1
|
Gibson C, Jönsson H, Spelman TA. Mean-field theory approach to three-dimensional nematic phase transitions in microtubules. Phys Rev E 2023; 108:064414. [PMID: 38243538 DOI: 10.1103/physreve.108.064414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Microtubules are dynamic intracellular fibers that have been observed experimentally to undergo spontaneous self-alignment. We formulate a three-dimensional (3D) mean-field theory model to analyze the nematic phase transition of microtubules growing and interacting within a 3D space, then make a comparison with computational simulations. We identify a control parameter G_{eff} and predict a unique critical value G_{eff}=1.56 for which a phase transition can occur. Furthermore, we show both analytically and using simulations that this predicted critical value does not depend on the presence of zippering. The mean-field theory developed here provides an analytical estimate of microtubule patterning characteristics without running time-consuming simulations and is a step towards bridging scales from microtubule behavior to multicellular simulations.
Collapse
Affiliation(s)
- Cameron Gibson
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, United Kingdom
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, United Kingdom
- Centre for Environmental and Climate Science, Lund University, SE-223 62 Lund, Sweden
| | - Tamsin A Spelman
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, United Kingdom
| |
Collapse
|
2
|
Zhu Z, Becam I, Tovey CA, Elfarkouchi A, Yen EC, Bernard F, Guichet A, Conduit PT. Multifaceted modes of γ-tubulin complex recruitment and microtubule nucleation at mitotic centrosomes. J Cell Biol 2023; 222:e202212043. [PMID: 37698931 PMCID: PMC10497398 DOI: 10.1083/jcb.202212043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/18/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023] Open
Abstract
Microtubule nucleation is mediated by γ-tubulin ring complexes (γ-TuRCs). In most eukaryotes, a GCP4/5/4/6 "core" complex promotes γ-tubulin small complex (γ-TuSC) association to generate cytosolic γ-TuRCs. Unlike γ-TuSCs, however, this core complex is non-essential in various species and absent from budding yeasts. In Drosophila, Spindle defective-2 (Spd-2) and Centrosomin (Cnn) redundantly recruit γ-tubulin complexes to mitotic centrosomes. Here, we show that Spd-2 recruits γ-TuRCs formed via the GCP4/5/4/6 core, but Cnn can recruit γ-TuSCs directly via its well-conserved CM1 domain, similar to its homologs in budding yeast. When centrosomes fail to recruit γ-tubulin complexes, they still nucleate microtubules via the TOG domain protein Mini-spindles (Msps), but these microtubules have different dynamic properties. Our data, therefore, help explain the dispensability of the GCP4/5/4/6 core and highlight the robustness of centrosomes as microtubule organizing centers. They also suggest that the dynamic properties of microtubules are influenced by how they are nucleated.
Collapse
Affiliation(s)
- Zihan Zhu
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Isabelle Becam
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Corinne A. Tovey
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Abir Elfarkouchi
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Eugenie C. Yen
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Fred Bernard
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Paul T. Conduit
- Department of Zoology, University of Cambridge, Cambridge, UK
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
3
|
de Keijzer J, van Spoordonk R, van der Meer-Verweij JE, Janson M, Ketelaar T. Kinesin-4 optimizes microtubule orientations for responsive tip growth guidance in moss. J Cell Biol 2023; 222:e202202018. [PMID: 37389658 PMCID: PMC10316633 DOI: 10.1083/jcb.202202018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/18/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
Tip-growing cells of, amongst others, plants and fungi secrete wall materials in a highly polarized fashion for fast and efficient colonization of the environment. A polarized microtubule cytoskeleton, in which most microtubule ends are directed toward the growing apex, has been implicated in directing growth. Its organizing principles, in particular regarding maintenance of network unipolarity, have remained elusive. We show that a kinesin-4 protein, hitherto best known for a role in cytokinesis, suppresses encounters between antiparallel microtubules. Without this activity, microtubules hyper-aligned along the growth axis and increasingly grew away from the apex. Cells themselves displayed an overly straight growth path and a delayed gravitropic response. This result revealed conflicting systemic needs for a stable growth direction and an ability to change course in response to extracellular cues. Thus, the use of selective inhibition of microtubule growth at antiparallel overlaps constitutes a new organizing principle within a unipolar microtubule array.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| | | | | | - Marcel Janson
- Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
4
|
Yoshida MW, Hakozaki M, Goshima G. Armadillo repeat-containing kinesin represents the versatile plus-end-directed transporter in Physcomitrella. NATURE PLANTS 2023; 9:733-748. [PMID: 37142749 DOI: 10.1038/s41477-023-01397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
Kinesin-1, also known as conventional kinesin, is widely used for microtubule plus-end-directed (anterograde) transport of various cargos in animal cells. However, a motor functionally equivalent to the conventional kinesin has not been identified in plants, which lack the kinesin-1 genes. Here we show that plant-specific armadillo repeat-containing kinesin (ARK) is the long sought-after versatile anterograde transporter in plants. In ARK mutants of the moss Physcomitrium patens, the anterograde motility of nuclei, chloroplasts, mitochondria and secretory vesicles was suppressed. Ectopic expression of non-motile or tail-deleted ARK did not restore organelle distribution. Another prominent macroscopic phenotype of ARK mutants was the suppression of cell tip growth. We showed that this defect was attributed to the mislocalization of actin regulators, including RopGEFs; expression and forced apical localization of RopGEF3 partially rescued the growth phenotype of the ARK mutant. The mutant phenotypes were partially rescued by ARK homologues in Arabidopsis thaliana, suggesting the conservation of ARK functions in plants.
Collapse
Affiliation(s)
- Mari W Yoshida
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Maya Hakozaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Gohta Goshima
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Japan.
| |
Collapse
|
5
|
Yoshida MW, Kozgunova E. Microfluidic Device for High-Resolution Cytoskeleton Imaging and Washout Assays in Physcomitrium (Physcomitrella) patens. Methods Mol Biol 2023; 2604:143-158. [PMID: 36773231 DOI: 10.1007/978-1-0716-2867-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Visualizing cytoskeleton dynamics at high spatiotemporal resolution provides valuable insights into the way the dynamics change as well as its interactions with multiple proteins in order to maintain cellular function. Oblique illumination fluorescent microscopy is a popular technique to image cellular events localized near the plasma membrane. In this chapter, we provide detailed protocols for high-resolution cytoskeleton imaging using protonema and gametophore cells of the moss Physcomitrella (Physcomitrium patens) in the microfluidic device. These include preparation of the polydimethylsiloxane (PDMS) device, culture of moss cells, and both short- and long-term oblique illumination fluorescent microscopy. We also describe how to introduce to, and wash out from, the device chemical compounds, such as microtubule-disrupting drugs, during live-cell imaging.
Collapse
Affiliation(s)
- Mari W Yoshida
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Elena Kozgunova
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan. .,Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| |
Collapse
|
6
|
Chen Y, Liu X, Zhang W, Li J, Liu H, Yang L, Lei P, Zhang H, Yu F. MOR1/MAP215 acts synergistically with katanin to control cell division and anisotropic cell elongation in Arabidopsis. THE PLANT CELL 2022; 34:3006-3027. [PMID: 35579372 PMCID: PMC9373954 DOI: 10.1093/plcell/koac147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/07/2022] [Indexed: 05/20/2023]
Abstract
The MAP215 family of microtubule (MT) polymerase/nucleation factors and the MT severing enzyme katanin are widely conserved MT-associated proteins (MAPs) across the plant and animal kingdoms. However, how these two essential MAPs coordinate to regulate plant MT dynamics and development remains unknown. Here, we identified novel hypomorphic alleles of MICROTUBULE ORGANIZATION 1 (MOR1), encoding the Arabidopsis thaliana homolog of MAP215, in genetic screens for mutants oversensitive to the MT-destabilizing drug propyzamide. Live imaging in planta revealed that MOR1-green fluorescent protein predominantly tracks the plus-ends of cortical MTs (cMTs) in interphase cells and labels preprophase band, spindle and phragmoplast MT arrays in dividing cells. Remarkably, MOR1 and KATANIN 1 (KTN1), the p60 subunit of Arabidopsis katanin, act synergistically to control the proper formation of plant-specific MT arrays, and consequently, cell division and anisotropic cell expansion. Moreover, MOR1 physically interacts with KTN1 and promotes KTN1-mediated severing of cMTs. Our work establishes the Arabidopsis MOR1-KTN1 interaction as a central functional node dictating MT dynamics and plant growth and development.
