Potential future research directions are also discussed.
Collapse
Affiliation(s)
- Csaba Péter
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, H-6726, Hungary
| | - Ferenc Nagy
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| | - András Viczián
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| |
Collapse
|
25
|
Sepulveda-Garcia E, Fulton EC, Parlan EV, O’Connor LE, Fleming AA, Replogle AJ, Rocha-Sosa M, Gendron JM, Thines B. Unique N-Terminal Interactions Connect F-BOX STRESS INDUCED (FBS) Proteins to a WD40 Repeat-like Protein Pathway in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2021; 10:2228. [PMID: 34686037 PMCID: PMC8537223 DOI: 10.3390/plants10102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022]
Abstract
SCF-type E3 ubiquitin ligases provide specificity to numerous selective protein degradation events in plants, including those that enable survival under environmental stress. SCF complexes use F-box (FBX) proteins as interchangeable substrate adaptors to recruit protein targets for ubiquitylation. FBX proteins almost universally have structure with two domains: A conserved N-terminal F-box domain interacts with a SKP protein and connects the FBX protein to the core SCF complex, while a C-terminal domain interacts with the protein target and facilitates recruitment. The F-BOX STRESS INDUCED (FBS) subfamily of plant FBX proteins has an atypical structure, however, with a centrally located F-box domain and additional conserved regions at both the N- and C-termini. FBS proteins have been linked to environmental stress networks, but no ubiquitylation target(s) or biological function has been established for this subfamily. We have identified two WD40 repeat-like proteins in Arabidopsis that are highly conserved in plants and interact with FBS proteins, which we have named FBS INTERACTING PROTEINs (FBIPs). FBIPs interact exclusively with the N-terminus of FBS proteins, and this interaction occurs in the nucleus. FBS1 destabilizes FBIP1, consistent with FBIPs being ubiquitylation targets SCFFBS1 complexes. This work indicates that FBS proteins may function in stress-responsive nuclear events, and it identifies two WD40 repeat-like proteins as new tools with which to probe how an atypical SCF complex, SCFFBS, functions via FBX protein N-terminal interaction events.
Collapse
Affiliation(s)
- Edgar Sepulveda-Garcia
- Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec 68301, Mexico;
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Mexico;
| | - Elena C. Fulton
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA; (E.C.F.); (E.V.P.); (L.E.O.); (A.A.F.); (A.J.R.)
| | - Emily V. Parlan
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA; (E.C.F.); (E.V.P.); (L.E.O.); (A.A.F.); (A.J.R.)
| | - Lily E. O’Connor
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA; (E.C.F.); (E.V.P.); (L.E.O.); (A.A.F.); (A.J.R.)
| | - Anneke A. Fleming
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA; (E.C.F.); (E.V.P.); (L.E.O.); (A.A.F.); (A.J.R.)
| | - Amy J. Replogle
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA; (E.C.F.); (E.V.P.); (L.E.O.); (A.A.F.); (A.J.R.)
| | - Mario Rocha-Sosa
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Mexico;
| | - Joshua M. Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA;
| | - Bryan Thines
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA; (E.C.F.); (E.V.P.); (L.E.O.); (A.A.F.); (A.J.R.)
| |
Collapse
|
26
|
Kerner K, Nagano S, Lübbe A, Hoecker U. Functional comparison of the WD-repeat domains of SPA1 and COP1 in suppression of photomorphogenesis. PLANT, CELL & ENVIRONMENT 2021; 44:3273-3282. [PMID: 34251043 DOI: 10.1111/pce.14148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The Arabidopsis COP1/SPA complex acts as a cullin4-based E3 ubiquitin ligase to suppress photomorphogenesis in darkness. It is a tetrameric complex of two COP1 and two SPA proteins. Both COP1 and SPA are essential for the activity of this complex, and they both contain a C-terminal WD-repeat domain responsible for substrate recruitment and binding of DDB1. Here, we used a WD domain swap-approach to address the cooperativity of COP1 and SPA proteins. We found that expression of a chimeric COP1 carrying the WD-repeat domain of SPA1 mostly complemented the cop1-4-mutant phenotype in darkness, indicating that the WD repeat of SPA1 can replace the WD repeat of COP1. In the light, SPA1-WD partially substituted for COP1-WD. In contrast, expression of a chimeric SPA1 protein carrying the WD repeat of COP1 did not rescue the spa-mutant phenotype. Together, our findings demonstrate that a SPA1-type WD repeat is essential for COP1/SPA activity, while a COP1-type WD is in part dispensible. Moreover, a complex with four SPA1-WDs is more active than a complex with only two SPA1-WDs. A homology model of SPA1-WD based on the crystal structure of COP1-WD uncovered two insertions and several amino acid substitutions at the predicted substrate-binding pocket of SPA1-WD.
