1
|
Shi T, Gao Z, Chen J, Van de Peer Y. Dosage sensitivity shapes balanced expression and gene longevity of homoeologs after whole-genome duplications in angiosperms. THE PLANT CELL 2024; 36:4323-4337. [PMID: 39121058 PMCID: PMC7616505 DOI: 10.1093/plcell/koae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
Following whole-genome duplication (WGD), duplicate gene pairs (homoeologs) can evolve varying degrees of expression divergence. However, the determinants influencing these relative expression level differences (RFPKM) between homoeologs remain elusive. In this study, we analyzed the RFPKM between homoeologs in 3 angiosperms, Nymphaea colorata, Nelumbo nucifera, and Acorus tatarinowii, all having undergone a single WGD since the origin of angiosperms. Our results show significant positive correlations in RFPKM of homoeologs among tissues within the same species, and among orthologs across these 3 species, indicating convergent expression balance/bias between homoeologous gene copies following independent WGDs. We linked RFPKM between homoeologs to gene attributes associated with dosage-balance constraints, such as protein-protein interactions, lethal-phenotype scores in Arabidopsis (Arabidopsis thaliana) orthologs, domain numbers, and expression breadth. Notably, homoeologs with lower RFPKM often had more interactions and higher lethal-phenotype scores, indicating selective pressures favoring balanced expression. Also, homoeologs with lower RFPKM were more likely to be retained after WGDs in angiosperms. Within Nelumbo, greater RFPKM between homoeologs correlated with increased cis- and trans-regulatory differentiation between species, highlighting the ongoing escalation of gene expression divergence. We further found that expression degeneration in 1 copy of homoeologs is inclined toward nonfunctionalization. Our research highlights the importance of balanced expression, shaped by dosage-balance constraints, in the evolutionary retention of homoeologs in plants.
Collapse
Affiliation(s)
- Tao Shi
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhiyan Gao
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jinming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Centre for Plant Systems Biology, VIB, Ghent 9052, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Thomas SK, Hoek KV, Ogoti T, Duong H, Angelovici R, Pires JC, Mendoza-Cozatl D, Washburn J, Schenck CA. Halophytes and heavy metals: A multi-omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima. AMERICAN JOURNAL OF BOTANY 2024; 111:e16310. [PMID: 38600732 DOI: 10.1002/ajb2.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 04/12/2024]
Abstract
PREMISE The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we used Cakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole-genome triplication with closely related salt-sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy. METHODS Using a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response in C. maritima and identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium. RESULTS Cakile maritima is tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool in C. maritima and likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved in C. maritima abiotic stress tolerance. CONCLUSIONS These findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.
Collapse
Affiliation(s)
- Shawn K Thomas
- Division of Biological Sciences, University of Missouri, Columbia, 65211, MO, USA
- Bioinformatics and Analytics Core, University of Missouri, Columbia, 65211, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
| | - Kathryn Vanden Hoek
- Department of Biochemistry, University of Missouri, Columbia, 65211, MO, USA
| | - Tasha Ogoti
- Department of Computer Science, University of Missouri, Columbia, 65211, MO, USA
| | - Ha Duong
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
- Department of Biochemistry, University of Missouri, Columbia, 65211, MO, USA
| | - Ruthie Angelovici
- Division of Biological Sciences, University of Missouri, Columbia, 65211, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
| | - J Chris Pires
- Soil and Crop Sciences, Colorado State University, Fort Collins, 80523-1170, CO, USA
| | - David Mendoza-Cozatl
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
- Division of Plant Sciences and Technology, University of Missouri, Columbia, 65211, MO, USA
| | - Jacob Washburn
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
- Plant Genetics Research Unit, USDA-ARS, Columbia, 65211, MO, USA
| | - Craig A Schenck
- Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, MO, USA
- Department of Biochemistry, University of Missouri, Columbia, 65211, MO, USA
| |
Collapse
|
3
|
Hussain A, Khan AA, Aslam MQ, Nazar A, Zaman N, Amin A, Mahmood MA, Mukhtar MS, Rahman HUU, Farooq M, Saeed M, Amin I, Mansoor S. Comparative analysis, diversification, and functional validation of plant nucleotide-binding site domain genes. Sci Rep 2024; 14:11930. [PMID: 38789717 PMCID: PMC11126693 DOI: 10.1038/s41598-024-62876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
Nucleotide-binding site (NBS) domain genes are one of the superfamily of resistance genes involved in plant responses to pathogens. The current study identified 12,820 NBS-domain-containing genes across 34 species covering from mosses to monocots and dicots. These identified genes are classified into 168 classes with several novel domain architecture patterns encompassing significant diversity among plant species. Several classical (NBS, NBS-LRR, TIR-NBS, TIR-NBS-LRR, etc.) and species-specific structural patterns (TIR-NBS-TIR-Cupin_1-Cupin_1, TIR-NBS-Prenyltransf, Sugar_tr-NBS etc.) were discovered. We observed 603 orthogroups (OGs) with some core (most common orthogroups; OG0, OG1, OG2, etc.) and unique (highly specific to species; OG80, OG82, etc.) OGs with tandem duplications. The expression profiling presented the putative upregulation of OG2, OG6, and OG15 in different tissues under various biotic and abiotic stresses in susceptible and tolerant plants to cotton leaf curl disease (CLCuD). The genetic variation between susceptible (Coker 312) and tolerant (Mac7) Gossypium hirsutum accessions identified several unique variants in NBS genes of Mac7 (6583 variants) and Coker312 (5173 variants). The protein-ligand and proteins-protein interaction showed a strong interaction of some putative NBS proteins with ADP/ATP and different core proteins of the cotton leaf curl disease virus. The silencing of GaNBS (OG2) in resistant cotton through virus-induced gene silencing (VIGS) demonstrated its putative role in virus tittering. The presented study will be further helpful in understanding the plant adaptation mechanism.
Collapse
Affiliation(s)
- Athar Hussain
- National Institute for Biotechnology and Genetic Engineering, College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan.
