1
|
Zhang H, Zhu JK. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00769-1. [PMID: 39192154 DOI: 10.1038/s41580-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Wai MH, Luo T, Priyadarshani SVGN, Zhou Q, Mohammadi MA, Cheng H, Aslam M, Liu C, Chai G, Huang D, Liu Y, Cai H, Wang X, Qin Y, Wang L. Overexpression of AcWRKY31 Increases Sensitivity to Salt and Drought and Improves Tolerance to Mealybugs in Pineapple. PLANTS (BASEL, SWITZERLAND) 2024; 13:1850. [PMID: 38999690 PMCID: PMC11243833 DOI: 10.3390/plants13131850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
Pineapple is a globally significant tropical fruit, but its cultivation faces numerous challenges due to abiotic and biotic stresses, affecting its quality and quantity. WRKY transcription factors are known regulators of stress responses, however, their specific functions in pineapple are not fully understood. This study investigates the role of AcWRKY31 by overexpressing it in pineapple and Arabidopsis. Transgenic pineapple lines were obtained using Agrobacterium-mediated transformation methods and abiotic and biotic stress treatments. Transgenic AcWRKY31-OE pineapple plants showed an increased sensitivity to salt and drought stress and an increased resistance to biotic stress from pineapple mealybugs compared to that of WT plants. Similar experiments in AcWRKY31-OE, AtWRKY53-OE, and the Arabidopsis Atwrky53 mutant were performed and consistently confirmed these findings. A comparative transcriptomic analysis revealed 5357 upregulated genes in AcWRKY31-OE pineapple, with 30 genes related to disease and pathogen response. Notably, 18 of these genes contained a W-box sequence in their promoter region. A KEGG analysis of RNA-Seq data showed that upregulated DEG genes are mostly involved in translation, protein kinases, peptidases and inhibitors, membrane trafficking, folding, sorting, and degradation, while the downregulated genes are involved in metabolism, protein families, signaling, and cellular processes. RT-qPCR assays of selected genes confirmed the transcriptomic results. In summary, the AcWRKY31 gene is promising for the improvement of stress responses in pineapple, and it could be a valuable tool for plant breeders to develop stress-tolerant crops in the future.
Collapse
Affiliation(s)
- Myat Hnin Wai
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Botany, Mandalay University of Distance Education, Ministry of Education, Mandalay 05024, Myanmar
| | - Tiantian Luo
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - S V G N Priyadarshani
- Department of Applied Sciences, Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe 10115, Sri Lanka
| | - Qiao Zhou
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohammad Aqa Mohammadi
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Han Cheng
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohammad Aslam
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Liu
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaifeng Chai
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongping Huang
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Liu
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyang Cai
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomei Wang
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning 530007, China
| | - Yuan Qin
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lulu Wang
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Mishra S, Sharma P, Singh R, Ahlawat OP, Singh G. Genome-wide identification of DCL, AGO, and RDR gene families in wheat ( Triticum aestivum L.) and their expression analysis in response to heat stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1525-1541. [PMID: 38076771 PMCID: PMC10709266 DOI: 10.1007/s12298-023-01362-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2024]
Abstract
Key components of the RNA interference (RNAi) pathway include the Dicer-like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) gene families. While these components have been studied in various plant species, their functional validation in wheat remains unexplored particularly under heat stress. In this study, a comprehensive genome-wide analysis to identify, and characterize DCL, AGO, and RDR genes in wheat and their expression patterns was carried out. Using phylogenetic analysis with orthologous genes from Arabidopsis and rice, we identified a total of 82 AGO, 31 DCL, and 31 RDR genes distributed across the 21 chromosomes of wheat. To understand the regulatory network, a network analysis of miRNAs that target RNA-silencing genes was performed. Our analysis revealed that 13 miRNAs target AGO genes, 8 miRNAs target DCL genes, and 10 miRNAs target RDR genes at different sites, respectively. Additionally, promoter analysis of the RNA-silencing genes was done and identified the presence of 132 cis-elements responsive to stress and phytohormones. To examine their expression patterns, we performed RNA-seq analysis in the flag leaf samples of wheat exposed to both normal and heat stress conditions. To understand the regulation of RNA silencing, we experimentally analysed the transcriptional changes in response to gradient heat stress treatments. Our results showed constitutive expression of the AGO1, AGO9, and DCL2 gene families, indicating their importance in the overall biological processes of wheat. Notably, RDR1, known to be involved in small interfering RNA (siRNA) biogenesis, exhibited higher expression levels in wheat leaf tissues. These findings suggest that these genes may play a role in responses to stress in wheat, highlighting their significance in adapting to environmental challenges. Overall, our study provides additional knowledge to understand the mechanisms underlying heat stress responses and emphasizes the essential roles of these gene families in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01362-0.
Collapse
Affiliation(s)
- Shefali Mishra
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana 132 001 India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana 132 001 India
| | - Rajender Singh
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana 132 001 India
| | - Om Parkash Ahlawat
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana 132 001 India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana 132 001 India
| |
Collapse
|
4
|
Cook TM, Isenegger D, Dutta S, Sahab S, Kay P, Aboobucker SI, Biswas E, Heerschap S, Nikolau BJ, Dong L, Lübberstedt T. Overcoming roadblocks for in vitro nurseries in plants: induction of meiosis. FRONTIERS IN PLANT SCIENCE 2023; 14:1204813. [PMID: 37332695 PMCID: PMC10272530 DOI: 10.3389/fpls.2023.1204813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
Efforts to increase genetic gains in breeding programs of flowering plants depend on making genetic crosses. Time to flowering, which can take months to decades depending on the species, can be a limiting factor in such breeding programs. It has been proposed that the rate of genetic gain can be increased by reducing the time between generations by circumventing flowering through the in vitro induction of meiosis. In this review, we assess technologies and approaches that may offer a path towards meiosis induction, the largest current bottleneck for in vitro plant breeding. Studies in non-plant, eukaryotic organisms indicate that the in vitro switch from mitotic cell division to meiosis is inefficient and occurs at very low rates. Yet, this has been achieved with mammalian cells by the manipulation of a limited number of genes. Therefore, to experimentally identify factors that switch mitosis to meiosis in plants, it is necessary to develop a high-throughput system to evaluate a large number of candidate genes and treatments, each using large numbers of cells, few of which may gain the ability to induce meiosis.
Collapse
Affiliation(s)
- Tanner M. Cook
- Iowa State University, Department of Agronomy, Ames, IA, United States
| | - Daniel Isenegger
- Agriculture Victoria, Agribio, La Trobe University, Melbourne, VIC, Australia
| | - Somak Dutta
- Iowa State University, Department of Statistics, Ames, IA, United States
| | - Sareena Sahab
- Agriculture Victoria, Agribio, La Trobe University, Melbourne, VIC, Australia
| | - Pippa Kay
- Agriculture Victoria, Agribio, La Trobe University, Melbourne, VIC, Australia
| | | | - Eva Biswas
- Iowa State University, Department of Statistics, Ames, IA, United States
| | - Seth Heerschap
- Iowa State University, Department of Electrical and Computer Engineering, Ames, IA, United States
| | - Basil J. Nikolau
- Iowa State University, Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Ames, IA, United States
| | - Liang Dong
- Iowa State University, Department of Electrical and Computer Engineering, Ames, IA, United States
| | | |
Collapse
|
5
|
Bélanger S, Zhan J, Meyers BC. Phylogenetic analyses of seven protein families refine the evolution of small RNA pathways in green plants. PLANT PHYSIOLOGY 2023; 192:1183-1203. [PMID: 36869858 PMCID: PMC10231463 DOI: 10.1093/plphys/kiad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/01/2023]
Abstract
Several protein families participate in the biogenesis and function of small RNAs (sRNAs) in plants. Those with primary roles include Dicer-like (DCL), RNA-dependent RNA polymerase (RDR), and Argonaute (AGO) proteins. Protein families such as double-stranded RNA-binding (DRB), SERRATE (SE), and SUPPRESSION OF SILENCING 3 (SGS3) act as partners of DCL or RDR proteins. Here, we present curated annotations and phylogenetic analyses of seven sRNA pathway protein families performed on 196 species in the Viridiplantae (aka green plants) lineage. Our results suggest that the RDR3 proteins emerged earlier than RDR1/2/6. RDR6 is found in filamentous green algae and all land plants, suggesting that the evolution of RDR6 proteins coincides with the evolution of phased small interfering RNAs (siRNAs). We traced the origin of the 24-nt reproductive phased siRNA-associated DCL5 protein back to the American sweet flag (Acorus americanus), the earliest diverged, extant monocot species. Our analyses of AGOs identified multiple duplication events of AGO genes that were lost, retained, or further duplicated in subgroups, indicating that the evolution of AGOs is complex in monocots. The results also refine the evolution of several clades of AGO proteins, such as AGO4, AGO6, AGO17, and AGO18. Analyses of nuclear localization signal sequences and catalytic triads of AGO proteins shed light on the regulatory roles of diverse AGOs. Collectively, this work generates a curated and evolutionarily coherent annotation for gene families involved in plant sRNA biogenesis/function and provides insights into the evolution of major sRNA pathways.
Collapse
Affiliation(s)
| | - Junpeng Zhan
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Mahlandt A, Singh DK, Mercier R. Engineering apomixis in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:131. [PMID: 37199785 DOI: 10.1007/s00122-023-04357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Apomixis is an asexual mode of reproduction through seeds where progeny are clones of the mother plants. Naturally apomictic modes of reproduction are found in hundreds of plant genera distributed across more than 30 plant families, but are absent in major crop plants. Apomixis has the potential to be a breakthrough technology by allowing the propagation through seed of any genotype, including F1 hybrids. Here, we have summarized the recent progress toward synthetic apomixis, where combining targeted modifications of both the meiosis and fertilization processes leads to the production of clonal seeds at high frequencies. Despite some remaining challenges, the technology has approached a level of maturity that allows its consideration for application in the field.