Collapse
Affiliation(s)
- Konstantin Kerner
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Soshichiro Nagano
- Institute for Plant Physiology, Justus Liebig-University Gießen, Gießen, Germany
| | - Annika Lübbe
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| |
Collapse
|
27
|
Schenk T, Trimborn L, Chen S, Schenkel C, Hoecker U. Light-induced degradation of SPA2 via its N-terminal kinase domain is required for photomorphogenesis. PLANT PHYSIOLOGY 2021; 187:276-288. [PMID: 33822236 PMCID: PMC8418447 DOI: 10.1093/plphys/kiab156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and members of the SUPPRESSOR OF PHYTOCHROMEA-105 (SPA) protein family form an E3 ubiquitin ligase that suppresses light signaling in darkness by polyubiquitinating positive regulators of the light response. COP1/SPA is inactivated by light to allow photomorphogenesis to proceed. Mechanisms of inactivation include light-induced degradation of SPA1 and, in particular, SPA2, corresponding to a particularly efficient inactivation of COP1/SPA2 by light. Here, we show that SPA3 and SPA4 proteins are stable in the light, indicating that light-induced destabilization is specific to SPA1 and SPA2, possibly related to the predominant function of SPA1 and SPA2 in dark-grown etiolating seedlings. SPA2 degradation involves cullin and the COP10-DEETIOLATED-DAMAGED-DNA BINDING PROTEIN (DDB1) CDD complex, besides COP1. Consistent with this finding, light-induced SPA2 degradation required the DDB1-interacting Trp-Asp (WD)-repeat domain of SPA2. Deletion of the N-terminus of SPA2 containing the kinase domain led to strong stabilization of SPA2 in darkness and fully abolished light-induced degradation of SPA2. This prevented seedling de-etiolation even in very strong far-red and blue light and reduced de-etiolation in red light, indicating destabilization of SPA2 through its N-terminal domain is essential for light response. SPA2 is exclusively destabilized by phytochrome A in far-red and blue light. However, deletion of the N-terminal domain of SPA2 did not abolish SPA2-phytochrome A interaction in yeast nor in vivo. Our domain mapping suggests there are two SPA2-phytochrome A interacting domains, the N-terminal domain and the WD-repeat domain. Conferring a light-induced SPA2-phyA interaction only via the WD-repeat domain may thus not lead to COP1/SPA2 inactivation.
Collapse
Affiliation(s)
- Tobias Schenk
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, Cologne 50674, Germany
| | - Laura Trimborn
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, Cologne 50674, Germany
| | - Song Chen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, Cologne 50674, Germany
| | - Christian Schenkel
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, Cologne 50674, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, Cologne 50674, Germany
| |
Collapse
|
28
|
Abstract
The perception of light signals by the phytochrome family of photoreceptors has a crucial influence on almost all aspects of growth and development throughout a plant's life cycle. The holistic regulatory networks orchestrated by phytochromes, including conformational switching, subcellular localization, direct protein-protein interactions, transcriptional and posttranscriptional regulations, and translational and posttranslational controls to promote photomorphogenesis, are highly coordinated and regulated at multiple levels. During the past decade, advances using innovative approaches have substantially broadened our understanding of the sophisticated mechanisms underlying the phytochrome-mediated light signaling pathways. This review discusses and summarizes these discoveries of the role of the modular structure of phytochromes, phytochrome-interacting proteins, and their functions; the reciprocal modulation of both positive and negative regulators in phytochrome signaling; the regulatory roles of phytochromes in transcriptional activities, alternative splicing, and translational regulation; and the kinases and E3 ligases that modulate PHYTOCHROME INTERACTING FACTORs to optimize photomorphogenesis.
Collapse
Affiliation(s)
- Mei-Chun Cheng
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Praveen Kumar Kathare
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Inyup Paik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Enamul Huq
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
29
|
Cañibano E, Bourbousse C, García-León M, Garnelo Gómez B, Wolff L, García-Baudino C, Lozano-Durán R, Barneche F, Rubio V, Fonseca S. DET1-mediated COP1 regulation avoids HY5 activity over second-site gene targets to tune plant photomorphogenesis. MOLECULAR PLANT 2021; 14:963-982. [PMID: 33711490 DOI: 10.1101/2020.09.30.318253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 05/23/2023]
Abstract
DE-ETIOLATED 1 (DET1) and CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) are two essential repressors of Arabidopsis photomorphogenesis. These proteins can associate with CULLIN4 to form independent CRL4-based E3 ubiquitin ligases that mediate the degradation of several photomorphogenic transcription factors, including ELONGATED HYPOCOTYL 5 (HY5), thereby controlling multiple gene-regulatory networks. Despite extensive biochemical and genetic analyses of their multi-subunit complexes, the functional links between DET1 and COP1 have long remained elusive. Here, we report that DET1 associates with COP1 in vivo, enhances COP1-HY5 interaction, and promotes COP1 destabilization in a process that dampens HY5 protein abundance. By regulating its accumulation, DET1 avoids HY5 association with hundreds of second-site genomic loci, which are also frequently targeted by the skotomorphogenic transcription factor PHYTOCHROME-INTERACTING FACTOR 3. Accordingly, ectopic HY5 chromatin enrichment favors local gene repression and can trigger fusca-like phenotypes. This study therefore shows that DET1-mediated regulation of COP1 stability tunes down the HY5 cistrome, avoiding hyper-photomorphogenic responses that might compromise plant viability.
