1
|
Sawant KR, Sarnaik AP, Singh R, Savvashe P, Baier T, Kruse O, Jutur PP, Lali A, Pandit RA. Outdoor cultivation and metabolomics exploration of Chlamydomonas engineered for bisabolene production. BIORESOURCE TECHNOLOGY 2024; 398:130513. [PMID: 38432540 DOI: 10.1016/j.biortech.2024.130513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Demonstrating outdoor cultivation of engineered microalgae at considerable scales is essential for their prospective large-scale deployment. Hence, this study focuses on the outdoor cultivation of an engineered Chlamydomonas reinhardtii strain, 3XAgBs-SQs, for bisabolene production under natural dynamic conditions of light and temperature. Our preliminary outdoor experiments showed improved growth, but frequent culture collapses in conventional Tris-acetate-phosphate medium. In contrast, modified high-salt medium (HSM) supported prolonged cell survival, outdoor. However, their subsequent outdoor scale-up from 250 mL to 5 L in HSM was effective with 10 g/L bicarbonate supplementation. Pulse amplitude modulation fluorometry and metabolomic analysis further validated their improved photosynthesis and uncompromised metabolic fluxes towards the biomass and the products (natural carotenoids and engineered bisabolene). These strains could produce 906 mg/L bisabolene and 54 mg/L carotenoids, demonstrating the first successful outdoor photoautotrophic cultivation of engineeredC. reinhardtii,establishing it as a one-cell two-wells biorefinery.
Collapse
Affiliation(s)
- Kaustubh R Sawant
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Aditya P Sarnaik
- School for Sustainable Engineering and the Built Environment, Arizona State University, The Polytechnic Campus, Mesa, AZ 85212, USA.
| | - Rabinder Singh
- Omics of Algae Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 237, Trebon 379 01, Czech Republic.
| | - Prashant Savvashe
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany.
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany.
| | - Pannaga Pavan Jutur
- Omics of Algae Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Arvind Lali
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Reena A Pandit
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
2
|
Rredhi A, Petersen J, Wagner V, Vuong T, Li W, Li W, Schrader L, Mittag M. The UV-A Receptor CRY-DASH1 Up- and Downregulates Proteins Involved in Different Plastidial Pathways. J Mol Biol 2024; 436:168271. [PMID: 37699454 DOI: 10.1016/j.jmb.2023.168271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Algae encode up to five different types of cryptochrome photoreceptors. So far, relatively little is known about the biological functions of the DASH (Drosophila, Arabidopsis, Synechocystis and Homo)-type cryptochromes. The green alga Chlamydomonas reinhardtii encodes two of them. CRY-DASH1 also called DCRY1 has its maximal absorption peak in the UV-A range. It is localized in the chloroplast and plays an important role in balancing the photosynthetic machinery. Here, we performed a comparative analysis of chloroplast proteins from wild type and a knockout mutant of CRY-DASH1 named cry-dash1mut, using label-free quantitative proteomics as well as immunoblotting. Our results show upregulation of enzymes involved in specific pathways in the mutant including key enzymes of chlorophyll and carotenoid biosynthesis consistent with increased levels of photosynthetic pigments in cry-dash1mut. There is also an increase in certain redox as well as photosystem I and II proteins, including D1. Strikingly, CRY-DASH1 is coregulated in a D1 deletion mutant, where its amount is increased. In contrast, key proteins of the central carbon metabolism, including glycolysis/gluconeogenesis, dark fermentation and the oxidative pentose phosphate pathway are downregulated in cry-dash1mut. Similarly, enzymes of histidine biosynthesis are downregulated in cry-dash1mut leading to a reduction in the amount of free histidine. Yet, transcripts encoding for several of these proteins are at a similar level in the wild type and cry-dash1mut or even opposite. We show that CRY-DASH1 can bind to RNA, taking the psbA RNA encoding D1 as target. These data suggest that CRY-DASH1 regulates plastidial metabolic pathways at the posttranscriptional level.
Collapse
Affiliation(s)
- Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/1anPetersen
| | - Volker Wagner
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/trangha593
| | - Wenshuang Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Wei Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Laura Schrader
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
3
|
Cecchin M, Simicevic J, Chaput L, Hernandez Gil M, Girolomoni L, Cazzaniga S, Remacle C, Hoeng J, Ivanov NV, Titz B, Ballottari M. Acclimation strategies of the green alga Chlorella vulgaris to different light regimes revealed by physiological and comparative proteomic analyses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4540-4558. [PMID: 37155956 DOI: 10.1093/jxb/erad170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Acclimation to different light regimes is at the basis of survival for photosynthetic organisms, regardless of their evolutionary origin. Previous research efforts largely focused on acclimation events occurring at the level of the photosynthetic apparatus and often highlighted species-specific mechanisms. Here, we investigated the consequences of acclimation to different irradiances in Chlorella vulgaris, a green alga that is one of the most promising species for industrial application, focusing on both photosynthetic and mitochondrial activities. Moreover, proteomic analysis of cells acclimated to high light (HL) or low light (LL) allowed identification of the main targets of acclimation in terms of differentially expressed proteins. The results obtained demonstrate photosynthetic adaptation to HL versus LL that was only partially consistent with previous findings in Chlamydomonas reinhardtii, a model organism for green algae, but in many cases similar to vascular plant acclimation events. Increased mitochondrial respiration measured in HL-acclimated cells mainly relied on alternative oxidative pathway dissipating the excessive reducing power produced due to enhanced carbon flow. Finally, proteins involved in cell metabolism, intracellular transport, gene expression, and signaling-including a heliorhodopsin homolog-were identified as strongly differentially expressed in HL versus LL, suggesting their key roles in acclimation to different light regimes.