- School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54000, Pakistan.
| | - Aqsa Anwer Khan
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Muhammad Qasim Aslam
- National Institute for Biotechnology and Genetic Engineering, College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
| | - Aquib Nazar
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Nadir Zaman
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Ayesha Amin
- Department of Biological Sciences, Superior University, Lahore, 54000, Pakistan
| | - Muhammad Arslan Mahmood
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - M Shahid Mukhtar
- Biosystems Research Complex, Department of Genetics & Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Hafiz Ubaid Ur Rahman
- School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Muhammed Farooq
- National Institute for Biotechnology and Genetic Engineering, College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
| | - Muhammed Saeed
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau Abteilung Phytopathologie, Paul-Ehrlich-Straße 22, 67653, Kaiserslautern, Germany
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan.
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan.
- Jamil ur Rehman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 74000, Pakistan.
| |
Collapse
|
4
|
Marczuk-Rojas JP, Salmerón A, Alcayde A, Isanbaev V, Carretero-Paulet L. Plastid DNA is a major source of nuclear genome complexity and of RNA genes in the orphan crop moringa. BMC PLANT BIOLOGY 2024; 24:437. [PMID: 38773387 PMCID: PMC11110229 DOI: 10.1186/s12870-024-05158-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Unlike Transposable Elements (TEs) and gene/genome duplication, the role of the so-called nuclear plastid DNA sequences (NUPTs) in shaping the evolution of genome architecture and function remains poorly studied. We investigate here the functional and evolutionary fate of NUPTs in the orphan crop Moringa oleifera (moringa), featured by the highest fraction of plastid DNA found so far in any plant genome, focusing on (i) any potential biases in their distribution in relation to specific nuclear genomic features, (ii) their contribution to the emergence of new genes and gene regions, and (iii) their impact on the expression of target nuclear genes. RESULTS In agreement with their potential mutagenic effect, NUPTs are underrepresented among structural genes, although their overall transcription levels and broadness were only lower when involved exonic regions; the occurrence of plastid DNA generally did not result in a broader expression, except among those affected in introns by older NUPTs. In contrast, we found a strong enrichment of NUPTs among specific superfamilies of retrotransposons and several classes of RNA genes, including those participating in the protein biosynthetic machinery (i.e., rRNA and tRNA genes) and a specific class of regulatory RNAs. A significant fraction of NUPT RNA genes was found to be functionally expressed, thus potentially contributing to the nuclear pool. CONCLUSIONS Our results complete our view of the molecular factors driving the evolution of nuclear genome architecture and function, and support plastid DNA in moringa as a major source of (i) genome complexity and (ii) the nuclear pool of RNA genes.
Collapse
Affiliation(s)
- Juan Pablo Marczuk-Rojas
- Department of Biology and Geology, University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
- "Pabellón de Historia Natural-Centro de Investigación de Colecciones Científicas de la Universidad de Almería" (PHN-CECOUAL), University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Antonio Salmerón
- Department of Mathematics and Center for the Development and Transfer of Mathematical Research to Industry (CDTIME), University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Alfredo Alcayde
- Department of Engineering, University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Viktor Isanbaev
- Department of Engineering, University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Lorenzo Carretero-Paulet
- Department of Biology and Geology, University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain.
- "Pabellón de Historia Natural-Centro de Investigación de Colecciones Científicas de la Universidad de Almería" (PHN-CECOUAL), University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain.
| |
Collapse
|
5
|
Zhang S, Wang R, Zhang L, Birchler JA, Sun L. Inverse and Proportional Trans Modulation of Gene Expression in Human Aneuploidies. Genes (Basel) 2024; 15:637. [PMID: 38790266 PMCID: PMC11121296 DOI: 10.3390/genes15050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Genomic imbalance in aneuploidy is often detrimental to organisms. To gain insight into the molecular basis of aneuploidies in humans, we analyzed transcriptome data from several autosomal and sex chromosome aneuploidies. The results showed that in human aneuploid cells, genes located on unvaried chromosomes are inversely or proportionally trans-modulated, while a subset of genes on the varied chromosomes are compensated. Less genome-wide modulation is found for sex chromosome aneuploidy compared with autosomal aneuploidy due to X inactivation and the retention of dosage sensitive regulators on both sex chromosomes to limit the effective dosage change. We also found that lncRNA and mRNA can have different responses to aneuploidy. Furthermore, we analyzed the relationship between dosage-sensitive transcription factors and their targets, which illustrated the modulations and indicates genomic imbalance is related to stoichiometric changes in components of gene regulatory complexes.In summary, this study demonstrates the existence of trans-acting effects and compensation mechanisms in human aneuploidies and contributes to our understanding of gene expression regulation in unbalanced genomes and disease states.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ludan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - James A. Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Sloan DB, Conover JL, Grover CE, Wendel JF, Sharbrough J. Polyploid plants take cytonuclear perturbations in stride. THE PLANT CELL 2024; 36:829-839. [PMID: 38267606 PMCID: PMC10980399 DOI: 10.1093/plcell/koae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Hybridization in plants is often accompanied by nuclear genome doubling (allopolyploidy), which has been hypothesized to perturb interactions between nuclear and organellar (mitochondrial and plastid) genomes by creating imbalances in the relative copy number of these genomes and producing genetic incompatibilities between maternally derived organellar genomes and the half of the allopolyploid nuclear genome from the paternal progenitor. Several evolutionary responses have been predicted to ameliorate these effects, including selection for changes in protein sequences that restore cytonuclear interactions; biased gene retention/expression/conversion favoring maternal nuclear gene copies; and fine-tuning of relative cytonuclear genome copy numbers and expression levels. Numerous recent studies, however, have found that evolutionary responses are inconsistent and rarely scale to genome-wide generalities. The apparent robustness of plant cytonuclear interactions to allopolyploidy may reflect features that are general to allopolyploids such as the lack of F2 hybrid breakdown under disomic inheritance, and others that are more plant-specific, including slow sequence divergence in organellar genomes and preexisting regulatory responses to changes in cell size and endopolyploidy during development. Thus, cytonuclear interactions may only rarely act as the main barrier to establishment of allopolyploid lineages, perhaps helping to explain why allopolyploidy is so pervasive in plant evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Justin L Conover
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Joel Sharbrough
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| |
Collapse
|
7
|
Mora‐Carrera E, Stubbs RL, Potente G, Yousefi N, Keller B, de Vos JM, Szövényi P, Conti E. Genomic analyses elucidate S-locus evolution in response to intra-specific losses of distyly in Primula vulgaris. Ecol Evol 2024; 14:e10940. [PMID: 38516570 PMCID: PMC10955462 DOI: 10.1002/ece3.10940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/02/2023] [Accepted: 01/03/2024] [Indexed: 03/23/2024] Open
Abstract
Distyly, a floral dimorphism that promotes outcrossing, is controlled by a hemizygous genomic region known as the S-locus. Disruptions of genes within the S-locus are responsible for the loss of distyly and the emergence of homostyly, a floral monomorphism that favors selfing. Using whole-genome resequencing data of distylous and homostylous individuals from populations of Primula vulgaris and leveraging high-quality reference genomes of Primula we tested, for the first time, predictions about the evolutionary consequences of transitions to selfing on S-genes. Our results reveal a previously undetected structural rearrangement in CYPᵀ associated with the shift to homostyly and confirm previously reported, homostyle-specific, loss-of-function mutations in the exons of the S-gene CYPᵀ. We also discovered that the promoter and intronic regions of CYPᵀ in distylous and homostylous individuals are conserved, suggesting that down-regulation of CYPᵀ via mutations in its promoter and intronic regions is not a cause of the shift to homostyly. Furthermore, we found that hemizygosity is associated with reduced genetic diversity in S-genes compared with their paralogs outside the S-locus. Additionally, the shift to homostyly lowers genetic diversity in both the S-genes and their paralogs, as expected in primarily selfing plants. Finally, we tested, for the first time, long-standing theoretical models of changes in S-locus genotypes during early stages of the transition to homostyly, supporting the assumption that two copies of the S-locus might reduce homostyle fitness.