Collapse
Affiliation(s)
- Esther Cañibano
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid 28049, Spain
| | - Clara Bourbousse
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | | | - Borja Garnelo Gómez
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Léa Wolff
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | | | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, 72076 Tübingen, Germany
| | - Fredy Barneche
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | - Vicente Rubio
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid 28049, Spain.
| | - Sandra Fonseca
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid 28049, Spain.
| |
Collapse
|
30
|
Das S, Garhwal V, Gangappa SN. DET1 regulates HY5 through COP1: A new paradigm in the regulation of HY5. MOLECULAR PLANT 2021; 14:864-866. [PMID: 34048951 DOI: 10.1016/j.molp.2021.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Sreya Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Vikas Garhwal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Sreeramaiah N Gangappa
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
31
|
Cañibano E, Bourbousse C, García-León M, Garnelo Gómez B, Wolff L, García-Baudino C, Lozano-Durán R, Barneche F, Rubio V, Fonseca S. DET1-mediated COP1 regulation avoids HY5 activity over second-site gene targets to tune plant photomorphogenesis. MOLECULAR PLANT 2021; 14:963-982. [PMID: 33711490 DOI: 10.1016/j.molp.2021.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 05/14/2023]
Abstract
DE-ETIOLATED 1 (DET1) and CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) are two essential repressors of Arabidopsis photomorphogenesis. These proteins can associate with CULLIN4 to form independent CRL4-based E3 ubiquitin ligases that mediate the degradation of several photomorphogenic transcription factors, including ELONGATED HYPOCOTYL 5 (HY5), thereby controlling multiple gene-regulatory networks. Despite extensive biochemical and genetic analyses of their multi-subunit complexes, the functional links between DET1 and COP1 have long remained elusive. Here, we report that DET1 associates with COP1 in vivo, enhances COP1-HY5 interaction, and promotes COP1 destabilization in a process that dampens HY5 protein abundance. By regulating its accumulation, DET1 avoids HY5 association with hundreds of second-site genomic loci, which are also frequently targeted by the skotomorphogenic transcription factor PHYTOCHROME-INTERACTING FACTOR 3. Accordingly, ectopic HY5 chromatin enrichment favors local gene repression and can trigger fusca-like phenotypes. This study therefore shows that DET1-mediated regulation of COP1 stability tunes down the HY5 cistrome, avoiding hyper-photomorphogenic responses that might compromise plant viability.
Collapse
Affiliation(s)
- Esther Cañibano
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid 28049, Spain
| | - Clara Bourbousse
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | | | - Borja Garnelo Gómez
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Léa Wolff
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | | | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, 72076 Tübingen, Germany
| | - Fredy Barneche
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | - Vicente Rubio
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid 28049, Spain.
| | - Sandra Fonseca
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid 28049, Spain.
| |
Collapse
|
32
|
Liu Z, Li W, Zhai X, Li X. Combination of precooling with ozone fumigation or low fluctuation of temperature for the quality modifications of postharvest sweet cherries. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ziyun Liu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology Tianjin University of Science and Technology Tianjin China
| | - Wenhan Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology Tianjin University of Science and Technology Tianjin China
| | - Xuqing Zhai
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology Tianjin University of Science and Technology Tianjin China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology Tianjin University of Science and Technology Tianjin China
| |
Collapse
|
33
|
Zhao X, Zeng X, Lin N, Yu S, Fernie AR, Zhao J. CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator-repressor network. HORTICULTURE RESEARCH 2021; 8:110. [PMID: 33931627 PMCID: PMC8087823 DOI: 10.1038/s41438-021-00545-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 05/02/2023]
Abstract
Under high light conditions or UV radiation, tea plant leaves produce more flavonols, which contribute to the bitter taste of tea; however, neither the flavonol biosynthesis pathways nor the regulation of their production are well understood. Intriguingly, tea leaf flavonols are enhanced by UV-B but reduced by shading treatment. CsFLS, CsUGT78A14, CsMYB12, and CsbZIP1 were upregulated by UV-B radiation and downregulated by shading. CsMYB12 and CsbZIP1 bound to the promoters of CsFLS and CsUGT78A14, respectively, and activated their expression individually. CsbZIP1 positively regulated CsMYB12 and interacted with CsMYB12, which specifically activated flavonol biosynthesis. Meanwhile, CsPIF3 and two MYB repressor genes, CsMYB4 and CsMYB7, displayed expression patterns opposite to that of CsMYB12. CsMYB4 and CsMYB7 bound to CsFLS and CsUGT78A14 and repressed their CsMYB12-activated expression. While CsbZIP1 and CsMYB12 regulated neither CsMYB4 nor CsMYB7, CsMYB12 interacted with CsbZIP1, CsMYB4, and CsMYB7, but CsbZIP1 did not physically interact with CsMYB4 or CsMYB7. Finally, CsPIF3 bound to and activated CsMYB7 under shading to repress flavonol biosynthesis. These combined results suggest that UV activation and shading repression of flavonol biosynthesis in tea leaves are coordinated through a complex network involving CsbZIP1 and CsPIF3 as positive MYB activators and negative MYB repressors, respectively. The study thus provides insight into the regulatory mechanism underlying the production of bitter-tasting flavonols in tea plants.