Collapse
Affiliation(s)
- Michela Cecchin
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Jovan Simicevic
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Louise Chaput
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel Hernandez Gil
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Laura Girolomoni
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Stefano Cazzaniga
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
4
|
Pang X, Nawrocki WJ, Cardol P, Zheng M, Jiang J, Fang Y, Yang W, Croce R, Tian L. Weak acids produced during anaerobic respiration suppress both photosynthesis and aerobic respiration. Nat Commun 2023; 14:4207. [PMID: 37452043 PMCID: PMC10349137 DOI: 10.1038/s41467-023-39898-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
While photosynthesis transforms sunlight energy into sugar, aerobic and anaerobic respiration (fermentation) catabolizes sugars to fuel cellular activities. These processes take place within one cell across several compartments, however it remains largely unexplored how they interact with one another. Here we report that the weak acids produced during fermentation down-regulate both photosynthesis and aerobic respiration. This effect is mechanistically explained with an "ion trapping" model, in which the lipid bilayer selectively traps protons that effectively acidify subcellular compartments with smaller buffer capacities - such as the thylakoid lumen. Physiologically, we propose that under certain conditions, e.g., dim light at dawn, tuning down the photosynthetic light reaction could mitigate the pressure on its electron transport chains, while suppression of respiration could accelerate the net oxygen evolution, thus speeding up the recovery from hypoxia. Since we show that this effect is conserved across photosynthetic phyla, these results indicate that fermentation metabolites exert widespread feedback control over photosynthesis and aerobic respiration. This likely allows algae to better cope with changing environmental conditions.
Collapse
Affiliation(s)
- Xiaojie Pang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wojciech J Nawrocki
- Department of Physics and Astronomy and LaserLab Amsterdam Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Centre National de la Recherche Scientifique, Sorbonne Université, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005, Paris, France
| | - Pierre Cardol
- Génétique et Physiologie des Microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, B22, 4000, Liège, Belgium
| | - Mengyuan Zheng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jingjing Jiang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Yuan Fang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenqiang Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Roberta Croce
- Department of Physics and Astronomy and LaserLab Amsterdam Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
5
|
Neusius D, Kleinknecht L, Teh JT, Ostermeier M, Kelterborn S, Eirich J, Hegemann P, Finkemeier I, Bohne AV, Nickelsen J. Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1780-1800. [PMID: 35899410 DOI: 10.1111/tpj.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The dihydrolipoamide acetyltransferase subunit DLA2 of the chloroplast pyruvate dehydrogenase complex (cpPDC) in the green alga Chlamydomonas reinhardtii has previously been shown to possess moonlighting activity in chloroplast gene expression. Under mixotrophic growth conditions, DLA2 forms part of a ribonucleoprotein particle (RNP) with the psbA mRNA that encodes the D1 protein of the photosystem II (PSII) reaction center. Here, we report on the characterization of the molecular switch that regulates shuttling of DLA2 between its functions in carbon metabolism and D1 synthesis. Determination of RNA-binding affinities by microscale thermophoresis demonstrated that the E3-binding domain (E3BD) of DLA2 mediates psbA-specific RNA recognition. Analyses of cpPDC formation and activity, as well as RNP complex formation, showed that acetylation of a single lysine residue (K197) in E3BD induces the release of DLA2 from the cpPDC, and its functional shift towards RNA binding. Moreover, Förster resonance energy transfer microscopy revealed that psbA mRNA/DLA2 complexes localize around the chloroplast's pyrenoid. Pulse labeling and D1 re-accumulation after induced PSII degradation strongly suggest that DLA2 is important for D1 synthesis during de novo PSII biogenesis.
Collapse
Affiliation(s)
- Daniel Neusius
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Laura Kleinknecht
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Jing Tsong Teh
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Matthias Ostermeier
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Simon Kelterborn
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149, Münster, Germany
| | - Peter Hegemann
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149, Münster, Germany
| | - Alexandra-Viola Bohne
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Jörg Nickelsen
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| |
Collapse
|
6
|
The Role of Acetate Kinase in the Human Parasite Entamoeba histolytica. PARASITOLOGIA (BASEL, SWITZERLAND) 2022; 2:147-159. [PMID: 36872919 PMCID: PMC9983610 DOI: 10.3390/parasitologia2020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human parasite Entamoeba histolytica, which causes approximately 100 million cases of amoebic dysentery each year, relies on glycolysis as the major source of ATP production from glucose as it lacks a citric acid cycle and oxidative phosphorylation. Ethanol and acetate, the two major glycolytic end products for E. histolytica, are produced at a ratio of 2:1 under anaerobic conditions, creating an imbalance between NADH production and utilization. In this study we investigated the role of acetate kinase (ACK) in acetate production during glycolysis in E. histolytica metabolism. Analysis of intracellular and extracellular metabolites demonstrated that acetate levels were unaffected in an ACK RNAi cell line, but acetyl-CoA levels and the NAD+/NADH ratio were significantly elevated. Moreover, we demonstrated that glyceraldehyde 3-phosphate dehydrogenase catalyzes the ACK-dependent conversion of acetaldehyde to acetyl phosphate in E. histolytica. We propose that ACK is not a major contributor to acetate production, but instead provides a mechanism for maintaining the NAD+/NADH balance during ethanol production in the extended glycolytic pathway.