Collapse
Affiliation(s)
- E. Mora‐Carrera
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - R. L. Stubbs
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - G. Potente
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - N. Yousefi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - B. Keller
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - J. M. de Vos
- Department of Environmental Sciences – BotanyUniversity of BaselBaselSwitzerland
| | - P. Szövényi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - E. Conti
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
8
|
Chen X, Zhang J, Wang S, Cai H, Yang M, Dong Y. Genome-wide molecular evolution analysis of the GRF and GIF gene families in Plantae (Archaeplastida). BMC Genomics 2024; 25:74. [PMID: 38233778 PMCID: PMC10795294 DOI: 10.1186/s12864-024-10006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Plant growth-regulating factors (GRFs) and GRF-interacting factors (GIFs) interact with each other and collectively have important regulatory roles in plant growth, development, and stress responses. Therefore, it is of great significance to explore the systematic evolution of GRF and GIF gene families. However, our knowledge and understanding of the role of GRF and GIF genes during plant evolution has been fragmentary. RESULTS In this study, a large number of genomic and transcriptomic datasets of algae, mosses, ferns, gymnosperms and angiosperms were used to systematically analyze the evolution of GRF and GIF genes during the evolution of plants. The results showed that GRF gene first appeared in the charophyte Klebsormidium nitens, whereas the GIF genes originated relatively early, and these two gene families were mainly expanded by segmental duplication events after plant terrestrialization. During the process of evolution, the protein sequences and functions of GRF and GIF family genes are relatively conservative. As cooperative partner, GRF and GIF genes contain the similar types of cis-acting elements in their promoter regions, which enables them to have similar transcriptional response patterns, and both show higher levels of expression in reproductive organs and tissues and organs with strong capacity for cell division. Based on protein-protein interaction analysis and verification, we found that the GRF-GIF protein partnership began to be established in pteridophytes and is highly conserved across different terrestrial plants. CONCLUSIONS These results provide a foundation for further exploration of the molecular evolution and biological functions of GRF and GIF genes.
Collapse
Affiliation(s)
- Xinghao Chen
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Jun Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Shijie Wang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Hongyu Cai
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China.
| | - Yan Dong
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China.
| |
Collapse
|
9
|
Xu Y, Bush SJ, Yang X, Xu L, Wang B, Ye K. Evolutionary analysis of conserved non-coding elements subsequent to whole-genome duplication in opium poppy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1804-1824. [PMID: 37706612 DOI: 10.1111/tpj.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Whole-genome duplication (WGD) leads to the duplication of both coding and non-coding sequences within an organism's genome, providing an abundant supply of genetic material that can drive evolution, ultimately contributing to plant adaptation and speciation. Although non-coding sequences contain numerous regulatory elements, they have been understudied compared to coding sequences. In order to address this gap, we explored the evolutionary patterns of regulatory sequences, coding sequences and transcriptomes using conserved non-coding elements (CNEs) as regulatory element proxies following the recent WGD event in opium poppy (Papaver somniferum). Our results showed similar evolutionary patterns in subgenomes of regulatory and coding sequences. Specifically, the biased or unbiased retention of coding sequences reflected the same pattern as retention levels in regulatory sequences. Further, the divergence of gene expression patterns mediated by regulatory element variations occurred at a more rapid pace than that of gene coding sequences. However, gene losses were purportedly dependent on relaxed selection pressure in coding sequences. Specifically, the rapid evolution of tissue-specific benzylisoquinoline alkaloid production in P. somniferum was associated with regulatory element changes. The origin of a novel stem-specific ACR, which utilized ancestral cis-elements as templates, is likely to be linked to the evolutionary trajectory behind the transition of the PSMT1-CYP719A21 cluster from high levels of expression solely in P. rhoeas root tissue to its elevated expression in P. somniferum stem tissue. Our findings demonstrate that rapid regulatory element evolution can contribute to the emergence of new phenotypes and provide valuable insights into the high evolvability of regulatory elements.
Collapse
Affiliation(s)
- Yu Xu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Linfeng Xu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kai Ye
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Bird KA, Pires JC, VanBuren R, Xiong Z, Edger PP. Dosage-sensitivity shapes how genes transcriptionally respond to allopolyploidy and homoeologous exchange in resynthesized Brassica napus. Genetics 2023; 225:iyad114. [PMID: 37338008 PMCID: PMC10471226 DOI: 10.1093/genetics/iyad114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
The gene balance hypothesis proposes that selection acts on the dosage (i.e. copy number) of genes within dosage-sensitive portions of networks, pathways, and protein complexes to maintain balanced stoichiometry of interacting proteins, because perturbations to stoichiometric balance can result in reduced fitness. This selection has been called dosage balance selection. Dosage balance selection is also hypothesized to constrain expression responses to dosage changes, making dosage-sensitive genes (those encoding members of interacting proteins) experience more similar expression changes. In allopolyploids, where whole-genome duplication involves hybridization of diverged lineages, organisms often experience homoeologous exchanges that recombine, duplicate, and delete homoeologous regions of the genome and alter the expression of homoeologous gene pairs. Although the gene balance hypothesis makes predictions about the expression response to homoeologous exchanges, they have not been empirically tested. We used genomic and transcriptomic data from 6 resynthesized, isogenic Brassica napus lines over 10 generations to identify homoeologous exchanges, analyzed expression responses, and tested for patterns of genomic imbalance. Groups of dosage-sensitive genes had less variable expression responses to homoeologous exchanges than dosage-insensitive genes, a sign that their relative dosage is constrained. This difference was absent for homoeologous pairs whose expression was biased toward the B. napus A subgenome. Finally, the expression response to homoeologous exchanges was more variable than the response to whole-genome duplication, suggesting homoeologous exchanges create genomic imbalance. These findings expand our knowledge of the impact of dosage balance selection on genome evolution and potentially connect patterns in polyploid genomes over time, from homoeolog expression bias to duplicate gene retention.