Collapse
Affiliation(s)
| | | | - Wenjing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haofeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongchang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- Author for correspondence:
| |
Collapse
|
7
|
Tsuchiya K, Goshima G. Microtubule-associated proteins promote microtubule generation in the absence of γ-tubulin in human colon cancer cells. J Cell Biol 2021; 220:e202104114. [PMID: 34779859 PMCID: PMC8598081 DOI: 10.1083/jcb.202104114] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/13/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
The γ-tubulin complex acts as the predominant microtubule (MT) nucleator that initiates MT formation and is therefore an essential factor for cell proliferation. Nonetheless, cellular MTs are formed after experimental depletion of the γ-tubulin complex, suggesting that cells possess other factors that drive MT nucleation. Here, by combining gene knockout, auxin-inducible degron, RNA interference, MT depolymerization/regrowth assay, and live microscopy, we identified four microtubule-associated proteins (MAPs), ch-TOG, CLASP1, CAMSAPs, and TPX2, which are involved in γ-tubulin-independent MT generation in human colon cancer cells. In the mitotic MT regrowth assay, nucleated MTs organized noncentriolar MT organizing centers (ncMTOCs) in the absence of γ-tubulin. Depletion of CLASP1 or TPX2 substantially delayed ncMTOC formation, suggesting that these proteins might promote MT nucleation in the absence of γ-tubulin. In contrast, depletion of ch-TOG or CAMSAPs did not affect the timing of ncMTOC appearance. CLASP1 also accelerates γ-tubulin-independent MT regrowth during interphase. Thus, MT generation can be promoted by MAPs without the γ-tubulin template.
Collapse
Affiliation(s)
- Kenta Tsuchiya
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Leong SY, Edzuka T, Goshima G, Yamada M. Kinesin-13 and Kinesin-8 Function during Cell Growth and Division in the Moss Physcomitrella patens. THE PLANT CELL 2020; 32:683-702. [PMID: 31919299 PMCID: PMC7054034 DOI: 10.1105/tpc.19.00521] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/25/2019] [Accepted: 01/07/2020] [Indexed: 05/03/2023]
Abstract
Kinesin-13 and Kinesin-8 are well-known microtubule (MT) depolymerases that regulate MT length and chromosome movement in animal mitosis. While much is unknown about plant Kinesin-8, Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) Kinesin-13 have been shown to depolymerize MTs in vitro. However, the mitotic function of both kinesins has yet to be determined in plants. Here, we generated complete null mutants of Kinesin-13 and Kinesin-8 in moss (Physcomitrella patens). Both kinesins were found to be nonessential for viability, but the Kinesin-13 knockout (KO) line had increased mitotic duration and reduced spindle length, whereas the Kinesin-8 KO line did not display obvious mitotic defects. Surprisingly, spindle MT poleward flux, which is mediated by Kinesin-13 in animals, was retained in the absence of Kinesin-13. MT depolymerase activity was not detectable for either kinesin in vitro, while MT catastrophe-inducing activity (Kinesin-13) or MT gliding activity (Kinesin-8) was observed. Interestingly, both KO lines showed waviness in their protonema filaments, which correlated with positional instability of the MT foci in their tip cells. Taken together, the results suggest that plant Kinesin-13 and Kinesin-8 have diverged in both mitotic function and molecular activity, acquiring roles in regulating MT foci positioning for directed tip growth.
Collapse
Affiliation(s)
- Shu Yao Leong
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tomoya Edzuka
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Moé Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
9
|
Kozgunova E, Goshima G. A versatile microfluidic device for highly inclined thin illumination microscopy in the moss Physcomitrella patens. Sci Rep 2019; 9:15182. [PMID: 31645620 PMCID: PMC6811556 DOI: 10.1038/s41598-019-51624-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
High-resolution microscopy is a valuable tool for studying cellular processes, such as signalling, membrane trafficking, or cytoskeleton remodelling. Several techniques of inclined illumination microscopy allow imaging at a near single molecular level; however, the application of these methods to plant cells is limited, owing to thick cell walls as well as the necessity to excise a part of the tissue for sample preparation. In this study, we utilised a simple, easy-to-use microfluidic device for highly inclined and laminated optical sheet (HILO) microscopy using a model plant Physcomitrella patens. We demonstrated that the shallow microfluidic device can be used for long-term culture of living cells and enables high-resolution HILO imaging of microtubules without perturbing their dynamics. In addition, our microdevice allows the supply and robust washout of compounds during HILO microscopy imaging, for example, to perform a microtubule regrowth assay. Furthermore, we tested long-term (48 h) HILO imaging using a microdevice and visualised the developmental changes in the microtubule dynamics during tissue regeneration. These novel applications of the microfluidic device provide a valuable resource for studying molecular dynamics in living plant cells.