Collapse
|
7
|
Durán P, Flores-Uribe J, Wippel K, Zhang P, Guan R, Melkonian B, Melkonian M, Garrido-Oter R. Shared features and reciprocal complementation of the Chlamydomonas and Arabidopsis microbiota. Nat Commun 2022; 13:406. [PMID: 35058457 PMCID: PMC8776852 DOI: 10.1038/s41467-022-28055-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
Microscopic algae release organic compounds to the region immediately surrounding their cells, known as the phycosphere, constituting a niche for colonization by heterotrophic bacteria. These bacteria take up algal photoassimilates and provide beneficial functions to their host, in a process that resembles the establishment of microbial communities associated with the roots and rhizospheres of land plants. Here, we characterize the microbiota of the model alga Chlamydomonas reinhardtii and reveal extensive taxonomic and functional overlap with the root microbiota of land plants. Using synthetic communities derived from C. reinhardtii and Arabidopsis thaliana, we show that phycosphere and root bacteria assemble into taxonomically similar communities on either host. We show that provision of diffusible metabolites is not sufficient for phycosphere community establishment, which additionally requires physical proximity to the host. Our data suggest the existence of shared ecological principles driving the assembly of the A. thaliana root and C. reinhardtii phycosphere microbiota, despite the vast evolutionary distance between these two photosynthetic organisms.
Collapse
Affiliation(s)
- Paloma Durán
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences, 40225, Düsseldorf, Germany
| | - José Flores-Uribe
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Kathrin Wippel
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Pengfan Zhang
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Rui Guan
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Barbara Melkonian
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Michael Melkonian
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Ruben Garrido-Oter
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences, 40225, Düsseldorf, Germany.
| |
Collapse
|
8
|
Füßl M, König AC, Eirich J, Hartl M, Kleinknecht L, Bohne AV, Harzen A, Kramer K, Leister D, Nickelsen J, Finkemeier I. Dynamic light- and acetate-dependent regulation of the proteome and lysine acetylome of Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:261-277. [PMID: 34709689 DOI: 10.1111/tpj.15555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The green alga Chlamydomonas reinhardtii is one of the most studied microorganisms in photosynthesis research and for biofuel production. A detailed understanding of the dynamic regulation of its carbon metabolism is therefore crucial for metabolic engineering. Post-translational modifications can act as molecular switches for the control of protein function. Acetylation of the ɛ-amino group of lysine residues is a dynamic modification on proteins across organisms from all kingdoms. Here, we performed mass spectrometry-based profiling of proteome and lysine acetylome dynamics in Chlamydomonas under varying growth conditions. Chlamydomonas liquid cultures were transferred from mixotrophic (light and acetate as carbon source) to heterotrophic (dark and acetate) or photoautotrophic (light only) growth conditions for 30 h before harvest. In total, 5863 protein groups and 1376 lysine acetylation sites were identified with a false discovery rate of <1%. As a major result of this study, our data show that dynamic changes in the abundance of lysine acetylation on various enzymes involved in photosynthesis, fatty acid metabolism, and the glyoxylate cycle are dependent on acetate and light. Exemplary determination of acetylation site stoichiometries revealed particularly high occupancy levels on K175 of the large subunit of RuBisCO and K99 and K340 of peroxisomal citrate synthase under heterotrophic conditions. The lysine acetylation stoichiometries correlated with increased activities of cellular citrate synthase and the known inactivation of the Calvin-Benson cycle under heterotrophic conditions. In conclusion, the newly identified dynamic lysine acetylation sites may be of great value for genetic engineering of metabolic pathways in Chlamydomonas.
Collapse
Affiliation(s)
- Magdalena Füßl
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, DE-50829, Germany
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, Muenster, DE-48149, Germany
| | - Ann-Christine König
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, DE-50829, Germany
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Protein Science, Heidemannstr. 1, Munich, DE-80939, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, Muenster, DE-48149, Germany
| | - Markus Hartl
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, DE-50829, Germany
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
- Mass Spectrometry Facility, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, Vienna, AT-1030, Austria
| | - Laura Kleinknecht
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
| | - Alexandra-Viola Bohne
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
| | - Anne Harzen
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, DE-50829, Germany
| | - Katharina Kramer
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, DE-50829, Germany
| | - Dario Leister
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
| | - Jörg Nickelsen
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
| | - Iris Finkemeier
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, DE-50829, Germany
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, Muenster, DE-48149, Germany
| |
Collapse
|
9
|
Genome sequencing of the multicellular alga Astrephomene provides insights into convergent evolution of germ-soma differentiation. Sci Rep 2021; 11:22231. [PMID: 34811380 PMCID: PMC8608804 DOI: 10.1038/s41598-021-01521-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/29/2021] [Indexed: 01/27/2023] Open
Abstract
Germ-soma differentiation evolved independently in many eukaryotic lineages and contributed to complex multicellular organizations. However, the molecular genetic bases of such convergent evolution remain unresolved. Two multicellular volvocine green algae, Volvox and Astrephomene, exhibit convergent evolution of germ-soma differentiation. The complete genome sequence is now available for Volvox, while genome information is scarce for Astrephomene. Here, we generated the de novo whole genome sequence of Astrephomene gubernaculifera and conducted RNA-seq analysis of isolated somatic and reproductive cells. In Volvox, tandem duplication and neofunctionalization of the ancestral transcription factor gene (RLS1/rlsD) might have led to the evolution of regA, the master regulator for Volvox germ-soma differentiation. However, our genome data demonstrated that Astrephomene has not undergone tandem duplication of the RLS1/rlsD homolog or acquisition of a regA-like gene. Our RNA-seq analysis revealed the downregulation of photosynthetic and anabolic gene expression in Astrephomene somatic cells, as in Volvox. Among genes with high expression in somatic cells of Astrephomene, we identified three genes encoding putative transcription factors, which may regulate somatic cell differentiation. Thus, the convergent evolution of germ-soma differentiation in the volvocine algae may have occurred by the acquisition of different regulatory circuits that generate a similar division of labor.