Collapse
Affiliation(s)
- Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia 010070, China
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Almeida-Silva F, Van de Peer Y. Whole-genome Duplications and the Long-term Evolution of Gene Regulatory Networks in Angiosperms. Mol Biol Evol 2023; 40:msad141. [PMID: 37405949 PMCID: PMC10321489 DOI: 10.1093/molbev/msad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Angiosperms have a complex history of whole-genome duplications (WGDs), with varying numbers and ages of WGD events across clades. These WGDs have greatly affected the composition of plant genomes due to the biased retention of genes belonging to certain functional categories following their duplication. In particular, regulatory genes and genes encoding proteins that act in multiprotein complexes have been retained in excess following WGD. Here, we inferred protein-protein interaction (PPI) networks and gene regulatory networks (GRNs) for seven well-characterized angiosperm species and explored the impact of both WGD and small-scale duplications (SSDs) in network topology by analyzing changes in frequency of network motifs. We found that PPI networks are enriched in WGD-derived genes associated with dosage-sensitive intricate systems, and strong selection pressures constrain the divergence of WGD-derived genes at the sequence and PPI levels. WGD-derived genes in network motifs are mostly associated with dosage-sensitive processes, such as regulation of transcription and cell cycle, translation, photosynthesis, and carbon metabolism, whereas SSD-derived genes in motifs are associated with response to biotic and abiotic stress. Recent polyploids have higher motif frequencies than ancient polyploids, whereas WGD-derived network motifs tend to be disrupted on the longer term. Our findings demonstrate that both WGD and SSD have contributed to the evolution of angiosperm GRNs, but in different ways, with WGD events likely having a more significant impact on the short-term evolution of polyploids.
Collapse
Affiliation(s)
- Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Yang H, Shi X, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Genomic imbalance modulates transposable element expression in maize. PLANT COMMUNICATIONS 2023; 4:100467. [PMID: 36307986 PMCID: PMC10030319 DOI: 10.1016/j.xplc.2022.100467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/19/2022] [Accepted: 10/23/2022] [Indexed: 05/04/2023]
Abstract
Genomic imbalance refers to the more severe phenotypic consequences of changing part of a chromosome compared with the whole genome set. Previous genome imbalance studies in maize have identified prevalent inverse modulation of genes on the unvaried chromosomes (trans) with both the addition or subtraction of chromosome arms. Transposable elements (TEs) comprise a substantial fraction of the genome, and their reaction to genomic imbalance is therefore of interest. Here, we analyzed TE expression using RNA-seq data of aneuploidy and ploidy series and found that most aneuploidies showed an inverse modulation of TEs, but reductions in monosomy and increases in disomy and trisomy were also common. By contrast, the ploidy series showed little TE modulation. The modulation of TEs and genes in the same experimental group were compared, and TEs showed greater modulation than genes, especially in disomy. Class I and II TEs were differentially modulated in most aneuploidies, and some superfamilies in each TE class also showed differential modulation. Finally, the significantly upregulated TEs in three disomies (TB-7Lb, TB9Lc, and TB-10L19) did not increase the proportion of adjacent gene expression when compared with non-differentially expressed TEs, indicating that modulations of TEs do not compound the effect on genes. These results suggest that the prevalent inverse TE modulation in aneuploidy results from stoichiometric upset of the regulatory machinery used by TEs, similar to the response of core genes to genomic imbalance.
Collapse
Affiliation(s)
- Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
13
|
Chen H, Zwaenepoel A. Inference of Ancient Polyploidy from Genomic Data. Methods Mol Biol 2023; 2545:3-18. [PMID: 36720805 DOI: 10.1007/978-1-0716-2561-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Whole-genome sequence data have revealed that numerous eukaryotic organisms derive from distant polyploid ancestors, even when these same organisms are genetically and karyotypically diploid. Such ancient whole-genome duplications (WGDs) have been important for long-term genome evolution and are often speculatively associated with important evolutionary events such as key innovations, adaptive radiations, or survival after mass extinctions. Clearly, reliable methods for unveiling ancient WGDs are key toward furthering understanding of the long-term evolutionary significance of polyploidy. In this chapter, we describe a set of basic established comparative genomics approaches for the inference of ancient WGDs from genomic data based on empirical age distributions and collinearity analyses, explain the principles on which they are based, and illustrate a basic workflow using the software "wgd," geared toward a typical exploratory analysis of a newly obtained genome sequence.
Collapse
Affiliation(s)
- Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
| |
Collapse
|
14
|
Shi X, Yang H, Birchler JA. MicroRNAs play regulatory roles in genomic balance. Bioessays 2023; 45:e2200187. [PMID: 36470594 DOI: 10.1002/bies.202200187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Classic genetics studies found that genomic imbalance caused by changing the dosage of part of the genome (aneuploidy) has more detrimental effects than altering the dosage of the whole genome (ploidy). Previous analysis revealed global modulation of gene expression triggered by aneuploidy across various species, including maize (Zea mays), Arabidopsis, yeast, mammals, etc. Plant microRNAs (miRNAs) are a class of 20- to 24-nt endogenous small noncoding RNAs that carry out post-transcriptional gene expression regulation. That miRNAs and their putative targets are preferentially retained as duplicates after whole-genome duplication, as are many transcription factors and signaling components, indicates miRNAs are likely to be dosage-sensitive and potentially involved in genomic balance networks. This review addresses the following questions regarding the role of miRNAs in genomic imbalance. (1) How do aneuploidy and polyploidy impact the expression of miRNAs? (2) Do miRNAs play a regulatory role in modulating the expression of their targets under genomic imbalance?