Collapse
Affiliation(s)
- Xuecheng Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Xiangsheng Zeng
- College of Agronomy, Anhui Agricultural University, 230036, Hefei, China
| | - Ning Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Shuwei Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China.
| |
Collapse
|
34
|
Iqbal Z, Iqbal MS, Hashem A, Abd_Allah EF, Ansari MI. Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:631810. [PMID: 33763093 PMCID: PMC7982811 DOI: 10.3389/fpls.2021.631810] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 05/24/2023]
Abstract
Plants are subjected to a plethora of environmental cues that cause extreme losses to crop productivity. Due to fluctuating environmental conditions, plants encounter difficulties in attaining full genetic potential for growth and reproduction. One such environmental condition is the recurrent attack on plants by herbivores and microbial pathogens. To surmount such attacks, plants have developed a complex array of defense mechanisms. The defense mechanism can be either preformed, where toxic secondary metabolites are stored; or can be inducible, where defense is activated upon detection of an attack. Plants sense biotic stress conditions, activate the regulatory or transcriptional machinery, and eventually generate an appropriate response. Plant defense against pathogen attack is well understood, but the interplay and impact of different signals to generate defense responses against biotic stress still remain elusive. The impact of light and dark signals on biotic stress response is one such area to comprehend. Light and dark alterations not only regulate defense mechanisms impacting plant development and biochemistry but also bestow resistance against invading pathogens. The interaction between plant defense and dark/light environment activates a signaling cascade. This signaling cascade acts as a connecting link between perception of biotic stress, dark/light environment, and generation of an appropriate physiological or biochemical response. The present review highlights molecular responses arising from dark/light fluctuations vis-à-vis elicitation of defense mechanisms in plants.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
35
|
Li H, Ye W, Wang Y, Chen X, Fang Y, Sun G. RNA sequencing-based exploration of the effects of far-red light on lncRNAs involved in the shade-avoidance response of D. officinale. PeerJ 2021; 9:e10769. [PMID: 33614278 PMCID: PMC7883695 DOI: 10.7717/peerj.10769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/22/2020] [Indexed: 12/05/2022] Open
Abstract
Dendrobium officinale (D. officinale) is a valuable medicinal plant with a low natural survival rate, and its shade-avoidance response to far-red light is as an important strategy used by the plant to improve its production efficiency. However, the lncRNAs that play roles in the shade-avoidance response of D. officinale have not yet been investigated. This study found that an appropriate proportion of far-red light can have several effects, including increasing the leaf area and accelerating stem elongation, in D. officinale. The effects of different far-red light treatments on D. officinale were analysed by RNA sequencing technology, and a total of 69 and 78 lncRNAs were differentially expressed in experimental group 1 (FR1) versus the control group (CK) (FR1-CK) and in experimental group 4 (FR4) versus the CK (FR4-CK), respectively. According to GO and KEGG analyses, most of the differentially expressed lncRNA targets are involved in the membrane, some metabolic pathways, hormone signal transduction, and O-methyltransferase activity, among other functions. Physiological and biochemical analyses showed that far-red light promoted the accumulation of flavonoids, alkaloids, carotenoids and polysaccharides in D. officinale. The effect of far-red light on D. officinalemight be closely related to the cell membrane and Ca2+ transduction. Based on a Cytoscape analysis and previous research, this study also found that MSTRG.38867.1, MSTRG.69319.1, and MSTRG.66273.1, among other components, might participate in the far-red light signalling network through their targets and thus regulate the shade-avoidance response of D. officinale. These findings will provide new insights into the shade-avoidance response of D. officinale.
Collapse
Affiliation(s)
- Hansheng Li
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Wei Ye
- The Institute of Medicinal Plant, Sanming Academy of Agricultural Science, Shaxian, China
| | - Yaqian Wang
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Fang
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Gang Sun
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| |
Collapse
|
36
|
Kang H, Zhang TT, Fu LL, Yao YX, You CX, Wang XF, Hao YJ. The apple MdCOP1-interacting protein 1 negatively regulates hypocotyl elongation and anthocyanin biosynthesis. BMC PLANT BIOLOGY 2021; 21:15. [PMID: 33407118 PMCID: PMC7789773 DOI: 10.1186/s12870-020-02789-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/08/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND In plants, CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is a key negative regulator in photoperiod response. However, the biological function of COP1-interacting protein 1 (CIP1) and the regulatory mechanism of the CIP1-COP1 interaction are not fully understood. RESULTS Here, we identified the apple MdCIP1 gene based on the Arabidopsis AtCIP1 gene. Expression pattern analysis showed that MdCIP1 was constitutively expressed in various tissues of apple, and responded to stress and hormone signals at the transcriptional level. Ectopic expression of MdCIP1 complemented the phenotypes of the Arabidopsis cip1 mutant, and MdCIP1 inhibited anthocyanin biosynthesis in apple calli. In addition, the biochemical assay demonstrated that MdCIP1 could interact with MdCOP1 protein by their coiled-coil domain, and MdCIP1-OX/cop1-4 had a similar phenotype in photomorphogenesis with the cop1-4 mutant, suggesting that COP1 is epistatic to CIP1. Furthermore, the transient transformation assay indicated that MdCIP1 repressed anthocyanin biosynthesis in an MdCOP1-mediated pathway. CONCLUSION Take together, this study finds that MdCIP1 acts as a repressor in regulating hypocotyl elongation and anthocyanin biosynthesis through MdCOP1 in apple.