Collapse
Affiliation(s)
- Elena Kozgunova
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|
10
|
Yamada M, Hayashi K. Microtubule nucleation in the cytoplasm of developing cortical neurons and its regulation by brain‐derived neurotrophic factor. Cytoskeleton (Hoboken) 2019; 76:339-345. [DOI: 10.1002/cm.21550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Mimori Yamada
- Department of Materials and Life SciencesFaculty of Science and Technology, Sophia University Tokyo Japan
| | - Kensuke Hayashi
- Department of Materials and Life SciencesFaculty of Science and Technology, Sophia University Tokyo Japan
| |
Collapse
|
11
|
Yi P, Goshima G. Microtubule nucleation and organization without centrosomes. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:1-7. [PMID: 29981930 DOI: 10.1016/j.pbi.2018.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Centrosomes play various critical roles in animal cells such as microtubule nucleation and stabilization, mitotic spindle morphogenesis, and spindle orientation. Land plants have lost centrosomes and yet must execute many of these functions. Recent studies have revealed the crucial roles played by morphologically distinct cytoplasmic microtubule-organizing centers (MTOCs) in initiating spindle bipolarity and maintaining spindle orientation robustness. These MTOCs resemble centrosomes in many aspects, implying an evolutionary divergence of MT-organizing structures in plants. However, their functions rely on conserved nucleation and amplification mechanisms, indicating a similarity in MT network establishment between animals and plants. Moreover, recent characterization of a plant-specific MT minus-end tracking protein suggests that plants have developed functionally equivalent modules to stabilize and organize MTs at minus ends. These findings support the theory that plants overcome centrosome loss by utilizing modified but substantially conserved mechanisms to organize MT networks.
Collapse
Affiliation(s)
- Peishan Yi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
12
|
Gavilan MP, Gandolfo P, Balestra FR, Arias F, Bornens M, Rios RM. The dual role of the centrosome in organizing the microtubule network in interphase. EMBO Rep 2018; 19:embr.201845942. [PMID: 30224411 DOI: 10.15252/embr.201845942] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022] Open
Abstract
Here, we address the regulation of microtubule nucleation during interphase by genetically ablating one, or two, of three major mammalian γ-TuRC-binding factors namely pericentrin, CDK5Rap2, and AKAP450. Unexpectedly, we find that while all of them participate in microtubule nucleation at the Golgi apparatus, they only modestly contribute at the centrosome where CEP192 has a more predominant function. We also show that inhibiting microtubule nucleation at the Golgi does not affect centrosomal activity, whereas manipulating the number of centrosomes with centrinone modifies microtubule nucleation activity of the Golgi apparatus. In centrosome-free cells, inhibition of Golgi-based microtubule nucleation triggers pericentrin-dependent formation of cytoplasmic-nucleating structures. Further depletion of pericentrin under these conditions leads to the generation of individual microtubules in a γ-tubulin-dependent manner. In all cases, a conspicuous MT network forms. Strikingly, centrosome loss increases microtubule number independently of where they were growing from. Our results lead to an unexpected view of the interphase centrosome that would control microtubule network organization not only by nucleating microtubules, but also by modulating the activity of alternative microtubule-organizing centers.