Collapse
Affiliation(s)
- Xiaowen Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
15
|
Shan S, Yang B, Hauser BA, Soltis PS, Soltis DE. Developing a CRISPR System in Nongenetic Model Polyploids. Methods Mol Biol 2023; 2545:475-490. [PMID: 36720829 DOI: 10.1007/978-1-0716-2561-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The genetic consequences following polyploidy (i.e., whole-genome duplication; WGD) vary greatly across organisms and through time since polyploidization. At the gene level in allopolyploids, changes include loss/retention of both parental gene copies, function/expression divergence between the two parental copies, and silencing of one parental copy. Functional studies of genes with different retention patterns contribute to a better understanding of the genetic factors underlying the success of polyploids. Most research on gene functions to date focuses on a few well-established genetic models or crops. However, many species that best exemplify the polyploidy process are nongenetic models; the lack of an efficient genome editing system hinders functional studies in these systems. In this chapter, we discuss the considerations of developing CRISPR, a robust and efficient genome editing system, in polyploid plants that are not genetic models. We use diploid and polyploid Tragopogon (Asteraceae) as examples of a well-studied evolutionary model system for which abundant genetic and genomic resources are lacking. Using this system, we provide our protocols for sgRNA design, plasmid construction, a useful protoplast transient assay, and a plant transformation method we developed for this system. We also provide suggestions for possible modifications to these protocols to help promote successful application to other non-models. With the rapid applications of CRISPR in plant sciences, the broad adaptation of CRISPR in studies of the evolutionary significance of WGD holds enormous potential. We hope our studies and methods developed for polyploid Tragopogon will provide a guideline for establishing a CRISPR system in other nongenetic model polyploids of evolutionary or other interest.
Collapse
Affiliation(s)
- Shengchen Shan
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Bing Yang
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Bernard A Hauser
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
De Silva NP, Lee C, Battlay P, Fournier-Level A, Moore JL, Hodgins KA. Genome assembly of an Australian native grass species reveals a recent whole-genome duplication and biased gene retention of genes involved in stress response. Gigascience 2022; 12:giad034. [PMID: 37171129 PMCID: PMC10176504 DOI: 10.1093/gigascience/giad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/04/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The adaptive significance of polyploidy has been extensively debated, and chromosome-level genome assemblies of polyploids can provide insight into this. The Australian grass Bothriochloa decipiens belongs to the BCD clade, a group with a complex history of hybridization and polyploid. This is the first genome assembly and annotation of a species that belongs to this fascinating yet complex group. FINDINGS Using Illumina short reads, 10X Genomics linked reads, and Hi-C sequencing data, we assembled a highly contiguous genome of B. decipiens, with a total length of 1,218.22 Mb and scaffold N50 of 42.637 Mb. Comparative analysis revealed that the species experienced a relatively recent whole-genome duplication. We clustered the 20 major scaffolds, representing the 20 chromosomes, into the 2 subgenomes of the parental species using unique repeat signatures. We found evidence of biased fractionation and differences in the activity of transposable elements between the subgenomes prior to hybridization. Duplicates were enriched for genes involved in transcription and response to external stimuli, supporting a biased retention of duplicated genes following whole-genome duplication. CONCLUSIONS Our results support the hypotheses of a biased retention of duplicated genes following polyploidy and point to differences in repeat activity associated with subgenome dominance. B. decipiens is a widespread species with the ability to establish across many soil types, making it a prime candidate for climate change- resilient ecological restoration of Australian grasslands. This reference genome is a valuable resource for future population genomic research on Australian grasses.
Collapse
Affiliation(s)
- Nissanka P De Silva
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| | - Christopher Lee
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| | - Paul Battlay
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| | - A Fournier-Level
- School of BioSciences, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Joslin L Moore
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
- Arthur Rylah Institute for Environment Research, Heidelberg, 3084 Victoria, Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| |
Collapse
|
17
|
Chang J, Marczuk-Rojas JP, Waterman C, Garcia-Llanos A, Chen S, Ma X, Hulse-Kemp A, Van Deynze A, Van de Peer Y, Carretero-Paulet L. Chromosome-scale assembly of the Moringa oleifera Lam. genome uncovers polyploid history and evolution of secondary metabolism pathways through tandem duplication. THE PLANT GENOME 2022; 15:e20238. [PMID: 35894687 DOI: 10.1002/tpg2.20238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The African Orphan Crops Consortium (AOCC) selected the highly nutritious, fast growing and drought tolerant tree crop moringa (Moringa oleifera Lam.) as one of the first of 101 plant species to have its genome sequenced and a first draft assembly was published in 2019. Given the extensive uses and culture of moringa, often referred to as the multipurpose tree, we generated a significantly improved new version of the genome based on long-read sequencing into 14 pseudochromosomes equivalent to n = 14 haploid chromosomes. We leveraged this nearly complete version of the moringa genome to investigate main drivers of gene family and genome evolution that may be at the origin of relevant biological innovations including agronomical favorable traits. Our results reveal that moringa has not undergone any additional whole-genome duplication (WGD) or polyploidy event beyond the gamma WGD shared by all core eudicots. Moringa duplicates retained following that ancient gamma events are also enriched for functions commonly considered as dosage balance sensitive. Furthermore, tandem duplications seem to have played a prominent role in the evolution of specific secondary metabolism pathways including those involved in the biosynthesis of bioactive glucosinolate, flavonoid, and alkaloid compounds as well as of defense response pathways and might, at least partially, explain the outstanding phenotypic plasticity attributed to this species. This study provides a genetic roadmap to guide future breeding programs in moringa, especially those aimed at improving secondary metabolism related traits.