Collapse
|
10
|
Puzanskiy RK, Romanyuk DA, Kirpichnikova AA, Shishova MF. Alteration in the Expression of Genes Encoding Primary Metabolism Enzymes and Plastid Transporters during the Culture Growth of Chlamydomonas reinhardtii. Mol Biol 2020. [DOI: 10.1134/s0026893320040147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Algae-Bacteria Consortia as a Strategy to Enhance H 2 Production. Cells 2020; 9:cells9061353. [PMID: 32486026 PMCID: PMC7348838 DOI: 10.3390/cells9061353] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Biological hydrogen production by microalgae is a potential sustainable, renewable and clean source of energy. However, many barriers limiting photohydrogen production in these microorganisms remain unsolved. In order to explore this potential and make biohydrogen industrially affordable, the unicellular microalga Chlamydomonas reinhardtii is used as a model system to solve barriers and identify new approaches that can improve hydrogen production. Recently, Chlamydomonas–bacteria consortia have opened a new window to improve biohydrogen production. In this study, we review the different consortia that have been successfully employed and analyze the factors that could be behind the improved H2 production.
Collapse
|
12
|
Halim R, Hill DRA, Hanssen E, Webley PA, Martin GJO. Thermally coupled dark-anoxia incubation: A platform technology to induce auto-fermentation and thus cell-wall thinning in both nitrogen-replete and nitrogen-deplete Nannochloropsis slurries. BIORESOURCE TECHNOLOGY 2019; 290:121769. [PMID: 31323512 DOI: 10.1016/j.biortech.2019.121769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Nitrogen-deprived Nannochloropsis cells invested their fixed carbon into the accumulation of triacylglycerol and cell wall cellulose (thickness of N-replete cell walls = 27.8 ± 5.8, N-deplete cell walls = 51.0 ± 10.2 nm). In this study, the effect of nitrogen depletion on the ability of the cells to weaken their own cell walls via autolysis was investigated. Autolytic cell wall thinning was achieved in both N-replete and N-deplete biomass by incubating highly concentrated slurries in darkness at 38 °C. The incubation forced cells to anaerobically ferment their intracellular cellulose and resulted in 30-40% reduction in cell wall thickness for both biomass types. This wall depletion weakened the cells and increased the extent of cell rupture by mechanical force (from 42 to 78% for N-replete biomass, from 36 to 62% for N-deplete biomass). Importantly, autolysis did not adversely impact the amino acid content of protein-rich N-replete biomass or the fatty acid content of lipid-rich N-deplete biomass.
Collapse
Affiliation(s)
- Ronald Halim
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia.
| | - David R A Hill
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Eric Hanssen
- Advanced Microscopy Unit, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Paul A Webley
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Gregory J O Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
13
|
Salomé PA, Merchant SS. A Series of Fortunate Events: Introducing Chlamydomonas as a Reference Organism. THE PLANT CELL 2019; 31:1682-1707. [PMID: 31189738 PMCID: PMC6713297 DOI: 10.1105/tpc.18.00952] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/20/2019] [Accepted: 06/08/2019] [Indexed: 05/13/2023]
Abstract
The unicellular alga Chlamydomonas reinhardtii is a classical reference organism for studying photosynthesis, chloroplast biology, cell cycle control, and cilia structure and function. It is also an emerging model for studying sensory cilia, the production of high-value bioproducts, and in situ structural determination. Much of the early appeal of Chlamydomonas was rooted in its promise as a genetic system, but like other classic model organisms, this rise to prominence predated the discovery of the structure of DNA, whole-genome sequences, and molecular techniques for gene manipulation. The haploid genome of C. reinhardtii facilitates genetic analyses and offers many of the advantages of microbial systems applied to a photosynthetic organism. C. reinhardtii has contributed to our understanding of chloroplast-based photosynthesis and cilia biology. Despite pervasive transgene silencing, technological advances have allowed researchers to address outstanding lines of inquiry in algal research. The most thoroughly studied unicellular alga, C. reinhardtii, is the current standard for algal research, and although genome editing is still far from efficient and routine, it nevertheless serves as a template for other algae. We present a historical retrospective of the rise of C. reinhardtii to illuminate its past and present. We also present resources for current and future scientists who may wish to expand their studies to the realm of microalgae.
