1
|
Liao TJ, Xiong HY, Sakuma S, Duan RJ. The development of hooded awns in barley: From ectopic Kap1 expression to yield potential. Gene 2025; 934:149036. [PMID: 39447708 DOI: 10.1016/j.gene.2024.149036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Awns in barley have different shapes including awnless, straight, hooded, crooked, and leafy awns. The hooded awns are characterized by an appendage of the lemma, which forms a trigonal or cap-shaped structure, and even blossoms and yields fruits on barley awn. In the lemma primordia of wild-type (straight awn), cells divide and elongate to form the straight awn. However, in the lemma primordia of KNOX3 mutant (hooded awn), cells divide at various orientations without elongating, and they form hooded awns. This phenomenon is due to the upregulation of KNOX3 expression via insertion of a tandem direct duplication of 305 bp in the intron IV. Here, we summarize the development of barley hooded awn research in the following two aspects: on the one hand, the morphology, development of hooded awns, and the expression regulation of the KNOX3 gene. The latter includes ectopic expression of the KNOX3 gene, gene interactions among awn-related genes, the regulatory relationship between class I KNOX genes and hormones, as well as the influence of abiotic stresses. On the other hand, the potential performance of hooded awns in barley for yield breeding is discussed. Hooded awns have potential application value in forage, which could compensate for the disadvantage of the long straight awn in the barley straw used for feed in modern cultivars. In addition, the hooded awn produces ectopic meristems to develop complete florets, which is an interesting question and helps to understand the development, adaptation, and evolution of plant floral organs.
Collapse
Affiliation(s)
- Tian-Jiang Liao
- College of Eco-environmental Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Hui-Yan Xiong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai, China
| | - Shun Sakuma
- Faculty of Agriculture, Tottori University, 680-8553, Tottori, Japan
| | - Rui-Jun Duan
- College of Eco-environmental Engineering, Qinghai University, Xining 810016, Qinghai, China.
| |
Collapse
|
2
|
Jia P, Wang Y, Sharif R, Dong QL, Liu Y, Luan HA, Zhang XM, Guo SP, Qi GH. KNOTTED1-like homeobox (KNOX) transcription factors - Hubs in a plethora of networks: A review. Int J Biol Macromol 2023; 253:126878. [PMID: 37703987 DOI: 10.1016/j.ijbiomac.2023.126878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
KNOX (KNOTTED1-like HOMEOBOX) belongs to a class of important homeobox genes, which encode the homeodomain proteins binding to the specific element of target genes, and widely participate in plant development. Advancements in genetics and molecular biology research generate a large amount of information about KNOX genes in model and non-model plants, and their functions in different developmental backgrounds are gradually becoming clear. In this review, we summarize the known and presumed functions of the KNOX gene in plants, focusing on horticultural plants and crops. The classification and structural characteristics, expression characteristics and regulation, interacting protein factors, functions, and mechanisms of KNOX genes are systematically described. Further, the current research gaps and perspectives were discussed. These comprehensive data can provide a reference for the directional improvement of agronomic traits through KNOX gene regulation.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Qing-Long Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Yang Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Hao-An Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xue-Mei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Sup-Ping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Guo-Hui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
3
|
Marconi M, Wabnik K. Computer models of cell polarity establishment in plants. PLANT PHYSIOLOGY 2023; 193:42-53. [PMID: 37144853 PMCID: PMC10469401 DOI: 10.1093/plphys/kiad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Plant development is a complex task, and many processes involve changes in the asymmetric subcellular distribution of cell components that strongly depend on cell polarity. Cell polarity regulates anisotropic growth and polar localization of membrane proteins and helps to identify the cell's position relative to its neighbors within an organ. Cell polarity is critical in a variety of plant developmental processes, including embryogenesis, cell division, and response to external stimuli. The most conspicuous downstream effect of cell polarity is the polar transport of the phytohormone auxin, which is the only known hormone transported in a polar fashion in and out of cells by specialized exporters and importers. The biological processes behind the establishment of cell polarity are still unknown, and researchers have proposed several models that have been tested using computer simulations. The evolution of computer models has progressed in tandem with scientific discoveries, which have highlighted the importance of genetic, chemical, and mechanical input in determining cell polarity and regulating polarity-dependent processes such as anisotropic growth, protein subcellular localization, and the development of organ shapes. The purpose of this review is to provide a comprehensive overview of the current understanding of computer models of cell polarity establishment in plants, focusing on the molecular and cellular mechanisms, the proteins involved, and the current state of the field.