Collapse
Affiliation(s)
- Maria P Gavilan
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Pablo Gandolfo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Fernando R Balestra
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Francisco Arias
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | | | - Rosa M Rios
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
13
|
Yamada M, Goshima G. The KCH Kinesin Drives Nuclear Transport and Cytoskeletal Coalescence to Promote Tip Cell Growth in Physcomitrella patens. THE PLANT CELL 2018; 30:1496-1510. [PMID: 29880712 PMCID: PMC6096588 DOI: 10.1105/tpc.18.00038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/01/2018] [Accepted: 06/07/2018] [Indexed: 05/03/2023]
Abstract
Long-distance transport along microtubules (MTs) is critical for intracellular organization. In animals, antagonistic motor proteins kinesin (plus end directed) and dynein (minus end directed) drive cargo transport. In land plants, however, the identity of motors responsible for transport is poorly understood, as genes encoding cytoplasmic dynein are absent in plant genomes. How other functions of dynein are brought about in plants also remains unknown. Here, we show that a subclass of the kinesin-14 family, KCH (kinesin with calponin homology domain), which can also bind actin, drives MT minus end-directed nuclear transport in the moss Physcomitrella patens When all four KCH genes were deleted, the nucleus was not maintained in the cell center but was translocated to the apical end of protonemal cells. In the knockout (KO) line, apical cell tip growth was also severely suppressed. KCH was localized to MTs, including at the MT focal point near the tip of protonemal cells, where MT plus ends coalesced with actin filaments. MT focus was not stably maintained in KCH KO lines, whereas actin destabilization also disrupted the MT focus in wild-type lines despite KCH remaining on unfocused MTs. KCH had distinct functions in nuclear transport and tip growth, as a truncated KCH construct restored nuclear transport activity, but not tip growth retardation of the KO line. Thus, our study identified KCH as a long-distance retrograde transporter as well as a MT cross-linker, reminiscent of the versatile animal dynein.
Collapse
Affiliation(s)
- Moé Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
14
|
Bascom CS, Hepler PK, Bezanilla M. Interplay between Ions, the Cytoskeleton, and Cell Wall Properties during Tip Growth. PLANT PHYSIOLOGY 2018; 176:28-40. [PMID: 29138353 PMCID: PMC5761822 DOI: 10.1104/pp.17.01466] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/05/2017] [Indexed: 05/08/2023]
Abstract
Tip growth is a focused and tightly regulated apical explosion that depends on the interconnected activities of ions, the cytoskeleton, and the cell wall.
Collapse
Affiliation(s)
- Carlisle S Bascom
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
- Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01002
| | - Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01002
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
15
|
Leong SY, Yamada M, Yanagisawa N, Goshima G. SPIRAL2 Stabilises Endoplasmic Microtubule Minus Ends in the Moss Physcomitrella patens. Cell Struct Funct 2018; 43:53-60. [DOI: 10.1247/csf.18001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Shu Yao Leong
- Division of Biological Science, Graduate School of Science, Nagoya University
| | - Moé Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University
| | - Naoki Yanagisawa
- Division of Biological Science, Graduate School of Science, Nagoya University
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
16
|
Roostalu J, Surrey T. Microtubule nucleation: beyond the template. Nat Rev Mol Cell Biol 2017; 18:702-710. [PMID: 28831203 DOI: 10.1038/nrm.2017.75] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cytoskeletal filaments central to a wide range of essential cellular functions in eukaryotic cells. Consequently, cells need to exert tight control over when, where and how many microtubules are being made. Whereas the regulation of microtubule dynamics is well studied, the molecular mechanisms of microtubule nucleation are still poorly understood. Next to the established master template of nucleation, the γ-tubulin ring complex, other microtubule-associated proteins that affect microtubule dynamic properties have recently been found to contribute to nucleation. It has begun to emerge that the nucleation efficiency is controlled not only by template activity but also by, either additionally or alternatively, the stabilization of the nascent microtubule 'nucleus'. This suggests a simple conceptual framework for the mechanisms regulating microtubule nucleation in cells.