Collapse
Affiliation(s)
- Alexander Mahlandt
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Dipesh Kumar Singh
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany.
| |
Collapse
|
7
|
Cornaro L, Banfi C, Cucinotta M, Colombo L, van Dijk PJ. Asexual reproduction through seeds: the complex case of diplosporous apomixis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2462-2478. [PMID: 36794770 DOI: 10.1093/jxb/erad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/07/2023] [Indexed: 06/06/2023]
Abstract
Apomixis is considered a potentially revolutionary tool to generate high-quality food at a lower cost and shorter developmental time due to clonal seed production through apomeiosis and parthenogenesis. In the diplosporous type of apomixis, meiotic recombination and reduction are circumvented either by avoiding or failing meiosis or by a mitotic-like division. Here, we review the literature on diplospory, from early cytological studies dating back to the late 19th century to recent genetic findings. We discuss diplosporous developmental mechanisms, including their inheritance. Furthermore, we compare the strategies adopted to isolate the genes controlling diplospory with those to produce mutants forming unreduced gametes. Nowadays, the dramatically improved technologies of long-read sequencing and targeted CRISPR/Cas mutagenesis justify the expectation that natural diplospory genes will soon be identified. Their identification will answer questions such as how the apomictic phenotype can be superimposed upon the sexual pathway and how diplospory genes have evolved. This knowledge will contribute to the application of apomixis in agriculture.
Collapse
Affiliation(s)
- Letizia Cornaro
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milano, Italy
| | - Camilla Banfi
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milano, Italy
| | - Mara Cucinotta
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milano, Italy
| | - Lucia Colombo
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milano, Italy
| | - Peter J van Dijk
- KeyGene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands
| |
Collapse
|
8
|
Niccolò T, Anderson AW, Emidio A. Apomixis: oh, what a tangled web we have! PLANTA 2023; 257:92. [PMID: 37000270 PMCID: PMC10066125 DOI: 10.1007/s00425-023-04124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Apomixis is a complex evolutionary trait with many possible origins. Here we discuss various clues and causes, ultimately proposing a model harmonizing the three working hypotheses on the topic. Asexual reproduction through seeds, i.e., apomixis, is the holy grail of plant biology. Its implementation in modern breeding could be a game-changer for agriculture. It has the potential to generate clonal crops and maintain valuable complex genotypes and their associated heterotic traits without inbreeding depression. The genetic basis and origins of apomixis are still unclear. There are three central hypothesis for the development of apomixis that could be: i) a deviation from the sexual developmental program caused by an asynchronous development, ii) environmentally triggered through epigenetic regulations (a polyphenism of sex), iii) relying on one or more genes/alleles. Because of the ever-increasing complexity of the topic, the path toward a detailed understanding of the mechanisms underlying apomixis remains unclear. Here, we discuss the most recent advances in the evolution perspective of this multifaceted trait. We incorporated our understanding of the effect of endogenous effectors, such as small RNAs, epigenetic regulation, hormonal pathways, protein turnover, and cell wall modification in response to an upside stress. This can be either endogenous (hybridization or polyploidization) or exogenous environmental stress, mainly due to oxidative stress and the corresponding ROS (Reacting Oxygen Species) effectors. Finally, we graphically represented this tangled web.
Collapse
Affiliation(s)
- Terzaroli Niccolò
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Aaron W Anderson
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Fulbright Scholar From Department of Plant Sciences, University of California, Davis, USA
| | - Albertini Emidio
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Consorzio Interuniversitario per le Biotecnologie (CIB), Trieste, Italy
| |
Collapse
|
9
|
Ortiz-Vasquez Q, León-Martínez G, Barragán-Rosillo C, González-Orozco E, Deans S, Aldridge B, Vickers M, Feng X, Vielle-Calzada JP. Genomic methylation patterns in pre-meiotic gynoecia of wild-type and RdDM mutants of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1123211. [PMID: 36993852 PMCID: PMC10040562 DOI: 10.3389/fpls.2023.1123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Although DNA methylation patterns are generally considered to be faithfully inherited in Arabidopsis thaliana (Arabidopsis), there is evidence of reprogramming during both male and female gametogenesis. The gynoecium is the floral reproductive organ from which the ovules develop and generate meiotically derived cells that give rise to the female gametophyte. It is not known whether the gynoecium can condition genomic methylation in the ovule or the developing female gametophyte. METHODS We performed whole genome bisulfite sequencing to characterize the methylation patterns that prevail in the genomic DNA of pre-meiotic gynoecia of wild-type and three mutants defective in genes of the RNA-directed DNA methylation pathway (RdDM): ARGONAUTE4 (AGO4), ARGONAUTE9 (AGO9), and RNA-DEPENDENT RNA POLYMERASE6 (RDR6). RESULTS By globally analyzing transposable elements (TEs) and genes located across the Arabidopsis genome, we show that DNA methylation levels are similar to those of gametophytic cells rather than those of sporophytic organs such as seedlings and rosette leaves. We show that none of the mutations completely abolishes RdDM, suggesting strong redundancy within the methylation pathways. Among all, ago4 mutation has the strongest effect on RdDM, causing more CHH hypomethylation than ago9 and rdr6. We identify 22 genes whose DNA methylation is significantly reduced in ago4, ago9 and rdr6 mutants, revealing potential targets regulated by the RdDM pathway in premeiotic gyneocia. DISCUSSION Our results indicate that drastic changes in methylation levels in all three contexts occur in female reproductive organs at the sporophytic level, prior to the alternation of generations within the ovule primordium, offering a possibility to start identifying the function of specific genes acting in the establishment of the female gametophytic phase of the Arabidopsis life cycle.
Collapse
Affiliation(s)
- Quetzely Ortiz-Vasquez
- Grupo de Desarrollo Reproductivo y Apomixis, Unidad de Genómica Avanzada Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Gloria León-Martínez
- Grupo de Desarrollo Reproductivo y Apomixis, Unidad de Genómica Avanzada Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Carlos Barragán-Rosillo
- Grupo de Desarrollo Reproductivo y Apomixis, Unidad de Genómica Avanzada Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Eduardo González-Orozco
- Grupo de Desarrollo Reproductivo y Apomixis, Unidad de Genómica Avanzada Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Samuel Deans
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Billy Aldridge
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Vickers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jean-Philippe Vielle-Calzada
- Grupo de Desarrollo Reproductivo y Apomixis, Unidad de Genómica Avanzada Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato, Guanajuato, Mexico
| |
Collapse
|
10
|
Synthetic apomixis: the beginning of a new era. Curr Opin Biotechnol 2023; 79:102877. [PMID: 36628906 DOI: 10.1016/j.copbio.2022.102877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Apomixis is a process of asexual reproduction that enables plants to bypass meiosis and fertilization to generate clonal seeds that are identical to the maternal genotype. Apomixis has tremendous potential for breeding plants with desired characteristics, given its ability to fix any elite genotype. However, little is known about the origin and dynamics of natural apomictic plant systems. The introgression of apomixis-related genes from natural apomicts has achieved limited success. Therefore, synthetic apomixis, engineered to include apomeiosis, autonomous embryo formation, and autonomous endosperm development, has been proposed as a promising platform to effectuate apomixis in any crop. In this study, we have summarized recent advances in the understanding of synthetic apomixis and discussed the limitations of current synthetic apomixis systems and ways to overcome them.
Collapse
|
11
|
Ibañez VN, Quadrana L. Shaping inheritance: how distinct reproductive strategies influence DNA methylation memory in plants. Curr Opin Genet Dev 2023; 78:102018. [PMID: 36525825 DOI: 10.1016/j.gde.2022.102018] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
DNA methylation is a major epigenetic mark involved in the silencing of genes and transposable elements (TEs). DNA methylation varies significantly across the plant life cycle, but is efficiently reinforced during reproduction, ensuring stable silencing of TEs. Plants are remarkably flexible in their mode of reproduction and numerous species, including crops, can propagate asexually, skipping one or more of these critical reinforcement steps. In this review, we summarize recent advances in the characterization of DNA methylation inheritance in sexual and asexual plants. We argue that because most epigenetic reinforcement appears to occur during seed formation, methylomes of asexual seeds should resemble that of their sexual counterparts. Conversely, clonally propagated plants are expected to be hypomethylated and undergo frequent stochastic epigenetic changes. Last, we provide insights on how the use of nonmodel organisms will advance our understanding of epigenetic inheritance in plants.
Collapse
Affiliation(s)
- Verónica Noé Ibañez
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Diderot, 91190 Gif sur Yvette, France. https://twitter.com/veronik_noe
| | - Leandro Quadrana
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Diderot, 91190 Gif sur Yvette, France.
| |
Collapse
|
12
|
Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis. Nat Commun 2022; 13:6960. [PMID: 36379956 PMCID: PMC9666636 DOI: 10.1038/s41467-022-34723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Germline determination is essential for species survival and evolution in multicellular organisms. In most flowering plants, formation of the female germline is initiated with specification of one megaspore mother cell (MMC) in each ovule; however, the molecular mechanism underlying this key event remains unclear. Here we report that spatially restricted auxin signaling promotes MMC fate in Arabidopsis. Our results show that the microRNA160 (miR160) targeted gene ARF17 (AUXIN RESPONSE FACTOR17) is required for promoting MMC specification by genetically interacting with the SPL/NZZ (SPOROCYTELESS/NOZZLE) gene. Alterations of auxin signaling cause formation of supernumerary MMCs in an ARF17- and SPL/NZZ-dependent manner. Furthermore, miR160 and ARF17 are indispensable for attaining a normal auxin maximum at the ovule apex via modulating the expression domain of PIN1 (PIN-FORMED1) auxin transporter. Our findings elucidate the mechanism by which auxin signaling promotes the acquisition of female germline cell fate in plants.