Collapse
Affiliation(s)
- Marco Marconi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
4
|
Eve A. Transitions in development - an interview with Annis Richardson. Development 2023; 150:dev201683. [PMID: 36867118 DOI: 10.1242/dev.201683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Annis Richardson is the Lecturer in Molecular Crop Science at the University of Edinburgh, UK. Her research employs a multidisciplinary approach to investigate the molecular mechanisms governing organ development and evolution in grass crops, such as maize. In 2022, Annis was awarded a Starting Grant from the European Research Council. We spoke to Annis over Microsoft Teams to learn more about her career trajectory, her research and her agricultural roots.
Collapse
|
5
|
Wang Y, Strauss S, Liu S, Pieper B, Lymbouridou R, Runions A, Tsiantis M. The cellular basis for synergy between RCO and KNOX1 homeobox genes in leaf shape diversity. Curr Biol 2022; 32:3773-3784.e5. [PMID: 36029772 DOI: 10.1016/j.cub.2022.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Leaves of seed plants provide an attractive system to study the development and evolution of form. Leaves show varying degrees of margin complexity ranging from simple, as in Arabidopsis thaliana, to fully dissected into leaflets in the closely related species Cardamine hirsuta. Leaflet formation requires actions of Class I KNOTTED1-LIKE HOMEOBOX (KNOX1) and REDUCED COMPLEXITY (RCO) homeobox genes, which are expressed in the leaves of C. hirsuta but not A. thaliana. Evolutionary studies indicate that diversification of KNOX1 and RCO genes was repeatedly associated with increased leaf complexity. However, whether this gene combination represents a developmentally favored avenue for leaflet formation remains unknown, and the cell-level events through which the combined action of these genes drives leaflet formation are also poorly understood. Here we show, through a genetic screen, that when a C. hirsuta RCO transgene is expressed in A. thaliana, then ectopic KNOX1 expression in leaves represents a preferred developmental path for leaflet formation. Using time-lapse growth analysis, we demonstrate that KNOX1 expression in the basal domain of leaves leads to prolonged and anisotropic cell growth. This KNOX1 action, in synergy with local growth repression by RCO, is instrumental in generating rachises and petiolules, the linear geometrical elements, that bear leaflets in complex leaves. Our results show how the combination of cell-level growth analyses and genetics can help us understand how evolutionary modifications in expression of developmentally important genes are translated into diverse leaf shapes.
Collapse
Affiliation(s)
- Yi Wang
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany
| | - Shanda Liu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany
| | - Rena Lymbouridou
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany
| | - Adam Runions
- Department of Computer Science, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
6
|
Ramalho JJ, Jones VAS, Mutte S, Weijers D. Pole position: How plant cells polarize along the axes. THE PLANT CELL 2022; 34:174-192. [PMID: 34338785 PMCID: PMC8774072 DOI: 10.1093/plcell/koab203] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/30/2021] [Indexed: 05/10/2023]
Abstract
Having a sense of direction is a fundamental cellular trait that can determine cell shape, division orientation, or function, and ultimately the formation of a functional, multicellular body. Cells acquire and integrate directional information by establishing discrete subcellular domains along an axis with distinct molecular profiles, a process known as cell polarization. Insight into the principles and mechanisms underlying cell polarity has been propelled by decades of extensive research mostly in yeast and animal models. Our understanding of cell polarity establishment in plants, which lack most of the regulatory molecules identified in other eukaryotes, is more limited, but significant progress has been made in recent years. In this review, we explore how plant cells coordinately establish stable polarity axes aligned with the organ axes, highlighting similarities in the molecular logic used to polarize both plant and animal cells. We propose a classification system for plant cell polarity events and nomenclature guidelines. Finally, we provide a deep phylogenetic analysis of polar proteins and discuss the evolution of polarity machineries in plants.