Collapse
Affiliation(s)
- Hui Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yang-Ling, 712100, Shaanxi, China
| | - Ting-Ting Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lu-Lu Fu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yu-Xin Yao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
37
|
Zhang J, He S. Co-immunoprecipitation Assay for Blue Light-Dependent Protein Interactions in Plants. Methods Mol Biol 2021; 2297:141-146. [PMID: 33656677 DOI: 10.1007/978-1-0716-1370-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Co-immunoprecipitation (CoIP) assay has been used as a powerful and routine technique to detect in vivo protein-protein interactions. Not only can it probe stable interactions, but also it is applicable for semiquantitative and inducible protein associations. Here we describe the protocol for detecting blue light-dependent protein interactions, particularly for blue light receptor cryptochrome-mediated complex formation. In addition, we present some notes which may be helpful for common Co-IP study as well.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Shengbo He
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK.
| |
Collapse
|
38
|
Ponnu J, Hoecker U. Illuminating the COP1/SPA Ubiquitin Ligase: Fresh Insights Into Its Structure and Functions During Plant Photomorphogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:662793. [PMID: 33841486 PMCID: PMC8024647 DOI: 10.3389/fpls.2021.662793] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 05/07/2023]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 functions as an E3 ubiquitin ligase in plants and animals. Discovered originally in Arabidopsis thaliana, COP1 acts in a complex with SPA proteins as a central repressor of light-mediated responses in plants. By ubiquitinating and promoting the degradation of several substrates, COP1/SPA regulates many aspects of plant growth, development and metabolism. In contrast to plants, human COP1 acts as a crucial regulator of tumorigenesis. In this review, we discuss the recent important findings in COP1/SPA research including a brief comparison between COP1 activity in plants and humans.
Collapse
|
39
|
Favero DS, Lambolez A, Sugimoto K. Molecular pathways regulating elongation of aerial plant organs: a focus on light, the circadian clock, and temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:392-420. [PMID: 32986276 DOI: 10.1111/tpj.14996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Organs such as hypocotyls and petioles rapidly elongate in response to shade and temperature cues, contributing to adaptive responses that improve plant fitness. Growth plasticity in these organs is achieved through a complex network of molecular signals. Besides conveying information from the environment, this signaling network also transduces internal signals, such as those associated with the circadian clock. A number of studies performed in Arabidopsis hypocotyls, and to a lesser degree in petioles, have been informative for understanding the signaling networks that regulate elongation of aerial plant organs. In particular, substantial progress has been made towards understanding the molecular mechanisms that regulate responses to light, the circadian clock, and temperature. Signals derived from these three stimuli converge on the BAP module, a set of three different types of transcription factors that interdependently promote gene transcription and growth. Additional key positive regulators of growth that are also affected by environmental cues include the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYA-105 (SPA) E3 ubiquitin ligase proteins. In this review we summarize the key signaling pathways that regulate the growth of hypocotyls and petioles, focusing specifically on molecular mechanisms important for transducing signals derived from light, the circadian clock, and temperature. While it is clear that similarities abound between the signaling networks at play in these two organs, there are also important differences between the mechanisms regulating growth in hypocotyls and petioles.
Collapse
Affiliation(s)
- David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Alice Lambolez
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| |
Collapse
|
40
|
Zhang J, He S. Tobacco System for Studying Protein Colocalization and Interactions. Methods Mol Biol 2021; 2297:167-174. [PMID: 33656681 DOI: 10.1007/978-1-0716-1370-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transient protein expression in a heterologous system has been very useful in many research fields. As a plant expression system, tobacco has some unique advantages including big leaves, simple infiltration and transformation, high activity in expressing transgenes, and easy sampling for microscopy. Because of these advantages, tobacco system has been extensively used for many purposes, such as large-scale expression and purification of proteins of interest, protein colocalization, protein degradation, protein-protein interaction assays including co-immunoprecipitation (CoIP), fluorescence resonance energy transfer (FRET), and bimolecular fluorescence complementation (BiFC), transcription regulation, plant-pathogen interactions, and functional verification of small RNAs. A large number of publications have used this system and generated critical results to support their conclusions. The results obtained from tobacco system are highly reproducible and mostly consistent with those generated from traditional techniques, indicating its reliability. Here we describe a protocol for studying protein-protein interactions in tobacco system, which could be applied to multiple experimental purposes as the procedure of tobacco leaf infiltration is basically shared among them.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Shengbo He
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK.
| |
Collapse
|
41
|
Song B, Zhao H, Dong K, Wang M, Wu S, Li S, Wang Y, Chen P, Jiang L, Tao Y. Phytochrome A inhibits shade avoidance responses under strong shade through repressing the brassinosteroid pathway in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1520-1534. [PMID: 33037720 DOI: 10.1111/tpj.15018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
In dense canopy, a reduction in red to far-red (R/FR) light ratio triggers shade avoidance responses (SARs) in Arabidopsis thaliana, a shade avoiding plant. Two red/far-red (R/FR) light photoreceptors, PHYB and PHYA, were reported to be key negative regulators of the SARs. PHYB represses the SARs under normal light conditions; however, the role of PHYA in the SARs remains elusive. We set up two shade conditions: Shade and strong Shade (s-Shade) with different R/FR ratios (0.7 and 0.1), which allowed us to observe phenotypes dominated by PHYB- and PHYA-mediated pathway, respectively. By comparing the hypocotyl growth under these two conditions with time, we found PHYA was predominantly activated in the s-Shade after prolonged shade treatment. We further showed that under s-Shade, PHYA inhibits hypocotyl elongation partially through repressing the brassinosteroid (BR) pathway. COP1 and PIF4,5 act downstream of PHYA. After prolonged shade treatment, the nuclear localization of COP1 was reduced, while the PIF4 protein level was much lower in the s-Shade than that in Shade. Both changes occurred in a PHYA-dependent manner. We propose that under deep canopy, the R/FR ratio is extremely low, which promotes the nuclear accumulation of PHYA. Activated PHYA reduces COP1 nuclear speckle, which may lead to changes of downstream targets, such as PIF4,5 and HY5. Together, these proteins regulate the BR pathway through modulating BES1/BZR1 and the expression of BR biosynthesis and BR target genes.