Collapse
Affiliation(s)
- Jiyang Chang
- Dep. of Plant Biotechnology and Bioinformatics, Ghent Univ., Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Juan Pablo Marczuk-Rojas
- Dep. of Biology and Geology, Univ. of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
- Centro de Investigación de Colecciones Científicas de la Universidad de Almería (CECOUAL), Univ. of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Carrie Waterman
- Dep. of Nutrition, Univ. of California, Davis, CA, 95616, USA
| | | | - Shiyu Chen
- Seed Biotechnology Center, Univ. of California, Davis, CA, 95616, USA
| | - Xiao Ma
- Dep. of Plant Biotechnology and Bioinformatics, Ghent Univ., Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Amanda Hulse-Kemp
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC, 27695, USA
- Dep. of Crop and Soil Sciences, North Carolina State Univ., Raleigh, NC, 27695, USA
| | - Allen Van Deynze
- Seed Biotechnology Center, Univ. of California, Davis, CA, 95616, USA
| | - Yves Van de Peer
- Dep. of Plant Biotechnology and Bioinformatics, Ghent Univ., Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
- Dep. of Biochemistry, Genetics and Microbiology, Univ. of Pretoria, Pretoria, 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Lorenzo Carretero-Paulet
- Dep. of Biology and Geology, Univ. of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
- Centro de Investigación de Colecciones Científicas de la Universidad de Almería (CECOUAL), Univ. of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| |
Collapse
|
18
|
The recipe for cytonuclear interaction begins with a superabundance of plastid and mitochondrial mRNAs. Proc Natl Acad Sci U S A 2022; 119:e2211133119. [PMID: 35943977 PMCID: PMC9407606 DOI: 10.1073/pnas.2211133119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Evans CEB, Arunkumar R, Borrill P. Transcription factor retention through multiple polyploidization steps in wheat. G3 GENES|GENOMES|GENETICS 2022; 12:6617353. [PMID: 35748743 PMCID: PMC9339333 DOI: 10.1093/g3journal/jkac147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Whole-genome duplication is widespread in plant evolutionary history and is followed by nonrandom gene loss to return to a diploid state. Across multiple angiosperm species, the retained genes tend to be dosage-sensitive regulatory genes such as transcription factors, yet data for younger polyploid species is sparse. Here, we analyzed the retention, expression, and genetic variation in transcription factors in the recent allohexaploid bread wheat (Triticum aestivum L.). By comparing diploid, tetraploid, and hexaploid wheat, we found that, following each of two hybridization and whole-genome duplication events, the proportion of transcription factors in the genome increased. Transcription factors were preferentially retained over other genes as homoeologous groups in tetraploid and hexaploid wheat. Across cultivars, transcription factor homoeologs contained fewer deleterious missense mutations than nontranscription factors, suggesting that transcription factors are maintained as three functional homoeologs in hexaploid wheat populations. Transcription factor homoeologs were more strongly coexpressed than nontranscription factors, indicating conservation of function between homoeologs. We found that the B3, MADS-M-type, and NAC transcription factor families were less likely to have three homoeologs present than other families, which was associated with low expression levels and high levels of tandem duplication. Together, our results show that transcription factors are preferentially retained in polyploid wheat genomes although there is variation between families. Knocking out one transcription factor homoeolog to alter gene dosage, using TILLING or CRISPR, could generate new phenotypes for wheat breeding.
Collapse
Affiliation(s)
- Catherine E B Evans
- Department of Crop Genetics, John Innes Centre , Norwich Research Park NR4 7UH, UK
- School of Biosciences, University of Birmingham , Birmingham B15 2TT, UK
| | - Ramesh Arunkumar
- Department of Crop Genetics, John Innes Centre , Norwich Research Park NR4 7UH, UK
| | - Philippa Borrill
- Department of Crop Genetics, John Innes Centre , Norwich Research Park NR4 7UH, UK
| |
Collapse
|
20
|
Birchler JA, Yang H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. THE PLANT CELL 2022; 34:2466-2474. [PMID: 35253876 PMCID: PMC9252495 DOI: 10.1093/plcell/koac076] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/17/2022] [Indexed: 05/13/2023]
Abstract
Gene duplications have long been recognized as a contributor to the evolution of genes with new functions. Multiple copies of genes can result from tandem duplication, from transposition to new chromosomes, or from whole-genome duplication (polyploidy). The most common fate is that one member of the pair is deleted to return the gene to the singleton state. Other paths involve the reduced expression of both copies (hypofunctionalization) that are held in duplicate to maintain sufficient quantity of function. The two copies can split functions (subfunctionalization) or can diverge to generate a new function (neofunctionalization). Retention of duplicates resulting from doubling of the whole genome occurs for genes involved with multicomponent interactions such as transcription factors and signal transduction components. In contrast, these classes of genes are underrepresented in small segmental duplications. This complementary pattern suggests that the balance of interactors affects the fate of the duplicate pair. We discuss the different mechanisms that maintain duplicated genes, which may change over time and intersect.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
21
|
Shi X, Yang H, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Dosage-sensitive miRNAs trigger modulation of gene expression during genomic imbalance in maize. Nat Commun 2022; 13:3014. [PMID: 35641525 PMCID: PMC9156689 DOI: 10.1038/s41467-022-30704-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
The genomic imbalance caused by varying the dosage of individual chromosomes or chromosomal segments (aneuploidy) has more detrimental effects than altering the dosage of complete chromosome sets (ploidy). Previous analysis of maize (Zea mays) aneuploids revealed global modulation of gene expression both on the varied chromosome (cis) and the remainder of the genome (trans). However, little is known regarding the role of microRNAs (miRNAs) under genomic imbalance. Here, we report the impact of aneuploidy and polyploidy on the expression of miRNAs. In general, cis miRNAs in aneuploids present a predominant gene-dosage effect, whereas trans miRNAs trend toward the inverse level, although other types of responses including dosage compensation, increased effect, and decreased effect also occur. By contrast, polyploids show less differential miRNA expression than aneuploids. Significant correlations between expression levels of miRNAs and their targets are identified in aneuploids, indicating the regulatory role of miRNAs on gene expression triggered by genomic imbalance.
Collapse
Affiliation(s)
- Xiaowen Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
22
|
Hao Y, Fleming J, Petterson J, Lyons E, Edger PP, Pires JC, Thorne JL, Conant GC. Convergent evolution of polyploid genomes from across the eukaryotic tree of life. G3 (BETHESDA, MD.) 2022; 12:jkac094. [PMID: 35451464 PMCID: PMC9157103 DOI: 10.1093/g3journal/jkac094] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/15/2022] [Indexed: 11/14/2022]
Abstract
By modeling the homoeologous gene losses that occurred in 50 genomes deriving from ten distinct polyploidy events, we show that the evolutionary forces acting on polyploids are remarkably similar, regardless of whether they occur in flowering plants, ciliates, fishes, or yeasts. We show that many of the events show a relative rate of duplicate gene loss before the first postpolyploidy speciation that is significantly higher than in later phases of their evolution. The relatively weak selective constraint experienced by the single-copy genes these losses produced leads us to suggest that most of the purely selectively neutral duplicate gene losses occur in the immediate postpolyploid period. Nearly all of the events show strong evidence of biases in the duplicate losses, consistent with them being allopolyploidies, with 2 distinct progenitors contributing to the modern species. We also find ongoing and extensive reciprocal gene losses (alternative losses of duplicated ancestral genes) between these genomes. With the exception of a handful of closely related taxa, all of these polyploid organisms are separated from each other by tens to thousands of reciprocal gene losses. As a result, it is very unlikely that viable diploid hybrid species could form between these taxa, since matings between such hybrids would tend to produce offspring lacking essential genes. It is, therefore, possible that the relatively high frequency of recurrent polyploidies in some lineages may be due to the ability of new polyploidies to bypass reciprocal gene loss barriers.