Collapse
Affiliation(s)
| | | | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6703WE Wageningen, The Netherlands
| | | |
Collapse
|
7
|
Richardson AE, Cheng J, Johnston R, Kennaway R, Conlon BR, Rebocho AB, Kong H, Scanlon MJ, Hake S, Coen E. Evolution of the grass leaf by primordium extension and petiole-lamina remodeling. Science 2021; 374:1377-1381. [PMID: 34882477 DOI: 10.1126/science.abf9407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- A E Richardson
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.,Agricultural Research Service/US Department of Agriculture Plant Gene Expression Center, Albany, CA 94710, USA.,Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - J Cheng
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.,State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - R Johnston
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,The Elshire Group Limited, Palmerston North 4472, New Zealand
| | - R Kennaway
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - B R Conlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - A B Rebocho
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - H Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - M J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - S Hake
- Agricultural Research Service/US Department of Agriculture Plant Gene Expression Center, Albany, CA 94710, USA
| | - E Coen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
8
|
Whitewoods CD, Gonçalves B, Cheng J, Cui M, Kennaway R, Lee K, Bushell C, Yu M, Piao C, Coen E. Evolution of carnivorous traps from planar leaves through simple shifts in gene expression. Science 2019; 367:91-96. [DOI: 10.1126/science.aay5433] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
Abstract
Leaves vary from planar sheets and needle-like structures to elaborate cup-shaped traps. Here, we show that in the carnivorous plant Utricularia gibba, the upper leaf (adaxial) domain is restricted to a small region of the primordium that gives rise to the trap’s inner layer. This restriction is necessary for trap formation, because ectopic adaxial activity at early stages gives radialized leaves and no traps. We present a model that accounts for the formation of both planar and nonplanar leaves through adaxial-abaxial domains of gene activity establishing a polarity field that orients growth. In combination with an orthogonal proximodistal polarity field, this system can generate diverse leaf forms and account for the multiple evolutionary origins of cup-shaped leaves through simple shifts in gene expression.
Collapse
|
9
|
Lee KJI, Bushell C, Koide Y, Fozard JA, Piao C, Yu M, Newman J, Whitewoods C, Avondo J, Kennaway R, Marée AFM, Cui M, Coen E. Shaping of a three-dimensional carnivorous trap through modulation of a planar growth mechanism. PLoS Biol 2019; 17:e3000427. [PMID: 31600203 PMCID: PMC6786542 DOI: 10.1371/journal.pbio.3000427] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022] Open
Abstract
Leaves display a remarkable range of forms, from flat sheets with simple outlines to cup-shaped traps. Although much progress has been made in understanding the mechanisms of planar leaf development, it is unclear whether similar or distinctive mechanisms underlie shape transformations during development of more complex curved forms. Here, we use 3D imaging and cellular and clonal analysis, combined with computational modelling, to analyse the development of cup-shaped traps of the carnivorous plant Utricularia gibba. We show that the transformation from a near-spherical form at early developmental stages to an oblate spheroid with a straightened ventral midline in the mature form can be accounted for by spatial variations in rates and orientations of growth. Different hypotheses regarding spatiotemporal control predict distinct patterns of cell shape and size, which were tested experimentally by quantifying cellular and clonal anisotropy. We propose that orientations of growth are specified by a proximodistal polarity field, similar to that hypothesised to account for Arabidopsis leaf development, except that in Utricularia, the field propagates through a highly curved tissue sheet. Independent evidence for the polarity field is provided by the orientation of glandular hairs on the inner surface of the trap. Taken together, our results show that morphogenesis of complex 3D leaf shapes can be accounted for by similar mechanisms to those for planar leaves, suggesting that simple modulations of a common growth framework underlie the shaping of a diverse range of morphologies. Many plant and animal organs derive from tissue sheets, but how are they shaped to create the diversity of forms observed in nature? This study uses a combination of imaging and mathematical modelling to show how carnivorous plant traps shape themselves in 3D by a growth framework oriented by tissue polarity, similar to that found in planar leaves.