Collapse
Affiliation(s)
| | - Thomas Surrey
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
17
|
Yamada M, Tanaka-Takiguchi Y, Hayashi M, Nishina M, Goshima G. Multiple kinesin-14 family members drive microtubule minus end-directed transport in plant cells. J Cell Biol 2017; 216:1705-1714. [PMID: 28442535 PMCID: PMC5461021 DOI: 10.1083/jcb.201610065] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/05/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
Minus end-directed cargo transport along microtubules (MTs) is exclusively driven by the molecular motor dynein in a wide variety of cell types. Interestingly, during evolution, plants have lost the genes encoding dynein; the MT motors that compensate for dynein function are unknown. Here, we show that two members of the kinesin-14 family drive minus end-directed transport in plants. Gene knockout analyses of the moss Physcomitrella patens revealed that the plant-specific class VI kinesin-14, KCBP, is required for minus end-directed transport of the nucleus and chloroplasts. Purified KCBP directly bound to acidic phospholipids and unidirectionally transported phospholipid liposomes along MTs in vitro. Thus, minus end-directed transport of membranous cargoes might be driven by their direct interaction with this motor protein. Newly nucleated cytoplasmic MTs represent another known cargo exhibiting minus end-directed motility, and we identified the conserved class I kinesin-14 (ATK) as the motor involved. These results suggest that kinesin-14 motors were duplicated and developed as alternative MT-based minus end-directed transporters in land plants.
Collapse
Affiliation(s)
- Moé Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yohko Tanaka-Takiguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Masahito Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Momoko Nishina
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
18
|
Yamada M, Goshima G. Mitotic Spindle Assembly in Land Plants: Molecules and Mechanisms. BIOLOGY 2017; 6:biology6010006. [PMID: 28125061 PMCID: PMC5371999 DOI: 10.3390/biology6010006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/29/2016] [Accepted: 01/08/2017] [Indexed: 11/16/2022]
Abstract
In textbooks, the mitotic spindles of plants are often described separately from those of animals. How do they differ at the molecular and mechanistic levels? In this chapter, we first outline the process of mitotic spindle assembly in animals and land plants. We next discuss the conservation of spindle assembly factors based on database searches. Searches of >100 animal spindle assembly factors showed that the genes involved in this process are well conserved in plants, with the exception of two major missing elements: centrosomal components and subunits/regulators of the cytoplasmic dynein complex. We then describe the spindle and phragmoplast assembly mechanisms based on the data obtained from robust gene loss-of-function analyses using RNA interference (RNAi) or mutant plants. Finally, we discuss future research prospects of plant spindles.
Collapse
Affiliation(s)
- Moé Yamada
- Graduate School of Science, Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Gohta Goshima
- Graduate School of Science, Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
19
|
Chi Z, Ambrose C. Microtubule encounter-based catastrophe in Arabidopsis cortical microtubule arrays. BMC PLANT BIOLOGY 2016; 16:18. [PMID: 26774503 PMCID: PMC4715342 DOI: 10.1186/s12870-016-0703-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/06/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND The cortical microtubules (CMTs) that line the plasma membrane of interphase plant cells are extensively studied owing to their importance in forming cell walls, and their usefulness as a model system for the study of MT dynamic instability and acentrosomal MT organization. CMTs influence the orientation and structure of cellulose microfibrils in the cell wall by cooperatively forming arrays of varied patterns from parallel to netted. These CMT patterns are controlled by the combined activities of MT dynamic instability and MT-MT interactions. However, it is an open question as to how CMT patterns may feedback to influence CMT dynamics and interactions. RESULTS To address this question, we investigated the effects of CMT array patterning on encounter-based CMT catastrophe, which occurs when one CMT grows into another and is unable to cross over. We hypothesized that the varied CMT angles present in disordered (mixed CMTs) arrays will create more opportunities for MT-MT interactions, and thus increase encounter-based catastrophe rates and distribution. Using live-cell imaging of Arabidopsis cotyledon and leaf epidermal cells, we found that roughly 87% of catastrophes occur via the encounter-based mechanism, with the remainder occurring without encounter (free). When comparing ordered (parallel) and disordered (mixed orientation) CMT arrays, we found that disordered configurations show higher proportions of encounter-based catastrophe relative to free. Similarly, disordered CMT arrays have more catastrophes in general than ordered arrays. Encounter-based catastrophes were associated with frequent and sustained periods of pause prior to depolymerization, and CMTs with tight anchoring to the plasma membrane were more prone to undergo encounter-based catastrophe than weakly-attached ones. This suggests that encounter-based catastrophe has a mechanical basis, wherein MTs form physical barriers to one another. Lastly, we show that the commonly used measure of catastrophe frequencies (Fcat) can also be influenced by CMT ordering and plasma membrane anchoring. CONCLUSIONS Our observations add a new layer of complexity to our current understanding of MT organization in plants, showing that not only do individual CMT dynamics influence CMT array organization, but that CMT organization itself has a strong effect on the behavior of individual MTs.