Collapse
|
13
|
Aubert J, Bellegarde F, Oltehua-Lopez O, Leblanc O, Arteaga-Vazquez MA, Martienssen RA, Grimanelli D. AGO104 is a RdDM effector of paramutation at the maize b1 locus. PLoS One 2022; 17:e0273695. [PMID: 36040902 PMCID: PMC9426929 DOI: 10.1371/journal.pone.0273695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Although paramutation has been well-studied at a few hallmark loci involved in anthocyanin biosynthesis in maize, the cellular and molecular mechanisms underlying the phenomenon remain largely unknown. Previously described actors of paramutation encode components of the RNA-directed DNA-methylation (RdDM) pathway that participate in the biogenesis of 24-nucleotide small interfering RNAs (24-nt siRNAs) and long non-coding RNAs. In this study, we uncover an ARGONAUTE (AGO) protein as an effector of the RdDM pathway that is in charge of guiding 24-nt siRNAs to their DNA target to create de novo DNA methylation. We combined immunoprecipitation, small RNA sequencing and reverse genetics to, first, validate AGO104 as a member of the RdDM effector complex and, then, investigate its role in paramutation. We found that AGO104 binds 24-nt siRNAs involved in RdDM, including those required for paramutation at the b1 locus. We also show that the ago104-5 mutation causes a partial reversion of the paramutation phenotype at the b1 locus, revealed by intermediate pigmentation levels in stem tissues. Therefore, our results place AGO104 as a new member of the RdDM effector complex that plays a role in paramutation at the b1 locus in maize.
Collapse
Affiliation(s)
- Juliette Aubert
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Fanny Bellegarde
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | | | - Olivier Leblanc
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | | | - Robert A. Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, New York, United States of America
| | - Daniel Grimanelli
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
- * E-mail:
| |
Collapse
|
14
|
Zhou Q, Cheng X, Kong B, Zhao Y, Li Z, Sang Y, Wu J, Zhang P. Heat shock-induced failure of meiosis I to meiosis II transition leads to 2n pollen formation in a woody plant. PLANT PHYSIOLOGY 2022; 189:2110-2127. [PMID: 35567496 PMCID: PMC9342974 DOI: 10.1093/plphys/kiac219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 05/16/2023]
Abstract
The formation of diploid gametes through chromosome doubling is a major mechanism of polyploidization, diversification, and speciation in plants. Unfavorable climate conditions can induce or stimulate the production of diploid gametes during meiosis. Here, we demonstrated that heat shock stress (38°C for 3 or 6 h) induced 2n pollen formation, and we generated 42 triploids derived from heat shock-induced 2n pollen of Populus canescens. Meiotic analysis of treated pollen mother cells revealed that induced 2n pollen originated from the complete loss of meiosis II (MII). Among the 42 triploids, 38 triploids derived from second division restitution (SDR)-type 2n pollen and 4 triploids derived from first division restitution-type 2n pollen were verified using simple sequence repeats (SSR) molecular markers. Twenty-two differentially expressed genes related to the cell cycle were identified and characterized by expression profile analysis. Among them was POPTR_0002s08020g (PtCYCA1;2), which encodes a type A Cyclin CYCA1;2 that is required for the meiosis I (MI) to MII transition. After male flower buds were exposed to heat shock, a significant reduction was detected in PtCYCA1;2 expression. We inferred that the failure of MI-to-MII transitions might be associated with downregulated expression of PtCYCA1;2, leading to the formation of SDR-type 2n pollen. Our findings provide insights into mechanisms of heat shock-induced 2n pollen formation in a woody plant and verify that sensitivity to environmental stress has evolutionary importance in terms of polyploidization.
Collapse
Affiliation(s)
- Qing Zhou
- National Engineering Laboratory for Tree Breeding, Beijing, China
- Key laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Xuetong Cheng
- National Engineering Laboratory for Tree Breeding, Beijing, China
- Key laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Bo Kong
- National Engineering Laboratory for Tree Breeding, Beijing, China
- Key laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Yifan Zhao
- National Engineering Laboratory for Tree Breeding, Beijing, China
- Key laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Zhiqun Li
- National Engineering Laboratory for Tree Breeding, Beijing, China
- Key laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Yaru Sang
- National Engineering Laboratory for Tree Breeding, Beijing, China
- Key laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Jian Wu
- National Engineering Laboratory for Tree Breeding, Beijing, China
- Key laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | | |
Collapse
|
15
|
Han Y, Hu M, Ma X, Yan G, Wang C, Jiang S, Lai J, Zhang M. Exploring key developmental phases and phase-specific genes across the entirety of anther development in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1394-1410. [PMID: 35607822 PMCID: PMC10360140 DOI: 10.1111/jipb.13276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Anther development from stamen primordium to pollen dispersal is complex and essential to sexual reproduction. How this highly dynamic and complex developmental process is controlled genetically is not well understood, especially for genes involved in specific key developmental phases. Here we generated RNA sequencing libraries spanning 10 key stages across the entirety of anther development in maize (Zea mays). Global transcriptome analyses revealed distinct phases of cell division and expansion, meiosis, pollen maturation, and mature pollen, for which we detected 50, 245, 42, and 414 phase-specific marker genes, respectively. Phase-specific transcription factor genes were significantly enriched in the phase of meiosis. The phase-specific expression of these marker genes was highly conserved among the maize lines Chang7-2 and W23, indicating they might have important roles in anther development. We explored a desiccation-related protein gene, ZmDRP1, which was exclusively expressed in the tapetum from the tetrad to the uninucleate microspore stage, by generating knockout mutants. Notably, mutants in ZmDRP1 were completely male-sterile, with abnormal Ubisch bodies and defective pollen exine. Our work provides a glimpse into the gene expression dynamics and a valuable resource for exploring the roles of key phase-specific genes that regulate anther development.
Collapse
Affiliation(s)
- Yingjia Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Mingjian Hu
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center of China Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xuxu Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Ge Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyu Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center of China Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Mei Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
16
|
You C, Yu Y, Wang Y. Small RNA in plant meiosis and gametogenesis. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
Oliver C, Martinez G. Accumulation dynamics of ARGONAUTE proteins during meiosis in Arabidopsis. PLANT REPRODUCTION 2022; 35:153-160. [PMID: 34812935 PMCID: PMC9110482 DOI: 10.1007/s00497-021-00434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Meiosis is a specialized cell division that is key for reproduction and genetic diversity in sexually reproducing plants. Recently, different RNA silencing pathways have been proposed to carry a specific activity during meiosis, but the pathways involved during this process remain unclear. Here, we explored the subcellular localization of different ARGONAUTE (AGO) proteins, the main effectors of RNA silencing, during male meiosis in Arabidopsis thaliana using immunolocalizations with commercially available antibodies. We detected the presence of AGO proteins associated with posttranscriptional gene silencing (AGO1, 2, and 5) in the cytoplasm and the nucleus, while AGOs associated with transcriptional gene silencing (AGO4 and 9) localized exclusively in the nucleus. These results indicate that the localization of different AGOs correlates with their predicted roles at the transcriptional and posttranscriptional levels and provide an overview of their timing and potential role during meiosis.
Collapse
Affiliation(s)
- Cecilia Oliver
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural, Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural, Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
18
|
Underwood CJ, Mercier R. Engineering Apomixis: Clonal Seeds Approaching the Fields. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:201-225. [PMID: 35138881 DOI: 10.1146/annurev-arplant-102720-013958] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Apomixis is a form of reproduction leading to clonal seeds and offspring that are genetically identical to the maternal plant. While apomixis naturally occurs in hundreds of plant species distributed across diverse plant families, it is absent in major crop species. Apomixis has a revolutionary potential in plant breeding, as it could allow the instant fixation and propagation though seeds of any plant genotype, most notably F1 hybrids. Mastering and implementing apomixis would reduce the cost of hybrid seed production, facilitate new types of hybrid breeding, and make it possible to harness hybrid vigor in crops that are not presently cultivated as hybrids. Synthetic apomixis can be engineered by combining modifications of meiosis and fertilization. Here, we review the current knowledge and recent major achievements toward the development of efficient apomictic systems usable in agriculture.
Collapse
Affiliation(s)
- Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany; ,
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany; ,
| |
Collapse
|
19
|
Aslam M, Fakher B, Qin Y. Big Role of Small RNAs in Female Gametophyte Development. Int J Mol Sci 2022; 23:ijms23041979. [PMID: 35216096 PMCID: PMC8878111 DOI: 10.3390/ijms23041979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
In living organisms, sexual reproduction relies on the successful development of the gametes. Flowering plants produce gametes in the specialized organs of the flower, the gametophytes. The female gametophyte (FG), a multicellular structure containing female gametes (egg cell and central cell), is often referred to as an embryo sac. Intriguingly, several protein complexes, molecular and genetic mechanisms participate and tightly regulate the female gametophyte development. Recent evidence indicates that small RNA (sRNA) mediated pathways play vital roles in female gametophyte development and specification. Here, we present an insight into our understanding and the recent updates on the molecular mechanism of different players of small RNA-directed regulatory pathways during ovule formation and growth.
Collapse
Affiliation(s)
- Mohammad Aslam
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Beenish Fakher
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yuan Qin
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Correspondence:
| |
Collapse
|
20
|
Jiang T, Zheng B. Epigenetic Regulation of Megaspore Mother Cell Formation. FRONTIERS IN PLANT SCIENCE 2022; 12:826871. [PMID: 35185968 PMCID: PMC8850924 DOI: 10.3389/fpls.2021.826871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/31/2021] [Indexed: 05/31/2023]
Abstract
In flowering plants, the female gametophyte (FG) initiates from the formation of the megaspore mother cell (MMC). Among a pool of the somatic cells in the ovule primordium, only one hypodermal cell undergoes a transition of cell fate to become the MMC. Subsequently, the MMC undergoes a series of meiosis and mitosis to form the mature FG harboring seven cells with eight nuclei. Although SPL/NZZ, the core transcription factor for MMC formation, was identified several decades ago, which and why only one somatic cell is chosen as the MMC have long remained mysterious. A growing body of evidence reveal that MMC formation is associated with epigenetic regulation at multiple layers, including dynamic distribution of histone variants and histone modifications, small RNAs, and DNA methylation. In this review, we summarize the progress of epigenetic regulation in the MMC formation, emphasizing the roles of chromosome condensation, histone variants, histone methylation, small RNAs, and DNA methylation.