Collapse
Affiliation(s)
- Bin Song
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Hongli Zhao
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Kangmei Dong
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Meiling Wang
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Shujuan Wu
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Si Li
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yuxiang Wang
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Peirui Chen
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Liangrong Jiang
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yi Tao
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| |
Collapse
|
42
|
Zhu W, Zhou H, Lin F, Zhao X, Jiang Y, Xu D, Deng XW. COLD-REGULATED GENE27 Integrates Signals from Light and the Circadian Clock to Promote Hypocotyl Growth in Arabidopsis. THE PLANT CELL 2020; 32:3155-3169. [PMID: 32732313 PMCID: PMC7534470 DOI: 10.1105/tpc.20.00192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 05/20/2023]
Abstract
Light and the circadian clock are two essential external and internal cues affecting seedling development. COLD-REGULATED GENE27 (COR27), which is regulated by cold temperatures and light signals, functions as a key regulator of the circadian clock. Here, we report that COR27 acts as a negative regulator of light signaling. COR27 physically interacts with the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-SUPPRESSOR OF PHYTOCHROME A1 (SPA1) E3 ubiquitin ligase complex and undergoes COP1-mediated degradation via the 26S proteasome system in the dark. cor27 mutant seedlings exhibit shorter hypocotyls, while transgenic lines overexpressing COR27 show elongated hypocotyls in the light. In addition, light induces the accumulation of COR27. On one hand, accumulated COR27 interacts with ELONGATED HYPOCOTYL5 (HY5) to repress HY5 DNA binding activity. On the other hand, COR27 associates with the chromatin at the PHYTOCHROME INTERACTING FACTOR4 (PIF4) promoter region and upregulates PIF4 expression in a circadian clock-dependent manner. Together, our findings reveal a mechanistic framework whereby COR27 represses photomorphogenesis in the light and provide insights toward how light and the circadian clock synergistically control hypocotyl growth.
Collapse
Affiliation(s)
- Wei Zhu
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hua Zhou
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fang Lin
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xianhai Zhao
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Jiang
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Wang Deng
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
43
|
Zhao X, Heng Y, Wang X, Deng XW, Xu D. A Positive Feedback Loop of BBX11-BBX21-HY5 Promotes Photomorphogenic Development in Arabidopsis. PLANT COMMUNICATIONS 2020; 1:100045. [PMID: 33367254 PMCID: PMC7747993 DOI: 10.1016/j.xplc.2020.100045] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/02/2020] [Accepted: 04/10/2020] [Indexed: 05/05/2023]
Abstract
Light is the most important environmental factor affecting many aspects of plant development. In this study, we report that B-box protein 11 (BBX11) acts as a positive regulator of red light signaling. BBX11 loss-of-function mutant seedlings display significantly elongated hypocotyls under conditions of both red light and long day, whereas BBX11 overexpression causes markedly shortened hypocotyls under various light states. BBX11 binds to the HY5 promoter to activate its transcription, while both BBX21 and HY5 associate with the promoter of BBX11 to positively regulate its expression. Taken together, our results reveal positive feedback regulation of photomorphogenesis consisting of BBX11, BBX21, and HY5, thus substantiating a transcriptional regulatory mechanism in the response of plants to light during normal development.
Collapse
Affiliation(s)
- Xianhai Zhao
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yueqin Heng
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuncheng Wang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
44
|
Yang L, Liu S, Lin R. The role of light in regulating seed dormancy and germination. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1310-1326. [PMID: 32729981 DOI: 10.1111/jipb.13001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/29/2020] [Indexed: 05/22/2023]
Abstract
Seed dormancy is an adaptive trait in plants. Breaking seed dormancy determines the timing of germination and is, thereby essential for ensuring plant survival and agricultural production. Seed dormancy and the subsequent germination are controlled by both internal cues (mainly hormones) and environmental signals. In the past few years, the roles of plant hormones in regulating seed dormancy and germination have been uncovered. However, we are only beginning to understand how light signaling pathways modulate seed dormancy and interaction with endogenous hormones. In this review, we summarize current views of the molecular mechanisms by which light controls the induction, maintenance and release of seed dormancy, as well as seed germination, by regulating hormone metabolism and signaling pathways.