Collapse
Affiliation(s)
- Karen J. I. Lee
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Claire Bushell
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Yohei Koide
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - John A. Fozard
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Chunlan Piao
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, Zhejiang, China
| | - Man Yu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jacob Newman
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Christopher Whitewoods
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jerome Avondo
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Richard Kennaway
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Athanasius F. M. Marée
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Minlong Cui
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, Zhejiang, China
- * E-mail: (EC); (MC)
| | - Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- * E-mail: (EC); (MC)
| |
Collapse
|
10
|
Kierzkowski D, Runions A, Vuolo F, Strauss S, Lymbouridou R, Routier-Kierzkowska AL, Wilson-Sánchez D, Jenke H, Galinha C, Mosca G, Zhang Z, Canales C, Dello Ioio R, Huijser P, Smith RS, Tsiantis M. A Growth-Based Framework for Leaf Shape Development and Diversity. Cell 2019; 177:1405-1418.e17. [PMID: 31130379 PMCID: PMC6548024 DOI: 10.1016/j.cell.2019.05.011] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/15/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
Abstract
How do genes modify cellular growth to create morphological diversity? We study this problem in two related plants with differently shaped leaves: Arabidopsis thaliana (simple leaf shape) and Cardamine hirsuta (complex shape with leaflets). We use live imaging, modeling, and genetics to deconstruct these organ-level differences into their cell-level constituents: growth amount, direction, and differentiation. We show that leaf shape depends on the interplay of two growth modes: a conserved organ-wide growth mode that reflects differentiation; and a local, directional mode that involves the patterning of growth foci along the leaf edge. Shape diversity results from the distinct effects of two homeobox genes on these growth modes: SHOOTMERISTEMLESS broadens organ-wide growth relative to edge-patterning, enabling leaflet emergence, while REDUCED COMPLEXITY inhibits growth locally around emerging leaflets, accentuating shape differences created by patterning. We demonstrate the predictivity of our findings by reconstructing key features of C. hirsuta leaf morphology in A. thaliana. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Daniel Kierzkowski
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Adam Runions
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Francesco Vuolo
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Rena Lymbouridou
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Anne-Lise Routier-Kierzkowska
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - David Wilson-Sánchez
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Hannah Jenke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Carla Galinha
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Gabriella Mosca
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Zhongjuan Zhang
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Claudia Canales
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Raffaele Dello Ioio
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
11
|
Shaaf S, Bretani G, Biswas A, Fontana IM, Rossini L. Genetics of barley tiller and leaf development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:226-256. [PMID: 30548413 DOI: 10.1111/jipb.12757] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
In cereals, tillering and leaf development are key factors in the concept of crop ideotype, introduced in the 1960s to enhance crop yield, via manipulation of plant architecture. In the present review, we discuss advances in genetic analysis of barley shoot architecture, focusing on tillering, leaf size and angle. We also discuss novel phenotyping techniques, such as 2D and 3D imaging, that have been introduced in the era of phenomics, facilitating reliable trait measurement. We discuss the identification of genes and pathways that are involved in barley tillering and leaf development, highlighting key hormones involved in the control of plant architecture in barley and rice. Knowledge on genetic control of traits related to plant architecture provides useful resources for designing ideotypes for enhanced barley yield and performance.