Collapse
|
21
|
Blasio F, Prieto P, Pradillo M, Naranjo T. Genomic and Meiotic Changes Accompanying Polyploidization. PLANTS (BASEL, SWITZERLAND) 2022; 11:125. [PMID: 35009128 PMCID: PMC8747196 DOI: 10.3390/plants11010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.
Collapse
Affiliation(s)
- Francesco Blasio
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Cordova, Spain;
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| |
Collapse
|
22
|
Palumbo F, Draga S, Vannozzi A, Lucchin M, Barcaccia G. Trends in Apomixis Research: The 10 Most Cited Research Articles Published in the Pregenomic and Genomic Eras. FRONTIERS IN PLANT SCIENCE 2022; 13:878074. [PMID: 35599856 PMCID: PMC9115752 DOI: 10.3389/fpls.2022.878074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/14/2022] [Indexed: 05/12/2023]
Abstract
Apomixis, or asexual reproduction by seed, represents an easy shortcut for life cycle renewal based on maternal embryo production without ploidy reduction (meiosis) and ploidy restitution (syngamy). Although the first studies officially published on this topic in scientific journals date back to the early 1930s, the identification and introduction of genes involved in asexual reproduction in species of agronomic interest still represent a major challenge. Through a bibliometric analysis of the research programs implemented in apomixis over the last 40 years, the present study was aimed to discuss not only the main findings achieved but also the investigational methods and model species used. We split the critical survey of the most cited original articles into pregenomic and genomic eras to identify potential trends and depict scenarios that have emerged in the scientific community working on apomixis, as well as to determine any correlation between the exponential increase in acquired basic knowledge and the development of advanced analytical technologies. This review found a substantial stagnation in the use of the same model species, with few exceptions, for at least 40 years. In contrast, the development of new molecular techniques, genomic platforms, and repositories has directly affected the approaches used in research, which has been directed toward an increasingly focused study of the genetic and epigenetic determinants of apomixis.
Collapse
|
23
|
Xu Y, Jia H, Tan C, Wu X, Deng X, Xu Q. Apomixis: genetic basis and controlling genes. HORTICULTURE RESEARCH 2022; 9:uhac150. [PMID: 36072837 PMCID: PMC9437720 DOI: 10.1093/hr/uhac150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 05/12/2023]
Abstract
Apomixis is the phenomenon of clonal reproduction by seed. As apomixis can produce clonal progeny with exactly the same genotype as the maternal plant, it has an important application in genotype fixation and accelerating agricultural breeding strategies. The introduction of apomixis to major crops would bring many benefits to agriculture, including permanent fixation of superior genotypes and simplifying the procedures of hybrid seed production, as well as purification and rejuvenation of crops propagated vegetatively. Although apomixis naturally occurs in more than 400 plant species, it is rare among the major crops. Currently, with better understanding of apomixis, some achievements have been made in synthetic apomixis. However, due to prevailing limitations, there is still a long way to go to achieve large-scale application of apomixis to crop breeding. Here, we compare the developmental features of apomixis and sexual plant reproduction and review the recent identification of apomixis genes, transposons, epigenetic regulation, and genetic events leading to apomixis. We also summarize the possible strategies and potential genes for engineering apomixis into crop plants.
Collapse
Affiliation(s)
- Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huihui Jia
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunming Tan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaomeng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | |
Collapse
|
24
|
Petrella R, Cucinotta M, Mendes MA, Underwood CJ, Colombo L. The emerging role of small RNAs in ovule development, a kind of magic. PLANT REPRODUCTION 2021; 34:335-351. [PMID: 34142243 PMCID: PMC8566443 DOI: 10.1007/s00497-021-00421-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/08/2021] [Indexed: 05/03/2023]
Abstract
In plants, small RNAs have been recognized as key genetic and epigenetic regulators of development. Small RNAs are usually 20 to 30 nucleotides in length and they control, in a sequence specific manner, the transcriptional or post-transcriptional expression of genes. In this review, we present a comprehensive overview of the most recent findings about the function of small RNAs in ovule development, including megasporogenesis and megagametogenesis, both in sexual and apomictic plants. We discuss recent studies on the role of miRNAs, siRNAs and trans-acting RNAs (ta-siRNAs) in early female germline differentiation. The mechanistic complexity and unique regulatory features are reviewed, and possible directions for future research are provided.
Collapse
Affiliation(s)
- Rosanna Petrella
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Mara Cucinotta
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Marta A Mendes
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
25
|
Epigenetic Modifications in Plant Development and Reproduction. EPIGENOMES 2021; 5:epigenomes5040025. [PMID: 34968249 PMCID: PMC8715465 DOI: 10.3390/epigenomes5040025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 01/27/2023] Open
Abstract
Plants are exposed to highly fluctuating effects of light, temperature, weather conditions, and many other environmental factors throughout their life. As sessile organisms, unlike animals, they are unable to escape, hide, or even change their position. Therefore, the growth and development of plants are largely determined by interaction with the external environment. The success of this interaction depends on the ability of the phenotype plasticity, which is largely determined by epigenetic regulation. In addition to how environmental factors can change the patterns of genes expression, epigenetic regulation determines how genetic expression changes during the differentiation of one cell type into another and how patterns of gene expression are passed from one cell to its descendants. Thus, one genome can generate many ‘epigenomes’. Epigenetic modifications acquire special significance during the formation of gametes and plant reproduction when epigenetic marks are eliminated during meiosis and early embryogenesis and later reappear. However, during asexual plant reproduction, when meiosis is absent or suspended, epigenetic modifications that have arisen in the parental sporophyte can be transmitted to the next clonal generation practically unchanged. In plants that reproduce sexually and asexually, epigenetic variability has different adaptive significance. In asexuals, epigenetic regulation is of particular importance for imparting plasticity to the phenotype when, apart from mutations, the genotype remains unchanged for many generations of individuals. Of particular interest is the question of the possibility of transferring acquired epigenetic memory to future generations and its potential role for natural selection and evolution. All these issues will be discussed to some extent in this review.
Collapse
|
26
|
Böwer F, Schnittger A. How to Switch from Mitosis to Meiosis: Regulation of Germline Entry in Plants. Annu Rev Genet 2021; 55:427-452. [PMID: 34530640 DOI: 10.1146/annurev-genet-112618-043553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the major cell fate transitions in eukaryotes is entry into meiosis. While in single-celled yeast this decision is triggered by nutrient starvation, in multicellular eukaryotes, such as plants, it is under developmental control. In contrast to animals, plants have only a short germline and instruct cells to become meiocytes in reproductive organs late in development. This situation argues for a fundamentally different mechanism of how plants recruit meiocytes, and consistently, none of the regulators known to control meiotic entry in yeast and animals are present in plants. In recent years, several factors involved in meiotic entry have been identified, especially in the model plant Arabidopsis, and pieces of a regulatory network of germline control in plants are emerging. However, the corresponding studies also show that the mechanisms of meiotic entry control are diversified in flowering plants, calling for further analyses in different plant species. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Franziska Böwer
- Department of Developmental Biology, Institute for Plant Sciences and Microbiology, University of Hamburg, D-22609 Hamburg, Germany;
| | - Arp Schnittger
- Department of Developmental Biology, Institute for Plant Sciences and Microbiology, University of Hamburg, D-22609 Hamburg, Germany;
| |
Collapse
|
27
|
Carballo J, Zappacosta D, Selva JP, Caccamo M, Echenique V. Eragrostis curvula, a Model Species for Diplosporous Apomixis. PLANTS (BASEL, SWITZERLAND) 2021; 10:1818. [PMID: 34579351 PMCID: PMC8472828 DOI: 10.3390/plants10091818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
Eragrostis curvula (Schrad.) Ness is a grass with a particular apomictic embryo sac development called Eragrostis type. Apomixis is a type of asexual reproduction that produces seeds without fertilization in which the resulting progeny is genetically identical to the mother plant and with the potential to fix the hybrid vigour from more than one generation, among other advantages. The absence of meiosis and the occurrence of only two rounds of mitosis instead of three during embryo sac development make this model unique and suitable to be transferred to economically important crops. Throughout this review, we highlight the advances in the knowledge of apomixis in E. curvula using different techniques such as cytoembryology, DNA methylation analyses, small-RNA-seq, RNA-seq, genome assembly, and genotyping by sequencing. The main bulk of evidence points out that apomixis is inherited as a single Mendelian factor, and it is regulated by genetic and epigenetic mechanisms controlled by a complex network. With all this information, we propose a model of the mechanisms involved in diplosporous apomixis in this grass. All the genetic and epigenetic resources generated in E. curvula to study the reproductive mode changed its status from an orphan to a well-characterised species.
Collapse
Affiliation(s)
- Jose Carballo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, Bahía Blanca 8000, Argentina; (J.C.); (J.P.S.); (V.E.)
| | - Diego Zappacosta
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, Bahía Blanca 8000, Argentina; (J.C.); (J.P.S.); (V.E.)
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, Bahía Blanca 8000, Argentina
| | - Juan Pablo Selva
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, Bahía Blanca 8000, Argentina; (J.C.); (J.P.S.); (V.E.)
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, Bahía Blanca 8000, Argentina
| | - Mario Caccamo
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK;
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, Bahía Blanca 8000, Argentina; (J.C.); (J.P.S.); (V.E.)