Collapse
Affiliation(s)
- Liwen Yang
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuangrong Liu
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
45
|
Kathare PK, Xu X, Nguyen A, Huq E. A COP1-PIF-HEC regulatory module fine-tunes photomorphogenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:113-123. [PMID: 32652745 PMCID: PMC7959245 DOI: 10.1111/tpj.14908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/30/2020] [Accepted: 06/22/2020] [Indexed: 05/23/2023]
Abstract
Light responses mediated by the photoreceptors play crucial roles in regulating different aspects of plant growth and development. An E3 ubiquitin ligase complex CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)1/SUPPRESSOR OF PHYA (SPA), one of the central repressors of photomorphogenesis, is critical for maintaining skotomorphogenesis. It targets several positive regulators of photomorphogenesis for degradation in darkness. Recently, we revealed that basic helix-loop-helix factors, HECATEs (HECs), function as positive regulators of photomorphogenesis by directly interacting and antagonizing the activity of another group of repressors called PHYTOCHROME-INTERACTING FACTORs (PIFs). It was also shown that HECs are partially degraded in the dark through the ubiquitin/26S proteasome pathway. However, the underlying mechanism of HEC degradation in the dark is still unclear. Here, we show that HECs also interact with both COP1 and SPA proteins in darkness, and that HEC2 is directly targeted by COP1 for degradation via the ubiquitin/26S proteasome pathway. Moreover, COP1-mediated polyubiquitylation and degradation of HEC2 are enhanced by PIF1. Therefore, the ubiquitylation and subsequent degradation of HECs are significantly reduced in both cop1 and pif mutants. Consistent with this, the hec mutants partially suppress photomorphogenic phenotypes of both cop1 and pifQ mutants. Collectively, our work reveals that the COP1/SPA-mediated ubiquitylation and degradation of HECs contributes to the coordination of skoto/photomorphogenic development in plants.
Collapse
Affiliation(s)
| | | | | | - Enamul Huq
- Corresponding author: Enamul Huq, University of Texas at Austin, NHB 2.616, Stop A5000, 100 E. 24 St., Austin, TX 78712. Tel: 512-471-9848, Fax: 512-471-1218,
| |
Collapse
|
46
|
Sun YB, Zhang XJ, Zhong MC, Dong X, Yu DM, Jiang XD, Wang D, Cui WH, Chen JH, Hu JY. Genome-wide identification of WD40 genes reveals a functional diversification of COP1-like genes in Rosaceae. PLANT MOLECULAR BIOLOGY 2020; 104:81-95. [PMID: 32621166 DOI: 10.1007/s11103-020-01026-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Genome-wide identification of WD40-like genes reveals a duplication of COP1-like genes, one of the key players involved in regulation of flowering time and photomorphogenesis, with strong functional diversification in Rosaceae. WD40 proteins play crucial roles in a broad spectrum of developmental and physiological processes. Here, we conducted a systematic characterization of this family of genes in Rosa chinensis 'Old Blush' (OB), a founder genotype for modern rose domestication. We identified 187 rose WD40 genes and classified them into 5 clusters and 15 subfamilies with 11 of RcWD40s presumably generated via tandem duplication. We found RcWD40 genes were expressed differentially following stages of vegetative and reproductive development. We detected a duplication of CONSTITUTIVE PHOTOMORPHOGENIC1-like genes in rose (RcCOP1 and RcCOP1L) and other Rosaceae plants. Featuring a distinct expression pattern and a different profile of cis-regulatory-elements in the transcriptional regulatory regions, RcCOP1 seemed being evolutionarily conserved while RcCOP1L did not dimerize with RcHY5 and RcSPA4. Our data thus reveals a functional diversification of COP1-like genes in Rosacaeae plants, and provides a valuable resource to explore the potential function and evolution of WD40-like genes in Rosaceae plants.
Collapse
Affiliation(s)
- Yi-Bo Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Jia Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, 650223, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong-Mei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Hua Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang-Hua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, 650223, Yunnan, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
47
|
Linden KJ, Callis J. The ubiquitin system affects agronomic plant traits. J Biol Chem 2020; 295:13940-13955. [PMID: 32796036 DOI: 10.1074/jbc.rev120.011303] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
In a single vascular plant species, the ubiquitin system consists of thousands of different proteins involved in attaching ubiquitin to substrates, recognizing or processing ubiquitinated proteins, or constituting or regulating the 26S proteasome. The ubiquitin system affects plant health, reproduction, and responses to the environment, processes that impact important agronomic traits. Here we summarize three agronomic traits influenced by ubiquitination: induction of flowering, seed size, and pathogen responses. Specifically, we review how the ubiquitin system affects expression of genes or abundance of proteins important for determining when a plant flowers (focusing on FLOWERING LOCUS C, FRIGIDA, and CONSTANS), highlight some recent studies on how seed size is affected by the ubiquitin system, and discuss how the ubiquitin system affects proteins involved in pathogen or effector recognition with details of recent studies on FLAGELLIN SENSING 2 and SUPPRESSOR OF NPR CONSTITUTIVE 1, respectively, as examples. Finally, we discuss the effects of pathogen-derived proteins on plant host ubiquitin system proteins. Further understanding of the molecular basis of the above processes could identify possible genes for modification or selection for crop improvement.