Collapse
Affiliation(s)
- Salar Shaaf
- University of Milan, DiSAA, Via Celoria 2, 20133 Milan, Italy
| | | | - Abhisek Biswas
- University of Milan, DiSAA, Via Celoria 2, 20133 Milan, Italy
| | | | - Laura Rossini
- University of Milan, DiSAA, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
12
|
Richardson AE, Hake S. Drawing a Line: Grasses and Boundaries. PLANTS 2018; 8:plants8010004. [PMID: 30585196 PMCID: PMC6359313 DOI: 10.3390/plants8010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 11/26/2022]
Abstract
Delineation between distinct populations of cells is essential for organ development. Boundary formation is necessary for the maintenance of pluripotent meristematic cells in the shoot apical meristem (SAM) and differentiation of developing organs. Boundaries form between the meristem and organs, as well as between organs and within organs. Much of the research into the boundary gene regulatory network (GRN) has been carried out in the eudicot model Arabidopsis thaliana. This work has identified a dynamic network of hormone and gene interactions. Comparisons with other eudicot models, like tomato and pea, have shown key conserved nodes in the GRN and species-specific alterations, including the recruitment of the boundary GRN in leaf margin development. How boundaries are defined in monocots, and in particular the grass family which contains many of the world’s staple food crops, is not clear. In this study, we review knowledge of the grass boundary GRN during vegetative development. We particularly focus on the development of a grass-specific within-organ boundary, the ligule, which directly impacts leaf architecture. We also consider how genome engineering and the use of natural diversity could be leveraged to influence key agronomic traits relative to leaf and plant architecture in the future, which is guided by knowledge of boundary GRNs.
Collapse
Affiliation(s)
- Annis E Richardson
- Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | - Sarah Hake
- Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
- USDA Plant Gene Expression Center, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
13
|
Spatiotemporal coordination of cell division and growth during organ morphogenesis. PLoS Biol 2018; 16:e2005952. [PMID: 30383040 PMCID: PMC6211367 DOI: 10.1371/journal.pbio.2005952] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/20/2018] [Indexed: 11/30/2022] Open
Abstract
A developing plant organ exhibits complex spatiotemporal patterns of growth, cell division, cell size, cell shape, and organ shape. Explaining these patterns presents a challenge because of their dynamics and cross-correlations, which can make it difficult to disentangle causes from effects. To address these problems, we used live imaging to determine the spatiotemporal patterns of leaf growth and division in different genetic and tissue contexts. In the simplifying background of the speechless (spch) mutant, which lacks stomatal lineages, the epidermal cell layer exhibits defined patterns of division, cell size, cell shape, and growth along the proximodistal and mediolateral axes. The patterns and correlations are distinctive from those observed in the connected subepidermal layer and also different from the epidermal layer of wild type. Through computational modelling we show that the results can be accounted for by a dual control model in which spatiotemporal control operates on both growth and cell division, with cross-connections between them. The interactions between resulting growth and division patterns lead to a dynamic distributions of cell sizes and shapes within a deforming leaf. By modulating parameters of the model, we illustrate how phenotypes with correlated changes in cell size, cell number, and organ size may be generated. The model thus provides an integrated view of growth and division that can act as a framework for further experimental study. Organ morphogenesis involves two coordinated processes: growth of tissue and increase in cell number through cell division. Both processes have been analysed individually in many systems and shown to exhibit complex patterns in space and time. However, it is unclear how these patterns of growth and cell division are coordinated in a growing leaf that is undergoing shape changes. We have addressed this problem using live imaging to track growth and cell division in the developing leaf of the mustard plant Arabidopsis thaliana. Using subsequent computational modelling, we propose an integrated model of leaf growth and cell division, which generates dynamic distributions of cell size and shape in different tissue layers, closely matching those observed experimentally. A key aspect of the model is dual control of spatiotemporal patterns of growth and cell division parameters. By modulating parameters in the model, we illustrate how phenotypes may correlate with changes in cell size, cell number, and organ size.