Collapse
Affiliation(s)
- Patrice A Salomé
- University of California, Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA 90095
| | - Sabeeha S Merchant
- University of California, Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA 90095
- University of California, Berkeley, Departments of Plant and Microbial Biology and Molecular and Cell Biology, Berkeley, CA 94720
| |
Collapse
|
14
|
Tabatabaei I, Dal Bosco C, Bednarska M, Ruf S, Meurer J, Bock R. A highly efficient sulfadiazine selection system for the generation of transgenic plants and algae. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:638-649. [PMID: 30144344 PMCID: PMC6381783 DOI: 10.1111/pbi.13004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/17/2018] [Indexed: 05/02/2023]
Abstract
The genetic transformation of plant cells is critically dependent on the availability of efficient selectable marker gene. Sulfonamides are herbicides that, by inhibiting the folic acid biosynthetic pathway, suppress the growth of untransformed cells. Sulfonamide resistance genes that were previously developed as selectable markers for plant transformation were based on the assumption that, in plants, the folic acid biosynthetic pathway resides in the chloroplast compartment. Consequently, the Sul resistance protein, a herbicide-insensitive dihydropteroate synthase, was targeted to the chloroplast. Although these vectors produce transgenic plants, the transformation efficiencies are low compared to other markers. Here, we show that this inefficiency is due to the erroneous assumption that the folic acid pathway is located in chloroplasts. When the RbcS transit peptide was replaced by a transit peptide for protein import into mitochondria, the compartment where folic acid biosynthesis takes place in yeast, much higher resistance to sulfonamide and much higher transformation efficiencies are obtained, suggesting that current sul vectors are likely to function due to low-level mistargeting of the resistance protein to mitochondria. We constructed a series of optimized transformation vectors and demonstrate that they produce transgenic events at very high frequency in both the seed plant tobacco and the green alga Chlamydomonas reinhardtii. Co-transformation experiments in tobacco revealed that sul is even superior to nptII, the currently most efficient selectable marker gene, and thus provides an attractive marker for the high-throughput genetic transformation of plants and algae.
Collapse
Affiliation(s)
- Iman Tabatabaei
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Cristina Dal Bosco
- Department für Biologie ILudwig‐Maximilians‐Universität MünchenMünchenGermany
- Present address:
Pioneer Hi‐Bred Northern Europe Service Division GmbHEschbachGermany
| | - Marta Bednarska
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Stephanie Ruf
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Jörg Meurer
- Department für Biologie ILudwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Ralph Bock
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| |
Collapse
|
15
|
Kaye Y, Huang W, Clowez S, Saroussi S, Idoine A, Sanz-Luque E, Grossman AR. The mitochondrial alternative oxidase from Chlamydomonas reinhardtii enables survival in high light. J Biol Chem 2018; 294:1380-1395. [PMID: 30510139 DOI: 10.1074/jbc.ra118.004667] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/24/2018] [Indexed: 01/07/2023] Open
Abstract
Photosynthetic organisms often experience extreme light conditions that can cause hyper-reduction of the chloroplast electron transport chain, resulting in oxidative damage. Accumulating evidence suggests that mitochondrial respiration and chloroplast photosynthesis are coupled when cells are absorbing high levels of excitation energy. This coupling helps protect the cells from hyper-reduction of photosynthetic electron carriers and diminishes the production of reactive oxygen species (ROS). To examine this cooperative protection, here we characterized Chlamydomonas reinhardtii mutants lacking the mitochondrial alternative terminal respiratory oxidases, CrAOX1 and CrAOX2. Using fluorescent fusion proteins, we experimentally demonstrated that both enzymes localize to mitochondria. We also observed that the mutant strains were more sensitive than WT cells to high light under mixotrophic and photoautotrophic conditions, with the aox1 strain being more sensitive than aox2 Additionally, the lack of CrAOX1 increased ROS accumulation, especially in very high light, and damaged the photosynthetic machinery, ultimately resulting in cell death. These findings indicate that the Chlamydomonas AOX proteins can participate in acclimation of C. reinhardtii cells to excess absorbed light energy. They suggest that when photosynthetic electron carriers are highly reduced, a chloroplast-mitochondria coupling allows safe dissipation of photosynthetically derived electrons via the reduction of O2 through AOX (especially AOX1)-dependent mitochondrial respiration.
Collapse
Affiliation(s)
- Yuval Kaye
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305.
| | - Weichao Huang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Sophie Clowez
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Shai Saroussi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Adam Idoine
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Emanuel Sanz-Luque
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| |
Collapse
|
16
|
Wittkopp TM, Saroussi S, Yang W, Johnson X, Kim RG, Heinnickel ML, Russell JJ, Phuthong W, Dent RM, Broeckling CD, Peers G, Lohr M, Wollman FA, Niyogi KK, Grossman AR. GreenCut protein CPLD49 of Chlamydomonas reinhardtii associates with thylakoid membranes and is required for cytochrome b 6 f complex accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1023-1037. [PMID: 29602195 DOI: 10.1111/tpj.13915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/23/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
The GreenCut encompasses a suite of nucleus-encoded proteins with orthologs among green lineage organisms (plants, green algae), but that are absent or poorly conserved in non-photosynthetic/heterotrophic organisms. In Chlamydomonas reinhardtii, CPLD49 (Conserved in Plant Lineage and Diatoms49) is an uncharacterized GreenCut protein that is critical for maintaining normal photosynthetic function. We demonstrate that a cpld49 mutant has impaired photoautotrophic growth under high-light conditions. The mutant exhibits a nearly 90% reduction in the level of the cytochrome b6 f complex (Cytb6 f), which impacts linear and cyclic electron transport, but does not compromise the ability of the strain to perform state transitions. Furthermore, CPLD49 strongly associates with thylakoid membranes where it may be part of a membrane protein complex with another GreenCut protein, CPLD38; a mutant null for CPLD38 also impacts Cytb6 f complex accumulation. We investigated several potential functions of CPLD49, with some suggested by protein homology. Our findings are congruent with the hypothesis that CPLD38 and CPLD49 are part of a novel thylakoid membrane complex that primarily modulates accumulation, but also impacts the activity of the Cytb6 f complex. Based on motifs of CPLD49 and the activities of other CPLD49-like proteins, we suggest a role for this putative dehydrogenase in the synthesis of a lipophilic thylakoid membrane molecule or cofactor that influences the assembly and activity of Cytb6 f.