Collapse
Affiliation(s)
- Yue Hao
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281, USA
| | - Jonathon Fleming
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Joanna Petterson
- Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - J Chris Pires
- International Plant Science Center, New York Botanical Garden, Bronx, NY 10458, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
- Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
- Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
- Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
23
|
Yocca AE, Edger PP. Machine learning approaches to identify core and dispensable genes in pangenomes. THE PLANT GENOME 2022; 15:e20135. [PMID: 34533282 DOI: 10.1002/tpg2.20135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/16/2021] [Indexed: 05/25/2023]
Abstract
A gene in a given taxonomic group is either present in every individual (core) or absent in at least a single individual (dispensable). Previous pangenomic studies have identified certain functional differences between core and dispensable genes. However, identifying if a gene belongs to the core or dispensable portion of the genome requires the construction of a pangenome, which involves sequencing the genomes of many individuals. Here we aim to leverage the previously characterized core and dispensable gene content for two grass species [Brachypodium distachyon (L.) P. Beauv. and Oryza sativa L.] to construct a machine learning model capable of accurately classifying genes as core or dispensable using only a single annotated reference genome. Such a model may mitigate the need for pangenome construction, an expensive hurdle especially in orphan crops, which often lack the adequate genomic resources.
Collapse
Affiliation(s)
- Alan E Yocca
- Dep. of Plant Biology, Michigan State Univ., East Lansing, MI, 48824, USA
- Dep. of Horticulture, Michigan State Univ., East Lansing, MI, 48824, USA
| | - Patrick P Edger
- Dep. of Horticulture, Michigan State Univ., East Lansing, MI, 48824, USA
- Genetics and Genome Sciences Program, Michigan State Univ., East Lansing, MI, 48824, USA
| |
Collapse
|
24
|
Birchler JA, Veitia RA. One Hundred Years of Gene Balance: How Stoichiometric Issues Affect Gene Expression, Genome Evolution, and Quantitative Traits. Cytogenet Genome Res 2021; 161:529-550. [PMID: 34814143 DOI: 10.1159/000519592] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
A century ago experiments with the flowering plant Datura stramonium and the fruit fly Drosophila melanogaster revealed that adding an extra chromosome to a karyotype was much more detrimental than adding a whole set of chromosomes. This phenomenon was referred to as gene balance and has been recapitulated across eukaryotic species. Here, we retrace some developments in this field. Molecular studies suggest that the basis of balance involves stoichiometric relationships of multi-component interactions. This concept has implication for the mechanisms controlling gene expression, genome evolution, sex chromosome evolution/dosage compensation, speciation mechanisms, and the underlying genetics of quantitative traits.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Reiner A Veitia
- Université de Paris, Paris, France.,Institut Jacques Monod, Université de Paris/CNRS, Paris, France.,Institut de Biologie F. Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, Fontenay aux Roses, France
| |
Collapse
|
25
|
Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proc Natl Acad Sci U S A 2021; 118:2104254118. [PMID: 34088847 PMCID: PMC8201846 DOI: 10.1073/pnas.2104254118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
B chromosomes are enigmatic elements in thousands of plant and animal genomes that persist in populations despite being nonessential. They circumvent the laws of Mendelian inheritance but the molecular mechanisms underlying this behavior remain unknown. Here we present the sequence, annotation, and analysis of the maize B chromosome providing insight into its drive mechanism. The sequence assembly reveals detailed locations of the elements involved with the cis and trans functions of its drive mechanism, consisting of nondisjunction at the second pollen mitosis and preferential fertilization of the egg by the B-containing sperm. We identified 758 protein-coding genes in 125.9 Mb of B chromosome sequence, of which at least 88 are expressed. Our results demonstrate that transposable elements in the B chromosome are shared with the standard A chromosome set but multiple lines of evidence fail to detect a syntenic genic region in the A chromosomes, suggesting a distant origin. The current gene content is a result of continuous transfer from the A chromosomal complement over an extended evolutionary time with subsequent degradation but with selection for maintenance of this nonvital chromosome.
Collapse
|
26
|
Shi X, Yang H, Chen C, Hou J, Hanson KM, Albert PS, Ji T, Cheng J, Birchler JA. Genomic imbalance determines positive and negative modulation of gene expression in diploid maize. THE PLANT CELL 2021; 33:917-939. [PMID: 33677584 PMCID: PMC8226301 DOI: 10.1093/plcell/koab030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/25/2021] [Indexed: 05/20/2023]
Abstract
Genomic imbalance caused by changing the dosage of individual chromosomes (aneuploidy) has a more detrimental effect than varying the dosage of complete sets of chromosomes (ploidy). We examined the impact of both increased and decreased dosage of 15 distal and 1 interstitial chromosomal regions via RNA-seq of maize (Zea mays) mature leaf tissue to reveal new aspects of genomic imbalance. The results indicate that significant changes in gene expression in aneuploids occur both on the varied chromosome (cis) and the remainder of the genome (trans), with a wider spread of modulation compared with the whole-ploidy series of haploid to tetraploid. In general, cis genes in aneuploids range from a gene-dosage effect to dosage compensation, whereas for trans genes the most common effect is an inverse correlation in that expression is modulated toward the opposite direction of the varied chromosomal dosage, although positive modulations also occur. Furthermore, this analysis revealed the existence of increased and decreased effects in which the expression of many genes under genome imbalance are modulated toward the same direction regardless of increased or decreased chromosomal dosage, which is predicted from kinetic considerations of multicomponent molecular interactions. The findings provide novel insights into understanding mechanistic aspects of gene regulation.