Collapse
|
14
|
Mansfield C, Newman JL, Olsson TSG, Hartley M, Chan J, Coen E. Ectopic BASL Reveals Tissue Cell Polarity throughout Leaf Development in Arabidopsis thaliana. Curr Biol 2018; 28:2638-2646.e4. [PMID: 30100337 PMCID: PMC6109230 DOI: 10.1016/j.cub.2018.06.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/02/2018] [Accepted: 06/11/2018] [Indexed: 11/10/2022]
Abstract
Tissue-wide polarity fields, in which cell polarity is coordinated across the tissue, have been described for planar organs such as the Drosophila wing and are considered important for coordinating growth and differentiation [1]. In planar plant organs, such as leaves, polarity fields have been identified for subgroups of cells, such as stomatal lineages [2], trichomes [3, 4], serrations [5], or early developmental stages [6]. Here, we show that ectopic induction of the stomatal protein BASL (BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE) reveals a tissue-wide epidermal polarity field in leaves throughout development. Ectopic GFP-BASL is typically localized toward the proximal end of cells and to one lobe of mature pavement cells, revealing a polarity field that aligns with the proximodistal axis of the leaf (base to tip). The polarity field is largely parallel to the midline of the leaf but diverges in more lateral positions, particularly at later stages in development, suggesting it may be deformed during growth. The polarity field is observed in the speechless mutant, showing that it is independent of stomatal lineages, and is observed in isotropic cells, showing that cell shape anisotropy is not required for orienting polarity. Ectopic BASL forms convergence and divergence points at serrations, mirroring epidermal PIN polarity patterns, suggesting a common underlying polarity mechanism. Thus, we show that similar to the situation in animals, planar plant organs have a tissue-wide cell polarity field, and this may provide a general cellular mechanism for guiding growth and differentiation. Ectopic expression of BASL in Arabidopsis leaves reveals coordinated polarity The ectopic BASL polarity field is independent of the stomatal lineage The polarity field reorients around serrations, mirroring PIN1 polarity
Collapse
Affiliation(s)
| | | | | | | | - Jordi Chan
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| | - Enrico Coen
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| |
Collapse
|
15
|
|
16
|
Kulkarni KP, Patil G, Valliyodan B, Vuong TD, Shannon JG, Nguyen HT, Lee JD. Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean. Genome 2018; 61:217-222. [PMID: 29365289 DOI: 10.1139/gen-2017-0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The objective of this study was to determine the genetic relationship between the oleic acid and protein content. The genotypes having high oleic acid and elevated protein (HOEP) content were crossed with five elite lines having normal oleic acid and average protein (NOAP) content. The selected accessions were grown at six environments in three different locations and phenotyped for protein, oil, and fatty acid components. The mean protein content of parents, HOEP, and NOAP lines was 34.6%, 38%, and 34.9%, respectively. The oleic acid concentration of parents, HOEP, and NOAP lines was 21.7%, 80.5%, and 20.8%, respectively. The HOEP plants carried both FAD2-1A (S117N) and FAD2-1B (P137R) mutant alleles contributing to the high oleic acid phenotype. Comparative genome analysis using whole-genome resequencing data identified six genes having single nucleotide polymorphism (SNP) significantly associated with the traits analyzed. A single SNP in the putative gene Glyma.10G275800 was associated with the elevated protein content, and palmitic, oleic, and linoleic acids. The genes from the marker intervals of previously identified QTL did not carry SNPs associated with protein content and fatty acid composition in the lines used in this study, indicating that all the genes except Glyma.10G278000 may be the new genes associated with the respective traits.
Collapse
Affiliation(s)
- Krishnanand P Kulkarni
- a School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gunvant Patil
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Babu Valliyodan
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Tri D Vuong
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - J Grover Shannon
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Henry T Nguyen
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jeong-Dong Lee
- a School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
17
|
Šiukšta R, Vaitkūnienė V, Rančelis V. Is auxin involved in the induction of genetic instability in barley homeotic double mutants? PLANTA 2018; 247:483-498. [PMID: 29080070 DOI: 10.1007/s00425-017-2802-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
The triggers of genetic instability in barley homeotic double mutants are tweaky spike -type mutations associated with an auxin imbalance in separate spike phytomeres. Barley homeotic tweaky spike;Hooded (tw;Hd) double mutants are characterized by an inherited instability of spike and flower development, which is absent in the single parental constituents. The aim of the present study was to show that the trigger of genetic instability in the double mutants is the tw mutations, which are associated with an auxin imbalance in the developing spikes. Their pleiotropic effects on genes related to spike/flower development may cause the genetic instability of double mutants. The study of four double-mutant groups composed of different mutant alleles showed that the instability arose only if the mutant allele tw was a constituent of the double mutants. Application of auxin inhibitors and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated the relationship of the instability of the double mutants and the phenotype of the tw mutants to auxin imbalance. 2,4-D induced phenocopies of the tw mutation in wild-type plants and rescued the phenotypes of three allelic tw mutants. The differential display (dd-PCR) method allowed the identification of several putative candidate genes in tw that may be responsible for the initiation of instability in the double mutants by pleiotropic variations of their expression in the tw mutant associated with auxin imbalance in the developing spikes. The results of the present study linked the genetic instability of homeotic double mutants with an auxin imbalance caused by one of the constituents (tw). The genetic instability of the double mutants in relation to auxin imbalance was studied for the first time. A matrocliny on instability expression was also observed.