Collapse
Affiliation(s)
- Tyler M Wittkopp
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Shai Saroussi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Wenqiang Yang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Xenie Johnson
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint Paul lez Durance, France
| | - Rick G Kim
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Mark L Heinnickel
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - James J Russell
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Witchukorn Phuthong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Rachel M Dent
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Martin Lohr
- Institut für Molekulare Physiologie - Pflanzenbiochemie, Johannes Gutenberg-Universität, 55099, Mainz, Germany
| | | | - Krishna K Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
17
|
Düner M, Lambertz J, Mügge C, Hemschemeier A. The soluble guanylate cyclase CYG12 is required for the acclimation to hypoxia and trophic regimes in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:311-337. [PMID: 29161457 DOI: 10.1111/tpj.13779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 05/27/2023]
Abstract
Oxygenic phototrophs frequently encounter environmental conditions that result in intracellular energy crises. Growth of the unicellular green alga Chlamydomonas reinhardtii in hypoxia in the light depends on acclimatory responses of which the induction of photosynthetic cyclic electron flow is essential. The microalga cannot grow in the absence of molecular oxygen (O2 ) in the dark, although it possesses an elaborate fermentation metabolism. Not much is known about how the microalga senses and signals the lack of O2 or about its survival strategies during energy crises. Recently, nitric oxide (NO) has emerged to be required for the acclimation of C. reinhardtii to hypoxia. In this study, we show that the soluble guanylate cyclase (sGC) CYG12, a homologue of animal NO sensors, is also involved in this response. CYG12 is an active sGC, and post-transcriptional down-regulation of the CYG12 gene impairs hypoxic growth and gene expression in C. reinhardtii. However, it also results in a disturbed photosynthetic apparatus under standard growth conditions and the inability to grow heterotrophically. Transcriptome profiles indicate that the mis-expression of CYG12 results in a perturbation of responses that, in the wild-type, maintain the cellular energy budget. We suggest that CYG12 is required for the proper operation of the photosynthetic apparatus which, in turn, is essential for survival in hypoxia and darkness.
Collapse
Affiliation(s)
- Melis Düner
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Jan Lambertz
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Carolin Mügge
- Junior Research Group for Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Anja Hemschemeier
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
18
|
van Lis R, Popek M, Couté Y, Kosta A, Drapier D, Nitschke W, Atteia A. Concerted Up-regulation of Aldehyde/Alcohol Dehydrogenase (ADHE) and Starch in Chlamydomonas reinhardtii Increases Survival under Dark Anoxia. J Biol Chem 2016; 292:2395-2410. [PMID: 28007962 DOI: 10.1074/jbc.m116.766048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/21/2016] [Indexed: 11/06/2022] Open
Abstract
Aldehyde/alcohol dehydrogenases (ADHEs) are bifunctional enzymes that commonly produce ethanol from acetyl-CoA with acetaldehyde as intermediate and play a key role in anaerobic redox balance in many fermenting bacteria. ADHEs are also present in photosynthetic unicellular eukaryotes, where their physiological role and regulation are, however, largely unknown. Herein we provide the first molecular and enzymatic characterization of the ADHE from the photosynthetic microalga Chlamydomonas reinhardtii Purified recombinant ADHE catalyzed the reversible NADH-mediated interconversions of acetyl-CoA, acetaldehyde, and ethanol but seemed to be poised toward the production of ethanol from acetaldehyde. Phylogenetic analysis of the algal fermentative enzyme supports a vertical inheritance from a cyanobacterial-related ancestor. ADHE was located in the chloroplast, where it associated in dimers and higher order oligomers. Electron microscopy analysis of ADHE-enriched stromal fractions revealed fine spiral structures, similar to bacterial ADHE spirosomes. Protein blots showed that ADHE is regulated under oxic conditions. Up-regulation is observed in cells exposed to diverse physiological stresses, including zinc deficiency, nitrogen starvation, and inhibition of carbon concentration/fixation capacity. Analyses of the overall proteome and fermentation profiles revealed that cells with increased ADHE abundance exhibit better survival under dark anoxia. This likely relates to the fact that greater ADHE abundance appeared to coincide with enhanced starch accumulation, which might reflect ADHE-mediated anticipation of anaerobic survival.
Collapse
Affiliation(s)
- Robert van Lis
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France.,LBE, INRA, 11100 Narbonne, France
| | - Marion Popek
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France
| | - Yohann Couté
- the Université Grenoble Alpes, BIG-BGE, 38000 Grenoble, France.,the Commissariat à l'Energie Atomique, BIG-BGE, 38000 Grenoble, France.,INSERM, BGE, 38000 Grenoble, France
| | - Artemis Kosta
- the Microscopy Core Facility, FR3479 Institut de Microbiologie de la Méditerranée, 13402 Marseille cedex 20, France, and
| | - Dominique Drapier
- the Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, 75005 Paris, France
| | - Wolfgang Nitschke
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France
| | - Ariane Atteia
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France,
| |
Collapse
|
19
|
Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii. G3-GENES GENOMES GENETICS 2016; 6:4115-4125. [PMID: 27770025 PMCID: PMC5144980 DOI: 10.1534/g3.116.033035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs) has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins.