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, Bahía Blanca 8000, Argentina
| |
Collapse
|
28
|
Dziegielewski W, Ziolkowski PA. License to Regulate: Noncoding RNA Special Agents in Plant Meiosis and Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:662185. [PMID: 34489987 PMCID: PMC8418119 DOI: 10.3389/fpls.2021.662185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
The complexity of the subcellular processes that take place during meiosis requires a significant remodeling of cellular metabolism and dynamic changes in the organization of chromosomes and the cytoskeleton. Recently, investigations of meiotic transcriptomes have revealed additional noncoding RNA factors (ncRNAs) that directly or indirectly influence the course of meiosis. Plant meiosis is the point at which almost all known noncoding RNA-dependent regulatory pathways meet to influence diverse processes related to cell functioning and division. ncRNAs have been shown to prevent transposon reactivation, create germline-specific DNA methylation patterns, and affect the expression of meiosis-specific genes. They can also influence chromosome-level processes, including the stimulation of chromosome condensation, the definition of centromeric chromatin, and perhaps even the regulation of meiotic recombination. In many cases, our understanding of the mechanisms underlying these processes remains limited. In this review, we will examine how the different functions of each type of ncRNA have been adopted in plants, devoting attention to both well-studied examples and other possible functions about which we can only speculate for now. We will also briefly discuss the most important challenges in the investigation of ncRNAs in plant meiosis.
Collapse
Affiliation(s)
| | - Piotr A. Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
29
|
|
30
|
Girard C, Budin K, Boisnard S, Zhang L, Debuchy R, Zickler D, Espagne E. RNAi-Related Dicer and Argonaute Proteins Play Critical Roles for Meiocyte Formation, Chromosome-Axes Lengths and Crossover Patterning in the Fungus Sordaria macrospora. Front Cell Dev Biol 2021; 9:684108. [PMID: 34262901 PMCID: PMC8274715 DOI: 10.3389/fcell.2021.684108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
RNA interference (RNAi) is a cellular process involving small RNAs that target and regulate complementary RNA transcripts. This phenomenon has well-characterized roles in regulating gene and transposon expression. In addition, Dicer and Argonaute proteins, which are key players of RNAi, also have functions unrelated to gene repression. We show here that in the filamentous Ascomycete Sordaria macrospora, genes encoding the two Dicer (Dcl1 and Dcl2) and the two Argonaute (Sms2 and Qde2) proteins are dispensable for vegetative growth. However, we identified roles for all four proteins in the sexual cycle. Dcl1 and Sms2 are essential for timely and successful ascus/meiocyte formation. During meiosis per se, Dcl1, Dcl2, and Qde2 modulate, more or less severely, chromosome axis length and crossover numbers, patterning and interference. Additionally, Sms2 is necessary both for correct synaptonemal complex formation and loading of the pro-crossover E3 ligase-protein Hei10. Moreover, meiocyte formation, and thus meiotic induction, is completely blocked in the dcl1 dcl2 and dcl1 sms2 null double mutants. These results indicate complex roles of the RNAi machinery during major steps of the meiotic process with newly uncovered roles for chromosomes-axis length modulation and crossover patterning regulation.
Collapse
Affiliation(s)
- Chloe Girard
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Karine Budin
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphanie Boisnard
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Robert Debuchy
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Denise Zickler
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Eric Espagne
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
31
|
Genome-Wide Identification and Evolutionary Analysis of Argonaute Genes in Hexaploid Bread Wheat. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9983858. [PMID: 34239939 PMCID: PMC8233069 DOI: 10.1155/2021/9983858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 01/02/2023]
Abstract
Argonaute (AGO) proteins play a pivotal role in plant growth and development as the core components of RNA-induced silencing complex (RISC). However, no systematic characterization of AGO genes in wheat has been reported to date. In this study, a total number of 69 TaAGO genes in the hexaploid bread wheat (Triticum aestivum cv. Chinese Spring) genome, divided into 10 subfamilies, were identified. Compared to all wheat genes, TaAGOs showed a significantly lower evolutionary rate, which is consistent with their high conservation in eukaryotes. However, the homoeolog retention was remarkably higher than the average, implying the nonredundant biological importance of TaAGO genes in bread wheat. Further homoeologous gene expression bias analyses revealed that TaAGOs may have undergone neofunctionalization after polyploidization and duplication through the divergent expression of homoeologous gene copies, to provide new opportunities for the generation of adaptive traits. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) analyses indicated that TaAGO gene expression was involved in response to heat, drought, and salt stresses. Our results would provide a theoretical basis for future studies on the biological functions of TaAGO genes in wheat and other gramineous species.
Collapse
|
32
|
Carballo J, Zappacosta D, Marconi G, Gallardo J, Di Marsico M, Gallo CA, Caccamo M, Albertini E, Echenique V. Differential Methylation Patterns in Apomictic vs. Sexual Genotypes of the Diplosporous Grass Eragrostis curvula. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050946. [PMID: 34068493 PMCID: PMC8150776 DOI: 10.3390/plants10050946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 05/05/2023]
Abstract
DNA methylation is an epigenetic mechanism by which a methyl group is added to a cytosine or an adenine. When located in a gene/regulatory sequence it may repress or de-repress genes, depending on the context and species. Eragrostis curvula is an apomictic grass in which facultative genotypes increases the frequency of sexual pistils triggered by epigenetic mechanisms. The aim of the present study was to look for correlations between the reproductive mode and specific methylated genes or genomic regions. To do so, plants with contrasting reproductive modes were investigated through MCSeEd (Methylation Context Sensitive Enzyme ddRad) showing higher levels of DNA methylation in apomictic genotypes. Moreover, an increased proportion of differentially methylated positions over the regulatory regions were observed, suggesting its possible role in regulation of gene expression. Interestingly, the methylation pathway was also found to be self-regulated since two of the main genes (ROS1 and ROS4), involved in de-methylation, were found differentially methylated between genotypes with different reproductive behavior. Moreover, this work allowed us to detect several genes regulated by methylation that were previously found as differentially expressed in the comparisons between apomictic and sexual genotypes, linking DNA methylation to differences in reproductive mode.
Collapse
Affiliation(s)
- Jose Carballo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000 Bahía Blanca, Argentina
| | - Diego Zappacosta
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000 Bahía Blanca, Argentina
| | - Gianpiero Marconi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Jimena Gallardo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000 Bahía Blanca, Argentina
| | - Marco Di Marsico
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Cristian A. Gallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
| | - Mario Caccamo
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK;
| | - Emidio Albertini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
- Correspondence: (E.A.); (V.E.); Tel.: +39-075-585-6206 (E.A.); +54-291-486-1124 (V.E.)
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000 Bahía Blanca, Argentina
- Correspondence: (E.A.); (V.E.); Tel.: +39-075-585-6206 (E.A.); +54-291-486-1124 (V.E.)
| |
Collapse
|
33
|
A study of the heterochronic sense/antisense RNA representation in florets of sexual and apomictic Paspalum notatum. BMC Genomics 2021; 22:185. [PMID: 33726667 PMCID: PMC7962388 DOI: 10.1186/s12864-021-07450-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Apomixis, an asexual mode of plant reproduction, is a genetically heritable trait evolutionarily related to sexuality, which enables the fixation of heterozygous genetic combinations through the development of maternal seeds. Recently, reference floral transcriptomes were generated from sexual and apomictic biotypes of Paspalum notatum, one of the most well-known plant models for the study of apomixis. However, the transcriptome dynamics, the occurrence of apomixis vs. sexual expression heterochronicity across consecutive developmental steps and the orientation of transcription (sense/antisense) remain unexplored. Results We produced 24 Illumina TruSeq®/ Hiseq 1500 sense/antisense floral transcriptome libraries covering four developmental stages (premeiosis, meiosis, postmeiosis, and anthesis) in biological triplicates, from an obligate apomictic and a full sexual genotype. De novo assemblies with Trinity yielded 103,699 and 100,114 transcripts for the apomictic and sexual samples respectively. A global comparative analysis involving reads from all developmental stages revealed 19,352 differentially expressed sense transcripts, of which 13,205 (68%) and 6147 (32%) were up- and down-regulated in apomictic samples with respect to the sexual ones. Interestingly, 100 differentially expressed antisense transcripts were detected, 55 (55%) of them up- and 45 (45%) down-regulated in apomictic libraries. A stage-by-stage comparative analysis showed a higher number of differentially expressed candidates due to heterochronicity discrimination: the highest number of differential sense transcripts was detected at premeiosis (23,651), followed by meiosis (22,830), postmeiosis (19,100), and anthesis (17,962), while the highest number of differential antisense transcripts were detected at anthesis (495), followed by postmeiosis (164), meiosis (120) and premeiosis (115). Members of the AP2, ARF, MYB and WRKY transcription factor families, as well as the auxin, jasmonate and cytokinin plant hormone families appeared broadly deregulated. Moreover, the chronological expression profile of several well-characterized apomixis controllers was examined in detail. Conclusions This work provides a quantitative sense/antisense gene expression catalogue covering several subsequent reproductive developmental stages from premeiosis to anthesis for apomictic and sexual P. notatum, with potential to reveal heterochronic expression between reproductive types and discover sense/antisense mediated regulation. We detected a contrasting transcriptional and hormonal control in apomixis and sexuality as well as specific sense/antisense modulation occurring at the onset of parthenogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07450-3.