Collapse
Affiliation(s)
- Zhihai Chi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
| | - Chris Ambrose
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
| |
Collapse
|
20
|
Abstract
Microtubules mediate important cellular processes by forming highly ordered arrays. Organization of these networks is achieved by nucleating and anchoring microtubules at centrosomes and other structures collectively known as microtubule-organizing centers (MTOCs). However, the diverse microtubule configurations found in different cell types may not be generated and maintained by MTOCs alone. Work over the last few years has revealed a mechanism that has the capacity to generate cell-type-specific microtubule arrays independently of a specific organizer: nucleation of microtubules from the lateral surface of pre-existing microtubules. This type of nucleation requires cooperation between two different multi-subunit protein complexes, augmin and the γ-tubulin ring complex (γTuRC). Here we review recent molecular insight into microtubule-dependent nucleation and discuss the possibility that the augmin-γTuRC module, initially described in mitosis, may broadly contribute to microtubule organization also in non-mitotic cells.
Collapse
Affiliation(s)
- Carlos Sánchez-Huertas
- Institute for Research in Biomedicine (IRB Barcelona), C/ Baldiri Reixac 10, Barcelona, Spain
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), C/ Baldiri Reixac 10, Barcelona, Spain.
| |
Collapse
|
21
|
Abstract
At first glance, mitosis in plants looks quite different from that in animals. In fact, terrestrial plants have lost the centrosome during evolution, and the mitotic spindle is assembled independently of a strong microtubule organizing center. The phragmoplast is a plant-specific mitotic apparatus formed after anaphase, which expands centrifugally towards the cell cortex. However, the extent to which plant mitosis differs from that of animals at the level of the protein repertoire is uncertain, largely because of the difficulty in the identification and in vivo characterization of mitotic genes of plants. Here, we discuss protocols for mitosis imaging that can be combined with endogenous green fluorescent protein (GFP) tagging or conditional RNA interference (RNAi) in the moss Physcomitrella patens, which is an emergent model plant for cell and developmental biology. This system has potential for use in the high-throughput study of mitosis and other intracellular processes, as is being done with various animal cell lines.
Collapse
|
22
|
Miki T, Nakaoka Y, Goshima G. Live Cell Microscopy-Based RNAi Screening in the Moss Physcomitrella patens. Methods Mol Biol 2016; 1470:225-46. [PMID: 27581297 DOI: 10.1007/978-1-4939-6337-9_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNA interference (RNAi) is a powerful technique enabling the identification of the genes involved in a certain cellular process. Here, we discuss protocols for microscopy-based RNAi screening in protonemal cells of the moss Physcomitrella patens, an emerging model system for plant cell biology. Our method is characterized by the use of conditional (inducible) RNAi vectors, transgenic moss lines in which the RNAi vector is integrated, and time-lapse fluorescent microscopy. This method allows for effective and efficient screening of >100 genes involved in various cellular processes such as mitotic cell division, organelle distribution, or cell growth.
Collapse
Affiliation(s)
- Tomohiro Miki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yuki Nakaoka
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| |
Collapse
|
23
|
Jonsson E, Yamada M, Vale RD, Goshima G. Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants. NATURE PLANTS 2015; 1:15087. [PMID: 26322239 PMCID: PMC4548964 DOI: 10.1038/nplants.2015.87] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/23/2015] [Indexed: 05/18/2023]
Abstract
The molecular motors kinesin and dynein drive bidirectional motility along microtubules (MTs) in most eukaryotic cells. Land plants, however, are a notable exception, because they contain a large number of kinesins but lack cytoplasmic dynein, the foremost processive retrograde transporter. It remains unclear how plants achieve retrograde cargo transport without dynein. Here, we have analysed the motility of the six members of minus-end-directed kinesin-14 motors in the moss Physcomitrella patens and found that none are processive as native dimers. However, when artificially clustered into as little as dimer of dimers, the type-VI kinesin-14 (a homologue of Arabidopsis KCBP (kinesin-like calmodulin binding protein)) exhibited highly processive and fast motility (up to 0.6 μm s-1). Multiple kin14-VI dimers attached to liposomes also induced transport of this membrane cargo over several microns. Consistent with these results, in vivo observations of green fluorescent protein-tagged kin14-VI in moss cells revealed fluorescent punctae that moved processively towards the minus-ends of the cytoplasmic MTs. These data suggest that clustering of a kinesin-14 motor serves as a dynein-independent mechanism for retrograde transport in plants.