Collapse
|
20
|
Li X, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R, Robertson JM, Lefebvre PA, Fitz-Gibbon ST, Grossman AR, Jonikas MC. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii. THE PLANT CELL 2016; 28:367-87. [PMID: 26764374 PMCID: PMC4790863 DOI: 10.1105/tpc.15.00465] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/30/2015] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Ru Zhang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Weronika Patena
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Spencer S Gang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Sean R Blum
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Nina Ivanova
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Rebecca Yue
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Jacob M Robertson
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Paul A Lefebvre
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Sorel T Fitz-Gibbon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| |
Collapse
|
21
|
Burgess SJ, Taha H, Yeoman JA, Iamshanova O, Chan KX, Boehm M, Behrends V, Bundy JG, Bialek W, Murray JW, Nixon PJ. Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts. PLANT & CELL PHYSIOLOGY 2016; 57:82-94. [PMID: 26574578 PMCID: PMC4722173 DOI: 10.1093/pcp/pcv167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/27/2015] [Indexed: 05/19/2023]
Abstract
Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD(+)-dependent d-lactate dehydrogenase encoded by Cre07.g324550. Its expression during aerobic growth supports a possible function as a 'lactate valve' for the export of lactate to the mitochondrion for oxidation by cytochrome-dependent d-lactate dehydrogenases and by glycolate dehydrogenase. We also present a revised spatial model of fermentation based on our immunochemical detection of the likely pyruvate decarboxylase, PDC3, in the cytoplasm.
Collapse
Affiliation(s)
- Steven J Burgess
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK These authors contributed equally to this work
| | - Hussein Taha
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK These authors contributed equally to this work Present address: Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Brunei Darussalam
| | - Justin A Yeoman
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Oksana Iamshanova
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Kher Xing Chan
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Marko Boehm
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Volker Behrends
- Department of Biomolecular Medicine, Sir Alexander Fleming Building, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Jacob G Bundy
- Department of Biomolecular Medicine, Sir Alexander Fleming Building, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Wojciech Bialek
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - James W Murray
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
22
|
Critical role of Chlamydomonas reinhardtii ferredoxin-5 in maintaining membrane structure and dark metabolism. Proc Natl Acad Sci U S A 2015; 112:14978-83. [PMID: 26627249 DOI: 10.1073/pnas.1515240112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Photosynthetic microorganisms typically have multiple isoforms of the electron transfer protein ferredoxin, although we know little about their exact functions. Surprisingly, a Chlamydomonas reinhardtii mutant null for the ferredoxin-5 gene (FDX5) completely ceased growth in the dark, with both photosynthetic and respiratory functions severely compromised; growth in the light was unaffected. Thylakoid membranes in dark-maintained fdx5 mutant cells became severely disorganized concomitant with a marked decrease in the ratio of monogalactosyldiacylglycerol to digalactosyldiacylglycerol, major lipids in photosynthetic membranes, and the accumulation of triacylglycerol. Furthermore, FDX5 was shown to physically interact with the fatty acid desaturases CrΔ4FAD and CrFAD6, likely donating electrons for the desaturation of fatty acids that stabilize monogalactosyldiacylglycerol. Our results suggest that in photosynthetic organisms, specific redox reactions sustain dark metabolism, with little impact on daytime growth, likely reflecting the tailoring of electron carriers to unique intracellular metabolic circuits under these two very distinct redox conditions.
Collapse
|
23
|
Gonzalez-Ballester D, Jurado-Oller JL, Fernandez E. Relevance of nutrient media composition for hydrogen production in Chlamydomonas. PHOTOSYNTHESIS RESEARCH 2015; 125:395-406. [PMID: 25952745 DOI: 10.1007/s11120-015-0152-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/29/2015] [Indexed: 05/23/2023]
Abstract
Microalgae are capable of biological H2 photoproduction from water, solar energy, and a variety of organic substrates. Acclimation responses to different nutrient regimes finely control photosynthetic activity and can influence H2 production. Hence, nutrient stresses are an interesting scenario to study H2 production in photosynthetic organisms. In this review, we mainly focus on the H2-production mechanisms in Chlamydomonas reinhardtii and the physiological relevance of the nutrient media composition when producing H2.
Collapse
Affiliation(s)
- David Gonzalez-Ballester
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edif. Severo Ochoa, 14071, Córdoba, Spain,
| | | | | |
Collapse
|
24
|
Huwald D, Schrapers P, Kositzki R, Haumann M, Hemschemeier A. Characterization of unusual truncated hemoglobins of Chlamydomonas reinhardtii suggests specialized functions. PLANTA 2015; 242:167-85. [PMID: 25893868 DOI: 10.1007/s00425-015-2294-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/27/2015] [Indexed: 05/04/2023]
Abstract
Annotated hemoglobin genes in Chlamydomonas reinhardtii form functional globins, despite unusual architectures. Spectral characteristics show subtle biochemical differences. Multiple globins might help the alga to cope with its versatile environment. The unicellular green alga C. reinhardtii is a photosynthetic, often soil-dwelling organism, subjected to a changeable environment in nature. The alga contains 12 genes encoding so-called truncated hemoglobins that feature a two-on-two helical fold instead of the three-on-three helix arrangement of the long-studied vertebrate globins or plant symbiotic and non-symbiotic hemoglobins. In plants, non-symbiotic hemoglobins often play a role in acclimation to stress, and we could show recently that one of the C. reinhardtii globin genes is vital for anoxic growth. Here, three further globin encoding transcripts (Cre16.g661000.t1.1, Cre16.g661300.t2.1 and Cre16.g662750.t1.2) were heterologously expressed along with the recently studied THB1. UV-Vis and X-ray absorption spectroscopy analyses show that the sequences indeed encode functional hemoglobins, despite their uncommon primary sequences, which include long C-termini without any predictable function, or a split heme-binding domain. The proteins show some variations regarding the coordination of the heme iron or the interaction with diatomic ligands, indicating different functionalities. The respective transcripts are not responsive to the nitrogen source, in contrast to results reported for THB1, but they accumulate in darkness. This work advances experimental data on the very large globin family in general, and, more specifically, on hemoglobins in photosynthetic organisms.