Collapse
|
34
|
Li Y, Huang Y, Pan L, Zhao Y, Huang W, Jin W. Male sterile 28 encodes an ARGONAUTE family protein essential for male fertility in maize. Chromosome Res 2021; 29:189-201. [PMID: 33651229 DOI: 10.1007/s10577-021-09653-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/01/2022]
Abstract
Male sterility is a common biological phenomenon in plants and is a useful trait for hybrid seed production. Normal tapetum development is essential for viable pollen generation. Although many genes involved in tapetum differentiation and degradation have been isolated in maize, elements that regulate tapetum development during pollen mother cell (PMC) meiosis are less studied. Here, we characterized a classical male-sterile mutant male sterile 28 (ms28) in maize. The ms28 mutant had a regular male meiosis process, while its tapetum cells showed premature vacuolation at the early meiotic prophase stage. Using map-based cloning, we cloned the Ms28 gene and confirmed its role in male fertility in maize together with two allelic mutants. Ms28 encodes the ARGONAUTE (AGO) family protein ZmAGO5c, and its transcripts primarily accumulate in premeiosis anthers, with more intense signals in PMCs. Transcriptomic analysis revealed that genes related to anther development, cell division, and reproductive structure development processes were differentially expressed between the ms28 mutant and its fertile siblings. Moreover, small RNA (sRNA) sequencing revealed that the small interfering RNA (siRNA) and microRNA (miRNA) abundances were obviously changed in ms28 meiotic anthers, which indicated that Ms28 may regulate tapetal cell development through small RNA-mediated epigenetic regulatory pathways. Taken together, our results shed more light on the functional mechanisms of the early development of the tapetum for male fertility in maize.
Collapse
Affiliation(s)
- Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Yue Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China.
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
35
|
Wu W, Li L, Zhao Y, Zhao Y, Jiang T, McCormick S, Zheng B. Heterochromatic silencing is reinforced by ARID1-mediated small RNA movement in Arabidopsis pollen. THE NEW PHYTOLOGIST 2021; 229:3269-3280. [PMID: 32783185 DOI: 10.1111/nph.16871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In the plant male germline, transposable elements (TEs) are reactivated in the companion vegetative nucleus, resulting in siRNA production and the intercellular movement of these siRNAs to reinforce TE silencing in sperm. However, the mechanism by which siRNA movement is regulated remains unexplored. Here we show that ARID1, a transcription factor which is constitutively expressed in the vegetative nucleus but dynamically accumulates in the generative cell (the progenitor of sperm) to promote the second pollen mitosis, mediates siRNA movement to reinforce heterochromatic silencing in the male germline. We looked for regulators involved in the accumulation of ARID1 in the generative cell, and found that AGO9, a germline-specific AGO in Arabidopsis, is required for the accumulation of ARID1 in the generative cell. Mutations in either ARID1 or AGO9 lead to the interruption of not only the second pollen mitosis but also the movement of siRNA from the vegetative nucleus to the male germline, resulting in the release of heterochromatic silencing in the male germline. Moreover, conditional knockdown of ARID1 in the generative cell causes reduced heterochromatic silencing in both bicellular and mature pollen. This study provides insights into how a spatiotemporal transcription factor coordinates heterochromatic silencing and male germline maturation.
Collapse
Affiliation(s)
- Wenye Wu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lei Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yi Zhao
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Youshang Zhao
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ting Jiang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Sheila McCormick
- Department of Plant and Microbial Biology, UC-Berkeley, Albany, CA, 94710, USA
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
36
|
Fiaz S, Wang X, Younas A, Alharthi B, Riaz A, Ali H. Apomixis and strategies to induce apomixis to preserve hybrid vigor for multiple generations. GM CROPS & FOOD 2021; 12:57-70. [PMID: 32877304 PMCID: PMC7553744 DOI: 10.1080/21645698.2020.1808423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
Hybrid seeds of several important crops with supreme qualities including yield, biotic and abiotic stress tolerance have been cultivated for decades. Thus far, a major challenge with hybrid seeds is that they do not have the ability to produce plants with the same qualities over subsequent generations. Apomixis, an asexual mode of reproduction by avoiding meiosis, exists naturally in flowering plants, and ultimately leads to seed production. Apomixis has the potential to preserve hybrid vigor for multiple generations in economically important plant genotypes. The evolution and genetics of asexual seed production are unclear, and much more effort will be required to determine the genetic architecture of this phenomenon. To fix hybrid vigor, synthetic apomixis has been suggested. The development of MiMe (mitosis instead of meiosis) genotypes has been utilized for clonal gamete production. However, the identification and parental origin of genes responsible for synthetic apomixis are little known and need further clarification. Genome modifications utilizing genome editing technologies (GETs), such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (cas), a reverse genetics tool, have paved the way toward the utilization of emerging technologies in plant molecular biology. Over the last decade, several genes in important crops have been successfully edited. The vast availability of GETs has made functional genomics studies easy to conduct in crops important for food security. Disruption in the expression of genes specific to egg cell MATRILINEAL (MTL) through the CRISPR/Cas genome editing system promotes the induction of haploid seed, whereas triple knockout of the Baby Boom (BBM) genes BBM1, BBM2, and BBM3 cause embryo arrest and abortion, which can be fully rescued by male-transmitted BBM1. The establishment of synthetic apomixis by engineering the MiMe genotype by genome editing of BBM1 expression or disruption of MTL leads to clonal seed production and heritability for multiple generations. In the present review, we discuss current developments related to the use of CRISPR/Cas technology in plants and the possibility of promoting apomixis in crops to preserve hybrid vigor. In addition, genetics, evolution, epigenetic modifications, and strategies for MiMe genotype development are discussed in detail.
Collapse
Affiliation(s)
- Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur 22620 , Khyber Pakhtunkhwa, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan'an University , Yan'an, Shaanxi, China
| | - Afifa Younas
- Department of Botany, Lahore College for Women University , Lahore, Pakistan
| | - Badr Alharthi
- College of Science and Engineering, Flinders University , Adelaide, Australia
- University College of Khurma, Taif University , Taif, Saudi Arabia
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Habib Ali
- Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology , Rahim Yar Khan, Pakistan
- Department of Entomology, Sub-Campus Depalpur, University of Agriculture Faisalabad , Faisalabad, Pakistan
| |
Collapse
|
37
|
Mendes MA, Petrella R, Cucinotta M, Vignati E, Gatti S, Pinto SC, Bird DC, Gregis V, Dickinson H, Tucker MR, Colombo L. The RNA-dependent DNA methylation pathway is required to restrict SPOROCYTELESS/NOZZLE expression to specify a single female germ cell precursor in Arabidopsis. Development 2020; 147:dev194274. [PMID: 33158925 PMCID: PMC7758631 DOI: 10.1242/dev.194274] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
In higher plants, the female germline is formed from the megaspore mother cell (MMC), a single cell in the premeiotic ovule. Previously, it was reported that mutants in the RNA-dependent DNA methylation (RdDM) pathway might be involved in restricting the female germline to a single nucellus cell. We show that the DRM methyltransferase double mutant drm1drm2 also presents ectopic enlarged cells, consistent with supernumerary MMC-like cells. In wild-type ovules, MMC differentiation requires SPOROCYTELESS/NOZZLE (SPL/NZZ), as demonstrated by the spl/nzz mutant failing to develop an MMC. We address the poorly understood upstream regulation of SPL/NZZ in ovules, showing that the RdDM pathway is important to restrict SPL/NZZ expression. In ago9, rdr6 and drm1drm2 mutants, SPL/NZZ is expressed ectopically, suggesting that the multiple MMC-like cells observed might be attributable to the ectopic expression of SPL/NZZ. We show that the ovule identity gene, SEEDSTICK, directly regulates AGO9 and RDR6 expression in the ovule and therefore indirectly regulates SPL/NZZ expression. A model is presented describing the network required to restrict SPL/NZZ expression to specify a single MMC.
Collapse
Affiliation(s)
- Marta A Mendes
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Rosanna Petrella
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Mara Cucinotta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Edoardo Vignati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Stefano Gatti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Sara C Pinto
- LAQV REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Dayton C Bird
- School of Agriculture, Food, and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Hugh Dickinson
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Matthew R Tucker
- School of Agriculture, Food, and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
38
|
Bélanger S, Pokhrel S, Czymmek K, Meyers BC. Premeiotic, 24-Nucleotide Reproductive PhasiRNAs Are Abundant in Anthers of Wheat and Barley But Not Rice and Maize. PLANT PHYSIOLOGY 2020. [PMID: 32917771 DOI: 10.1101/2020.06.18.160440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two classes of premeiotic (21-nucleotides [nt]) and meiotic (24-nt) phased small interfering RNAs (phasiRNAs) and their patterns of accumulation have been described in maize (Zea mays) and rice (Oryza sativa) anthers. Their precise function remains unclear, but studies have shown that they support male fertility. The important role of phasiRNAs in anthers underpins our present study to characterize these small RNAs in wheat (Triticum aestivum) and barley (Hordeum vulgare) anthers. We staged anthers at every 0.2 mm of development for one wheat and two barley varieties. We isolated premeiotic (0.2, 0.4, and 0.6 mm), meiotic (0.8, 1.0, and 1.4 mm), and postmeiotic (1.8 mm) anthers, for which we then investigated accumulation patterns of RNAs, including reproductive phasiRNAs. We annotated a total of 12,821 and 2,897 PHAS loci in the wheat and barley genomes, respectively. By comparing the total number of PHAS loci in genomes of maize, rice, barley, and wheat, we identified an expansion of reproductive PHAS loci in the genomes of Poaceae subfamilies from Panicoideae to Oryzoideae and to Poideae. In addition to the two classes of premeiotic (21-nt) and meiotic (24-nt) phasiRNAs, previously described in maize and rice anthers, we characterized a group of 24-nt phasiRNAs that accumulate in premeiotic anthers. The absence of premeiotic 24-nt phasiRNAs in maize and rice suggests a divergence in grass species of the Poideae subfamily. Additionally, we performed a gene coexpression analysis describing the regulation of phasiRNA biogenesis in wheat and barley anthers. We highlight Argonaute 9 (AGO9) and Argonaute 6 (AGO6) as candidate binding partners of premeiotic and meiotic 24-nt phasiRNAs, respectively.