Collapse
Affiliation(s)
- Erik Jonsson
- Marine Biological Laboratory (MBL), Woods Hole, Massachusetts 02543, USA
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, UCSF, 600 16th St., San Francisco, California 94158, USA
| | - Moé Yamada
- Marine Biological Laboratory (MBL), Woods Hole, Massachusetts 02543, USA
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ronald D. Vale
- Marine Biological Laboratory (MBL), Woods Hole, Massachusetts 02543, USA
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, UCSF, 600 16th St., San Francisco, California 94158, USA
| | - Gohta Goshima
- Marine Biological Laboratory (MBL), Woods Hole, Massachusetts 02543, USA
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Correspondence and requests for materials should be addressed to G.G.
| |
Collapse
|
24
|
Miki T, Nishina M, Goshima G. RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2015; 56:737-49. [PMID: 25588389 DOI: 10.1093/pcp/pcv002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/05/2015] [Indexed: 05/22/2023]
Abstract
Proper positioning of the nucleus is critical for the functioning of various cells. Actin and myosin have been shown to be crucial for the localization of the nucleus in plant cells, whereas microtubule (MT)-based mechanisms are commonly utilized in animal and fungal cells. In this study, we combined live cell microscopy with RNA interference (RNAi) screening or drug treatment and showed that MTs and a plant-specific motor protein, armadillo repeat-containing kinesin (kinesin-ARK), are required for nuclear positioning in the moss Physcomitrella patens. In tip-growing protonemal apical cells, the nucleus was translocated to the center of the cell after cell division in an MT-dependent manner. When kinesin-ARKs were knocked down using RNAi, the initial movement of the nucleus towards the center took place normally; however, before reaching the center, the nucleus was moved back to the basal edge of the cell. In intact (control) cells, MT bundles that are associated with kinesin-ARKs were frequently observed around the moving nucleus. In contrast, such MT bundles were not identified after kinesin-ARK down-regulation. An in vitro MT gliding assay showed that kinesin-ARK is a plus-end-directed motor protein. These results indicate that MTs and the MT-based motor drive nuclear migration in the moss cells, thus showing a conservation of the mechanism underlying nuclear localization among plant, animal and fungal cells.
Collapse
Affiliation(s)
- Tomohiro Miki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Momoko Nishina
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
25
|
Kimura A, Celani A, Nagao H, Stasevich T, Nakamura K. Estimating cellular parameters through optimization procedures: elementary principles and applications. Front Physiol 2015; 6:60. [PMID: 25784880 PMCID: PMC4347581 DOI: 10.3389/fphys.2015.00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/14/2015] [Indexed: 12/11/2022] Open
Abstract
Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE) in a prediction or to maximize likelihood. A (local) maximum of likelihood or (local) minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest.
Collapse
Affiliation(s)
- Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics Mishima, Japan ; Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies) Mishima, Japan ; Transdisciplinary Research Integration Center and Data Centric Science Research Commons, Research Organization of Information and Systems Tokyo, Japan
| | - Antonio Celani
- Quantitative Life Sciences Unit, The Abdus Salam International Centre for Theoretical Physics Trieste, Italy
| | - Hiromichi Nagao
- Transdisciplinary Research Integration Center and Data Centric Science Research Commons, Research Organization of Information and Systems Tokyo, Japan ; Research and Development Center for Data Assimilation, The Institute of Statistical Mathematics Tokyo, Japan ; Research Center for Large-Scale Earthquake, Tsunami and Disaster, Earthquake Research Institute, The University of Tokyo Tokyo, Japan
| | - Timothy Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University Fort Collins, CO, USA
| | - Kazuyuki Nakamura
- Department of Mathematical Sciences Based on Modeling and Analysis, School of Interdisciplinary Mathematical Sciences, Meiji University Tokyo, Japan
| |
Collapse
|