Collapse
Affiliation(s)
- Dennis Huwald
- Work Group Photobiotechnology, Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, ND2/134, 44801, Bochum, Germany
| | | | | | | | | |
Collapse
|
25
|
Biochemical and Kinetic Characterization of the Eukaryotic Phosphotransacetylase Class IIa Enzyme from Phytophthora ramorum. EUKARYOTIC CELL 2015; 14:652-60. [PMID: 25956919 DOI: 10.1128/ec.00007-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/06/2015] [Indexed: 11/20/2022]
Abstract
Phosphotransacetylase (Pta), a key enzyme in bacterial metabolism, catalyzes the reversible transfer of an acetyl group from acetyl phosphate to coenzyme A (CoA) to produce acetyl-CoA and Pi. Two classes of Pta have been identified based on the absence (Pta(I)) or presence (Pta(II)) of an N-terminal regulatory domain. Pta(I) has been fairly well studied in bacteria and one genus of archaea; however, only the Escherichia coli and Salmonella enterica Pta(II) enzymes have been biochemically characterized, and they are allosterically regulated. Here, we describe the first biochemical and kinetic characterization of a eukaryotic Pta from the oomycete Phytophthora ramorum. The two Ptas from P. ramorum, designated PrPta(II)1 and PrPta(II)2, both belong to class II. PrPta(II)1 displayed positive cooperativity for both acetyl phosphate and CoA and is allosterically regulated. We compared the effects of different metabolites on PrPta(II)1 and the S. enterica Pta(II) and found that, although the N-terminal regulatory domains share only 19% identity, both enzymes are inhibited by ATP, NADP, NADH, phosphoenolpyruvate (PEP), and pyruvate in the acetyl-CoA/Pi-forming direction but are differentially regulated by AMP. Phylogenetic analysis of bacterial, archaeal, and eukaryotic sequences identified four subtypes of Pta(II) based on the presence or absence of the P-loop and DRTGG subdomains within the N-terminal regulatory domain. Although the E. coli, S. enterica, and P. ramorum enzymes all belong to the IIa subclass, our kinetic analysis has indicated that enzymes within a subclass can still display differences in their allosteric regulation.
Collapse
|
26
|
Yang W, Catalanotti C, Wittkopp TM, Posewitz MC, Grossman AR. Algae after dark: mechanisms to cope with anoxic/hypoxic conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:481-503. [PMID: 25752440 DOI: 10.1111/tpj.12823] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
Chlamydomonas reinhardtii is a unicellular, soil-dwelling (and aquatic) green alga that has significant metabolic flexibility for balancing redox equivalents and generating ATP when it experiences hypoxic/anoxic conditions. The diversity of pathways available to ferment sugars is often revealed in mutants in which the activities of specific branches of fermentative metabolism have been eliminated; compensatory pathways that have little activity in parental strains under standard laboratory fermentative conditions are often activated. The ways in which these pathways are regulated and integrated have not been extensively explored. In this review, we primarily discuss the intricacies of dark anoxic metabolism in Chlamydomonas, but also discuss aspects of dark oxic metabolism, the utilization of acetate, and the relatively uncharacterized but critical interactions that link chloroplastic and mitochondrial metabolic networks.
Collapse
Affiliation(s)
- Wenqiang Yang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Claudia Catalanotti
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Tyler M Wittkopp
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Matthew C Posewitz
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
27
|
Clowez S, Godaux D, Cardol P, Wollman FA, Rappaport F. The involvement of hydrogen-producing and ATP-dependent NADPH-consuming pathways in setting the redox poise in the chloroplast of Chlamydomonas reinhardtii in anoxia. J Biol Chem 2015; 290:8666-76. [PMID: 25691575 DOI: 10.1074/jbc.m114.632588] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosynthetic microalgae are exposed to changing environmental conditions. In particular, microbes found in ponds or soils often face hypoxia or even anoxia, and this severely impacts their physiology. Chlamydomonas reinhardtii is one among such photosynthetic microorganisms recognized for its unusual wealth of fermentative pathways and the extensive remodeling of its metabolism upon the switch to anaerobic conditions. As regards the photosynthetic electron transfer, this remodeling encompasses a strong limitation of the electron flow downstream of photosystem I. Here, we further characterize the origin of this limitation. We show that it stems from the strong reducing pressure that builds up upon the onset of anoxia, and this pressure can be relieved either by the light-induced synthesis of ATP, which promotes the consumption of reducing equivalents, or by the progressive activation of the hydrogenase pathway, which provides an electron transfer pathway alternative to the CO2 fixation cycle.
Collapse
Affiliation(s)
- Sophie Clowez
- From the Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 Rue P et M Curie, 75005 Paris, France, and
| | - Damien Godaux
- the Laboratoire de Génétique et Physiologie des Microalgues, Phytosystems, Department of Life Sciences, Institute of Botany, 27 Bld. du Rectorat, University of Liège, B-4000 Liège, Belgium
| | - Pierre Cardol
- the Laboratoire de Génétique et Physiologie des Microalgues, Phytosystems, Department of Life Sciences, Institute of Botany, 27 Bld. du Rectorat, University of Liège, B-4000 Liège, Belgium
| | - Francis-André Wollman
- From the Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 Rue P et M Curie, 75005 Paris, France, and
| | - Fabrice Rappaport
- From the Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 Rue P et M Curie, 75005 Paris, France, and
| |
Collapse
|