Collapse
Affiliation(s)
| | - Suresh Pokhrel
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Kirk Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
39
|
Bélanger S, Pokhrel S, Czymmek K, Meyers BC. Premeiotic, 24-Nucleotide Reproductive PhasiRNAs Are Abundant in Anthers of Wheat and Barley But Not Rice and Maize. PLANT PHYSIOLOGY 2020; 184:1407-1423. [PMID: 32917771 PMCID: PMC7608162 DOI: 10.1104/pp.20.00816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/01/2020] [Indexed: 05/05/2023]
Abstract
Two classes of premeiotic (21-nucleotides [nt]) and meiotic (24-nt) phased small interfering RNAs (phasiRNAs) and their patterns of accumulation have been described in maize (Zea mays) and rice (Oryza sativa) anthers. Their precise function remains unclear, but studies have shown that they support male fertility. The important role of phasiRNAs in anthers underpins our present study to characterize these small RNAs in wheat (Triticum aestivum) and barley (Hordeum vulgare) anthers. We staged anthers at every 0.2 mm of development for one wheat and two barley varieties. We isolated premeiotic (0.2, 0.4, and 0.6 mm), meiotic (0.8, 1.0, and 1.4 mm), and postmeiotic (1.8 mm) anthers, for which we then investigated accumulation patterns of RNAs, including reproductive phasiRNAs. We annotated a total of 12,821 and 2,897 PHAS loci in the wheat and barley genomes, respectively. By comparing the total number of PHAS loci in genomes of maize, rice, barley, and wheat, we identified an expansion of reproductive PHAS loci in the genomes of Poaceae subfamilies from Panicoideae to Oryzoideae and to Poideae. In addition to the two classes of premeiotic (21-nt) and meiotic (24-nt) phasiRNAs, previously described in maize and rice anthers, we characterized a group of 24-nt phasiRNAs that accumulate in premeiotic anthers. The absence of premeiotic 24-nt phasiRNAs in maize and rice suggests a divergence in grass species of the Poideae subfamily. Additionally, we performed a gene coexpression analysis describing the regulation of phasiRNA biogenesis in wheat and barley anthers. We highlight Argonaute 9 (AGO9) and Argonaute 6 (AGO6) as candidate binding partners of premeiotic and meiotic 24-nt phasiRNAs, respectively.
Collapse
Affiliation(s)
| | - Suresh Pokhrel
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Kirk Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
40
|
Liu Y, Teng C, Xia R, Meyers BC. PhasiRNAs in Plants: Their Biogenesis, Genic Sources, and Roles in Stress Responses, Development, and Reproduction. THE PLANT CELL 2020; 32:3059-3080. [PMID: 32817252 PMCID: PMC7534485 DOI: 10.1105/tpc.20.00335] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 05/08/2023]
Abstract
Phased secondary small interfering RNAs (phasiRNAs) constitute a major category of small RNAs in plants, but most of their functions are still poorly defined. Some phasiRNAs, known as trans-acting siRNAs, are known to target complementary mRNAs for degradation and to function in development. However, the targets or biological roles of other phasiRNAs remain speculative. New insights into phasiRNA biogenesis, their conservation, and their variation across the flowering plants continue to emerge due to the increased availability of plant genomic sequences, deeper and more sophisticated sequencing approaches, and improvements in computational biology and biochemical/molecular/genetic analyses. In this review, we survey recent progress in phasiRNA biology, with a particular focus on two classes associated with male reproduction: 21-nucleotide (accumulate early in anther ontogeny) and 24-nucloetide (produced in somatic cells during meiosis) phasiRNAs. We describe phasiRNA biogenesis, function, and evolution and define the unanswered questions that represent topics for future research.
Collapse
Affiliation(s)
- Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510640, China
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Chong Teng
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510640, China
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, Missouri 65211
| |
Collapse
|
41
|
Su Z, Wang N, Hou Z, Li B, Li D, Liu Y, Cai H, Qin Y, Chen X. Regulation of Female Germline Specification via Small RNA Mobility in Arabidopsis. THE PLANT CELL 2020; 32:2842-2854. [PMID: 32703817 PMCID: PMC7474286 DOI: 10.1105/tpc.20.00126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 05/20/2023]
Abstract
In the ovules of most sexually reproducing plants, one hypodermal cell differentiates into a megaspore mother cell (MMC), which gives rise to the female germline. Trans-acting small interfering RNAs known as tasiR-ARFs have been suggested to act non-cell-autonomously to prevent the formation of multiple MMCs by repressing AUXIN RESPONSE FACTOR3 (ARF3) expression in Arabidopsis (Arabidopsis thaliana), but the underlying mechanisms are unknown. Here, we examined tasiR-ARF-related intercellular regulatory mechanisms. Expression analysis revealed that components of the tasiR-ARF biogenesis pathway are restricted to distinct ovule cell types, thus limiting tasiR-ARF production to the nucellar epidermis. We also provide data suggesting tasiR-ARF movement along the mediolateral axis into the hypodermal cells and basipetally into the chalaza. Furthermore, we used cell type-specific promoters to express ARF3m, which is resistant to tasiR-ARF regulation, in different ovule cell layers. ARF3m expression in hypodermal cells surrounding the MMC, but not in epidermal cells, led to a multiple-MMC phenotype, suggesting that tasiR-ARFs repress ARF3 in these hypodermal cells to suppress ectopic MMC fate. RNA sequencing analyses in plants with hypodermally expressed ARF3m showed that ARF3 potentially regulates MMC specification through phytohormone pathways. Our findings uncover intricate spatial restriction of tasiR-ARF biogenesis, which together with tasiR-ARF mobility enables cell-cell communication in MMC differentiation.
Collapse
Affiliation(s)
- Zhenxia Su
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nannan Wang
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhimin Hou
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baiyang Li
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingning Li
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Liu
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyang Cai
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| |
Collapse
|
42
|
Genes Modulating the Increase in Sexuality in the Facultative Diplosporous Grass Eragrostis curvula under Water Stress Conditions. Genes (Basel) 2020; 11:genes11090969. [PMID: 32825586 PMCID: PMC7564825 DOI: 10.3390/genes11090969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/23/2023] Open
Abstract
Eragrostis curvula presents mainly facultative genotypes that reproduce by diplosporous apomixis, retaining a percentage of sexual pistils that increase under drought and other stressful situations, indicating that some regulators activated by stress could be affecting the apomixis/sexual switch. Water stress experiments were performed in order to associate the increase in sexual embryo sacs with the differential expression of genes in a facultative apomictic cultivar using cytoembryology and RNA sequencing. The percentage of sexual embryo sacs increased from 4 to 24% and 501 out of the 201,011 transcripts were differentially expressed (DE) between control and stressed plants. DE transcripts were compared with previous transcriptomes where apomictic and sexual genotypes were contrasted. The results point as candidates to transcripts related to methylation, ubiquitination, hormone and signal transduction pathways, transcription regulation and cell wall biosynthesis, some acting as a general response to stress and some that are specific to the reproductive mode. We suggest that a DNA glycosylase EcROS1-like could be demethylating, thus de-repressing a gene or genes involved in the sexuality pathways. Many of the other DE transcripts could be part of a complex mechanism that regulates apomixis and sexuality in this grass, the ones in the intersection between control/stress and apo/sex being the strongest candidates.
Collapse
|
43
|
Rathore P, Raina SN, Kumar S, Bhat V. Retro-Element Gypsy-163 Is Differentially Methylated in Reproductive Tissues of Apomictic and Sexual Plants of Cenchrus ciliaris. Front Genet 2020; 11:795. [PMID: 32849800 PMCID: PMC7387646 DOI: 10.3389/fgene.2020.00795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/03/2020] [Indexed: 11/18/2022] Open
Abstract
Apomixis, an asexual mode of reproduction through seeds, has immense scope for crop improvement due to its ability to fix hybrid vigor. In C. ciliaris, a predominantly apomictically reproducing range grass, apomixis is genetically controlled by an apospory-specific-genomic-region (ASGR) which is enriched with retrotransposons. Earlier studies showed insertional polymorphisms of a few ASGR-specific retrotransposons between apomictic and sexual plants of C. ciliaris. REs are mainly regulated at the transcriptional level through cytosine methylation. To understand the possible association of ASGR-specific retrotransposon to apomixis, the extent and pattern of differential methylation of Gy163 RE and its impact on transcription were investigated in two genotypes each of apomictic and sexual plants of C. ciliaris. We observed that Gy163 encodes for an integrase domain of RE Ty3-Gypsy, is differentially methylated between reproductive tissues of apomictic and sexual plants. However, leaf tissues did not exhibit differential methylation between apomictic and sexual plants. Among the three contexts (CG, CHG, and CHH) of cytosine methylation, the maximum variation was observed in CHH context in reproductive (at aposporous initial and mature embryo sac stages) tissues of apomictic plants implicating RdDM pathway in methylation of Gy163. Quantitative PCR analysis showed that Gy163 transcripts are expressed more in the reproductive tissues of apomictic plants compared to that in the sexual plants, which was negatively correlated with the methylation level. Thus, the study helps in understanding the role of RE present in ASGR in epigenetic regulation of apomictic mode of reproduction in C. ciliaris.
Collapse
Affiliation(s)
- Priyanka Rathore
- Department of Botany, Faculty of Science, University of Delhi, New Delhi, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vishnu Bhat
- Department of Botany, Faculty of Science, University of Delhi, New Delhi, India
| |
Collapse
|
44
|
Scheben A, Hojsgaard D. Can We Use Gene-Editing to Induce Apomixis in Sexual Plants? Genes (Basel) 2020; 11:E781. [PMID: 32664641 PMCID: PMC7397034 DOI: 10.3390/genes11070781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Apomixis, the asexual formation of seeds, is a potentially valuable agricultural trait. Inducing apomixis in sexual crop plants would, for example, allow breeders to fix heterosis in hybrid seeds and rapidly generate doubled haploid crop lines. Molecular models explain the emergence of functional apomixis, i.e., apomeiosis + parthenogenesis + endosperm development, as resulting from a combination of genetic or epigenetic changes that coordinate altered molecular and developmental steps to form clonal seeds. Apomixis-like features and synthetic clonal seeds have been induced with limited success in the sexual plants rice and maize by using gene editing to mutate genes related to meiosis and fertility or via egg-cell specific expression of embryogenesis genes. Inducing functional apomixis and increasing the penetrance of apomictic seed production will be important for commercial deployment of the trait. Optimizing the induction of apomixis with gene editing strategies that use known targets as well as identifying alternative targets will be possible by better understanding natural genetic variation in apomictic species. With the growing availability of genomic data and precise gene editing tools, we are making substantial progress towards engineering apomictic crops.