Collapse
Affiliation(s)
- Raimondas Šiukšta
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Saulėtekis Ave. 7, 10257, Vilnius, Lithuania.
- Botanical Garden of Vilnius University, Kairėnai Str. 43, 10239, Vilnius, Lithuania.
| | - Virginija Vaitkūnienė
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Saulėtekis Ave. 7, 10257, Vilnius, Lithuania
- Botanical Garden of Vilnius University, Kairėnai Str. 43, 10239, Vilnius, Lithuania
| | - Vytautas Rančelis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Saulėtekis Ave. 7, 10257, Vilnius, Lithuania
| |
Collapse
|
18
|
|
19
|
Zhao J, Chen L, Zhao T, Gai J. Chicken Toes-Like Leaf and Petalody Flower (CTP) is a novel regulator that controls leaf and flower development in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5565-5581. [PMID: 29077868 DOI: 10.1093/jxb/erx358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A soybean mutant displaying chicken toes-like leaves and petalody flowers was identified as being caused by a single recessive gene, termed ctp. Using heterozygous-inbred recombinants, this gene was fine-mapped to a 37-kb region harbouring three predicted genes on chromosome 5. The gene Glyma05g022400.1 was detected to have a 33-bp deletion in its first exon that was responsible for ctp. Validation for this gene was provided by the fact that the 33-bp deletion-derived marker I2 completely co-segregated with the phenotypes of 96 F10-derived residual heterozygous lines and 2200 fine-mapping individuals, and by the fact that the orthologue NbCTP in Nicotiana benthamiana also influenced leaf and flower development under virus-induced gene silencing. In terms of characterization, the CTPs shared highly conserved domains specifically in higher plants, GmCTP was alternatively spliced, and it was expressed in multiple organs, especially in lateral meristems. GmCTP was localized to the nucleus and other regions and performed transcriptional activity. In ctp, the expression levels and splicing patterns were dramatically disrupted, and many key regulators in leaf and/or floral developmental pathways were interrupted. Thus, CTP is a novel and critical pleiotropic regulator of leaf and flower development that participates in multiple regulation pathways, and may play key roles in lateral organ differentiation as a putative novel transcription regulator.
Collapse
Affiliation(s)
- Jing Zhao
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Chen
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tuanjie Zhao
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Runions A, Tsiantis M, Prusinkiewicz P. A common developmental program can produce diverse leaf shapes. THE NEW PHYTOLOGIST 2017; 216:401-418. [PMID: 28248421 PMCID: PMC5638099 DOI: 10.1111/nph.14449] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/06/2016] [Indexed: 05/02/2023]
Abstract
Eudicot leaves have astoundingly diverse shapes. The central problem addressed in this paper is the developmental origin of this diversity. To investigate this problem, we propose a computational model of leaf development that generalizes the largely conserved molecular program for the reference plants Arabidopsis thaliana, Cardamine hirsuta and Solanum lycopersicum. The model characterizes leaf development as a product of three interwoven processes: the patterning of serrations, lobes and/or leaflets on the leaf margin; the patterning of the vascular system; and the growth of the leaf blade spanning the main veins. The veins play a significant morphogenetic role as a local determinant of growth directions. We show that small variations of this model can produce diverse leaf shapes, from simple to lobed to compound. It is thus plausible that diverse shapes of eudicot leaves result from small variations of a common developmental program.
Collapse
Affiliation(s)
- Adam Runions
- University of Calgary2500 University Dr NWCalgaryAlbertaT2N 1N4Canada
- Max Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | | |
Collapse
|