Collapse
Affiliation(s)
- Katrina J Linden
- Department of Molecular and Cellular Biology and the Integrative Genetics and Genomics Graduate Group, University of California, Davis, California, USA
| | - Judy Callis
- Department of Molecular and Cellular Biology and the Integrative Genetics and Genomics Graduate Group, University of California, Davis, California, USA.
| |
Collapse
|
48
|
Wang M, Dai W, Ke Z, Li Y. Functional roles of E3 ubiquitin ligases in gastric cancer. Oncol Lett 2020; 20:22. [PMID: 32774495 PMCID: PMC7405480 DOI: 10.3892/ol.2020.11883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
To date, >650 E3 ubiquitin ligases have been described in humans, including >600 really interesting new genes (RINGs), 28 homologous to E6-associated protein C-terminus (HECTs) and several RING-in-between-RINGs. They are considered key regulators and therapeutic targets of many types of human cancers, including gastric cancer (GC). Among them, some RING and HECT E3 ligases are closely related to the proliferation, infiltration and prognosis of GC. During the past few years, abnormal expressions and functions of many E3 ligases have been identified in GC. However, the functional roles of E3 ligases in GC have not been fully elucidated. The present article focuses on the functional roles of E3 ligases related to the proteasome in GC. In this comprehensive review, the latest research progress on E3 ligases involved in GC and elaborate their structure, classification, functional roles and therapeutic value in GC was summarized. Finally, 30 E3 ligases that serve essential roles in regulating the development of GC were described. Some of these ligases may serve as oncogenes or tumor suppressors in GC, whereas the pathological mechanism of others needs further study; for example, constitutive photomorphogenic 1. In conclusion, the present review demonstrated that E3 ligases are crucial tumor regulatory factors and potential therapeutic targets in GC. Therefore, more studies should focus on the therapeutic targeting of E3 ligases in GC.
Collapse
Affiliation(s)
- Mingliang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei Dai
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhangyan Ke
- Department of Geriatric Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
49
|
Pham VN, Paik I, Hoecker U, Huq E. Genomic evidence reveals SPA-regulated developmental and metabolic pathways in dark-grown Arabidopsis seedlings. PHYSIOLOGIA PLANTARUM 2020; 169:380-396. [PMID: 32187694 PMCID: PMC8630753 DOI: 10.1111/ppl.13095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 05/30/2023]
Abstract
Photomorphogenesis is repressed in the dark mainly by an E3 ubiquitin ligase complex comprising CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and four homologous proteins called SUPPRESSOR OF PHYA-105 (SPA1-SPA4) in Arabidopsis. This complex induces the ubiquitination and subsequent degradation of positively acting transcription factors (TFs; e.g. ELONGATED HYPOCOTYL (HY5), LONG HYPOCOTYL IN FAR-RED 1 (HFR1), PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) and others] in the dark to repress photomorphogenesis. Genomic evidence showed a large number of genes regulated by COP1 in the dark, of which many are direct targets of HY5. However, the genomic basis for the constitute photomorphogenic phenotype of spaQ remains unknown. Here, we show that >7200 genes are differentially expressed in the spaQ background compared to wild-type in the dark. Comparison of the RNA sequencing (RNA-Seq) data between cop1 and spaQ revealed a large overlapping set of genes regulated by the COP1-SPA complex. In addition, many of the genes coordinately regulated by the COP1-SPA complex are also regulated by HY5 directly and indirectly. Taken together, our data reveal that SPA proteins repress photomorphogenesis by controlling gene expression in concert with COP1, likely through regulating the abundance of downstream TFs in light signaling pathways. Moreover, SPA proteins may function both in a COP1-dependent and -independent manner in regulating many biological processes and developmental pathways in Arabidopsis.
Collapse
Affiliation(s)
- Vinh Ngoc Pham
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Inyup Paik
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
50
|
Yan Y, Li C, Dong X, Li H, Zhang D, Zhou Y, Jiang B, Peng J, Qin X, Cheng J, Wang X, Song P, Qi L, Zheng Y, Li B, Terzaghi W, Yang S, Guo Y, Li J. MYB30 Is a Key Negative Regulator of Arabidopsis Photomorphogenic Development That Promotes PIF4 and PIF5 Protein Accumulation in the Light. THE PLANT CELL 2020; 32:2196-2215. [PMID: 32371543 PMCID: PMC7346557 DOI: 10.1105/tpc.19.00645] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/03/2020] [Accepted: 04/29/2020] [Indexed: 05/03/2023]
Abstract
Phytochromes are red (R) and far-red (FR) light photoreceptors in plants, and PHYTOCHROME-INTERACTING FACTORS (PIFs) are a group of basic helix-loop-helix family transcription factors that play central roles in repressing photomorphogenesis. Here, we report that MYB30, an R2R3-MYB family transcription factor, acts as a negative regulator of photomorphogenesis in Arabidopsis (Arabidopsis thaliana). We show that MYB30 preferentially interacts with the Pfr (active) forms of the phytochrome A (phyA) and phytochrome B (phyB) holoproteins and that MYB30 levels are induced by phyA and phyB in the light. It was previously shown that phytochromes induce rapid phosphorylation and degradation of PIFs upon R light exposure. Our current data indicate that MYB30 promotes PIF4 and PIF5 protein reaccumulation under prolonged R light irradiation by directly binding to their promoters to induce their expression and by inhibiting the interaction of PIF4 and PIF5 with the Pfr form of phyB. In addition, our data indicate that MYB30 interacts with PIFs and that they act additively to repress photomorphogenesis. In summary, our study demonstrates that MYB30 negatively regulates Arabidopsis photomorphogenic development by acting to promote PIF4 and PIF5 protein accumulation under prolonged R light irradiation, thus providing new insights into the complicated but delicate control of PIFs in the responses of plants to their dynamic light environment.
Collapse
Affiliation(s)
- Yan Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Cong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaojing Dong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yangyang Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bochen Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Peng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyan Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoji Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Pengyu Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lijuan Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Zheng
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Bosheng Li
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania 18766
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|