Collapse
Affiliation(s)
- Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA;
| | - Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, 37073 Goettingen, Germany
| |
Collapse
|
45
|
Chasing the Apomictic Factors in the Ranunculus auricomus Complex: Exploring Gene Expression Patterns in Microdissected Sexual and Apomictic Ovules. Genes (Basel) 2020; 11:genes11070728. [PMID: 32630035 PMCID: PMC7397075 DOI: 10.3390/genes11070728] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022] Open
Abstract
Apomixis, the asexual reproduction via seeds, is associated to polyploidy and hybridization. To identify possible signatures of apomixis, and possible candidate genes underlying the shift from sex to apomixis, microarray-based gene expression patterns of live microdissected ovules at four different developmental stages were compared between apomictic and sexual individuals of the Ranunculus auricomus complex. Following predictions from previous work on mechanisms underlying apomixis penetrance and expressivity in the genus, gene expression patterns were classified into three categories based on their relative expression in apomicts compared to their sexual parental ancestors. We found evidence of misregulation and differential gene expression between apomicts and sexuals, with the highest number of differences detected during meiosis progression and emergence of aposporous initial (AI) cells, a key developmental stage in the ovule of apomicts where a decision between divergent reproductive pathways takes place. While most of the differentially expressed genes (DEGs) could not be annotated, gene expression was classified into transgressive, parent of origin and ploidy effects. Genes related to gametogenesis and meiosis demonstrated patterns reflective of transgressive and genome dosage effects, which support the hypothesis of a dominant factor controlling apomixis in Ranunculus and modulated by secondary modifiers. Three genes with probable functions in sporogenesis and gametogenesis development are identified and characterized for future studies.
Collapse
|
46
|
Genome-Wide Identification of RNA Silencing-Related Genes and Their Expressional Analysis in Response to Heat Stress in Barley ( Hordeum vulgare L.). Biomolecules 2020; 10:biom10060929. [PMID: 32570964 PMCID: PMC7356095 DOI: 10.3390/biom10060929] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Barley (Hordeum vulgare L.) is an economically important crop cultivated in temperate climates all over the world. Adverse environmental factors negatively affect its survival and productivity. RNA silencing is a conserved pathway involved in the regulation of growth, development and stress responses. The key components of RNA silencing are the Dicer-like proteins (DCLs), Argonautes (AGOs) and RNA-dependent RNA polymerases (RDRs). Despite its economic importance, there is no available comprehensive report on barley RNA silencing machinery and its regulation. In this study, we in silico identified five DCL (HvDCL), eleven AGO (HvAGO) and seven RDR (HvRDR) genes in the barley genome. Genomic localization, phylogenetic analysis, domain organization and functional/catalytic motif identification were also performed. To understand the regulation of RNA silencing, we experimentally analysed the transcriptional changes in response to moderate, persistent or gradient heat stress treatments: transcriptional accumulation of siRNA- but not miRNA-based silencing factor was consistently detected. These results suggest that RNA silencing is dynamically regulated and may be involved in the coordination of development and environmental adaptation in barley. In summary, our work provides information about barley RNA silencing components and will be a ground for the selection of candidate factors and in-depth functional/mechanistic analyses.
Collapse
|
47
|
Wang Y, Jiang H, Wang G. PHERES1 Controls Endosperm Gene Imprinting and Seed Development. TRENDS IN PLANT SCIENCE 2020; 25:517-519. [PMID: 32407690 DOI: 10.1016/j.tplants.2020.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
In contrast to mammals, genomic imprinting primarily occurs in the endosperm in flowering plants. Nevertheless, the imprinting drivers and functions of imprinted genes remain poorly understood. Batista et al. identified the type I MADS-box transcription factor (TF) PHERES1 (PHE1) as a key regulator of some imprinted and nonimprinted genes required for endosperm development.
Collapse
Affiliation(s)
- Yongyan Wang
- National Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hua Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben 06466, Germany
| | - Guifeng Wang
- National Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
48
|
Kiefer M, Nauerth BH, Volkert C, Ibberson D, Loreth A, Schmidt A. Gene Function Rather than Reproductive Mode Drives the Evolution of RNA Helicases in Sexual and Apomictic Boechera. Genome Biol Evol 2020; 12:656-673. [PMID: 32302391 PMCID: PMC7250504 DOI: 10.1093/gbe/evaa078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2020] [Indexed: 12/20/2022] Open
Abstract
In higher plants, sexual and asexual reproductions through seeds (apomixis) have evolved as alternative strategies. Evolutionary advantages leading to coexistence of both reproductive modes are currently not well understood. It is expected that accumulation of deleterious mutations leads to a rapid elimination of apomictic lineages from populations. In this line, apomixis originated repeatedly, likely from deregulation of the sexual pathway, leading to alterations in the development of reproductive lineages (germlines) in apomicts as compared with sexual plants. This potentially involves mutations in genes controlling reproduction. Increasing evidence suggests that RNA helicases are crucial regulators of germline development. To gain insights into the evolution of 58 members of this diverse gene family in sexual and apomictic plants, we applied target enrichment combined with next-generation sequencing to identify allelic variants from 24 accessions of the genus Boechera, comprising sexual, facultative, and obligate apomicts. Interestingly, allelic variants from apomicts did not show consistently increased mutation frequency. Either sequences were highly conserved in any accession, or allelic variants preferentially harbored mutations in evolutionary less conserved C- and N-terminal domains, or presented high mutation load independent of the reproductive mode. Only for a few genes allelic variants harboring deleterious mutations were only identified in apomicts. To test if high sequence conservation correlates with roles in fundamental cellular or developmental processes, we analyzed Arabidopsis thaliana mutant lines in VASA-LIKE (VASL), and identified pleiotropic defects during ovule and reproductive development. This indicates that also in apomicts mechanisms of selection are in place based on gene function.
Collapse
Affiliation(s)
- Markus Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Berit H Nauerth
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Christopher Volkert
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Anna Loreth
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Anja Schmidt
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
49
|
Hojsgaard D. Apomixis Technology: Separating the Wheat from the Chaff. Genes (Basel) 2020; 11:E411. [PMID: 32290084 PMCID: PMC7231277 DOI: 10.3390/genes11040411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Projections indicate that current plant breeding approaches will be unable to incorporate the global crop yields needed to deliver global food security. Apomixis is a disruptive innovation by which a plant produces clonal seeds capturing heterosis and gene combinations of elite phenotypes. Introducing apomixis into hybrid cultivars is a game-changing development in the current plant breeding paradigm that will accelerate the generation of high-yield cultivars. However, apomixis is a developmentally complex and genetically multifaceted trait. The central problem behind current constraints to apomixis breeding is that the genomic configuration and molecular mechanism that initiate apomixis and guide the formation of a clonal seed are still unknown. Today, not a single explanation about the origin of apomixis offer full empirical coverage, and synthesizing apomixis by manipulating individual genes has failed or produced little success. Overall evidence suggests apomixis arise from a still unknown single event molecular mechanism with multigenic effects. Disentangling the genomic basis and complex genetics behind the emergence of apomixis in plants will require the use of novel experimental approaches benefiting from Next Generation Sequencing technologies and targeting not only reproductive genes, but also the epigenetic and genomic configurations associated with reproductive phenotypes in homoploid sexual and apomictic carriers. A comprehensive picture of most regulatory changes guiding apomixis emergence will be central for successfully installing apomixis into the target species by exploiting genetic modification techniques.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University of Göttingen, Untere Karspüle 2, D-37073-1 Göttingen, Germany
| |
Collapse
|
50
|
Zhao H, Guo M, Yan M, Cheng H, Liu Y, She Z, Lai L, Shi C, Zhang M, Li Y, Lin D, Qin Y. Comparative Expression Profiling Reveals Genes Involved in Megasporogenesis. PLANT PHYSIOLOGY 2020; 182:2006-2024. [PMID: 32054780 PMCID: PMC7140934 DOI: 10.1104/pp.19.01254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/02/2020] [Indexed: 05/21/2023]
Abstract
Megasporogenesis is a key step during ovule development in angiosperms, but the small number and inaccessibility of these cells have hampered molecular and genome-wide studies. Thus, many questions remain regarding the molecular basis of cell specification, differentiation, and development in the female gametophyte. Here, taking advantage of the correlation between spikelet length and ovule development in rice (Oryza sativa), we studied the transcriptome dynamics of young ovules at three stages, the archesporial cell, the megaspore mother cell before meiosis, and the functional megaspore after meiosis, using expression profiling based on RNA sequencing. Our analysis showed that 5,274 genes were preferentially expressed in ovules during megasporogenesis as compared to ovules at the mature female gametophyte stage. Out of these, 958 (18.16%) genes were archesporial cell- and/or megaspore mother cell-preferential genes, and represent a significant enrichment of genes involved in hormone signal transduction and plant pathogen interaction pathways, as well as genes encoding transcription factors. The expression patterns of nine genes that were preferentially expressed in ovules of different developmental stages, including the OsERECTA2 (OsER2) receptor-like kinase gene, were confirmed by in situ hybridization. We further characterized the OsER2 loss-of-function mutant, which had an excessive number of female germline cells and an abnormal female gametophyte, suggesting that OsER2 regulates germline cell specification during megasporogenesis in rice. These results expand our understanding of the molecular control of megasporogenesis in rice and contribute to the functional studies of genes involved in megasporogenesis.
Collapse
Affiliation(s)
- Heming Zhao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingliang Guo
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Maokai Yan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Han Cheng
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Liu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeyuan She
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Linyi Lai
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Shi
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minqian Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Deshu Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|