Collapse
Affiliation(s)
- Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Katherine M Hanson
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
27
|
Yang H, Shi X, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Predominantly inverse modulation of gene expression in genomically unbalanced disomic haploid maize. THE PLANT CELL 2021; 33:901-916. [PMID: 33656551 PMCID: PMC8226288 DOI: 10.1093/plcell/koab029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/23/2021] [Indexed: 05/12/2023]
Abstract
The phenotypic consequences of the addition or subtraction of part of a chromosome is more severe than changing the dosage of the whole genome. By crossing diploid trisomies to a haploid inducer, we identified 17 distal segmental haploid disomies that cover ∼80% of the maize genome. Disomic haploids provide a level of genomic imbalance that is not ordinarily achievable in multicellular eukaryotes, allowing the impact to be stronger and more easily studied. Transcriptome size estimates revealed that a few disomies inversely modulate most of the transcriptome. Based on RNA sequencing, the expression levels of genes located on the varied chromosome arms (cis) in disomies ranged from being proportional to chromosomal dosage (dosage effect) to showing dosage compensation with no expression change with dosage. For genes not located on the varied chromosome arm (trans), an obvious trans-acting effect can be observed, with the majority showing a decreased modulation (inverse effect). The extent of dosage compensation of varied cis genes correlates with the extent of trans inverse effects across the 17 genomic regions studied. The results also have implications for the role of stoichiometry in gene expression, the control of quantitative traits, and the evolution of dosage-sensitive genes.
Collapse
Affiliation(s)
- Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
28
|
Zhang H, Xie J, Wang W, Wang J. Comparison of Brassica Genomes reveals asymmetrical gene retention between functional groups of genes in recurrent polyploidizations. PLANT MOLECULAR BIOLOGY 2021; 106:193-206. [PMID: 33742369 DOI: 10.1007/s11103-021-01137-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
We provided a study on homeologous gene evolution of homeologous genes by comparing Brassica genomes. Polyploidy has played fundamental roles during the evolution of plants. Following polyploidization, many duplicated genes are diversified or lost in a process termed diploidization. Understanding the retention and diversification of homeologs after polyploidization will help elucidate the process of diploidization. Here, we investigated the evolution of homeologous genes in Brassica genomes and observed similarly asymmetrical gene retention among different functional groups and consistent retention after recurrent polyploidizations. In the comparative analysis of Brassica diploid genomes, we found that preferentially retained genes show different patterns on sequence and expression divergence: genes with the function of 'biosynthetic process' and 'transport' were under much stronger purifying selection, while transcriptional regulatory genes diverged much faster than other genes. Duplicate pairs of the former two functional groups show conserved high expression patterns, while most of transcriptional regulatory genes are simultaneously lowly expressed. Furthermore, homeologs in diploids and allotetraploids showed similar loss and retention patterns: duplicates in progenitor genomes were more likely to be retained and accumulated fewer substitutions. However, transcriptional regulation is also enriched in the genes that do not have any non-synonymous mutations in the Brassica allotetraploids, indicating that some of these genes were under strong purifying selection. Overall, our study provided insight into the evolution of homeologs genes during diploidization process.
Collapse
Affiliation(s)
- Haorui Zhang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiandan Xie
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Wenliang Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jianbo Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
29
|
Qi X, An H, Hall TE, Di C, Blischak PD, McKibben MTW, Hao Y, Conant GC, Pires JC, Barker MS. Genes derived from ancient polyploidy have higher genetic diversity and are associated with domestication in Brassica rapa. THE NEW PHYTOLOGIST 2021; 230:372-386. [PMID: 33452818 DOI: 10.1111/nph.17194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Many crops are polyploid or have a polyploid ancestry. Recent phylogenetic analyses have found that polyploidy often preceded the domestication of crop plants. One explanation for this observation is that increased genetic diversity following polyploidy may have been important during the strong artificial selection that occurs during domestication. In order to test the connection between domestication and polyploidy, we identified and examined candidate genes associated with the domestication of the diverse crop varieties of Brassica rapa. Like all 'diploid' flowering plants, B. rapa has a diploidized paleopolyploid genome and experienced many rounds of whole genome duplication (WGD). We analyzed transcriptome data of more than 100 cultivated B. rapa accessions. Using a combination of approaches, we identified > 3000 candidate genes associated with the domestication of four major B. rapa crop varieties. Consistent with our expectation, we found that the candidate genes were significantly enriched with genes derived from the Brassiceae mesohexaploidy. We also observed that paleologs were significantly more diverse than non-paleologs. Our analyses find evidence for that genetic diversity derived from ancient polyploidy played a key role in the domestication of B. rapa and provide support for its importance in the success of modern agriculture.
Collapse
Affiliation(s)
- Xinshuai Qi
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Tara E Hall
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Chenlu Di
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Paul D Blischak
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael T W McKibben
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Yue Hao
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
30
|
Costello R, Emms DM, Kelly S. Gene Duplication Accelerates the Pace of Protein Gain and Loss from Plant Organelles. Mol Biol Evol 2021; 37:969-981. [PMID: 31750917 PMCID: PMC7086175 DOI: 10.1093/molbev/msz275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Organelle biogenesis and function is dependent on the concerted action of both organellar-encoded (if present) and nuclear-encoded proteins. Differences between homologous organelles across the Plant Kingdom arise, in part, as a result of differences in the cohort of nuclear-encoded proteins that are targeted to them. However, neither the rate at which differences in protein targeting accumulate nor the evolutionary consequences of these changes are known. Using phylogenomic approaches coupled to ancestral state estimation, we show that the plant organellar proteome has diversified in proportion with molecular sequence evolution such that the proteomes of plant chloroplasts and mitochondria lose or gain on average 3.6 proteins per million years. We further demonstrate that changes in organellar protein targeting are associated with an increase in the rate of molecular sequence evolution and that such changes predominantly occur in genes with regulatory rather than metabolic functions. Finally, we show that gain and loss of protein target signals occurs at a higher rate following gene duplication, revealing that gene and genome duplication are a key facilitator of plant organelle evolution.
Collapse
Affiliation(s)
- Rona Costello
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - David M Emms
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Guo Z, Cui Y, Shi X, Birchler JA, Albizua I, Sherman SL, Qin ZS, Ji T. An empirical bayesian approach for testing gene expression fold change and its application in detecting global dosage effects. NAR Genom Bioinform 2021; 2:lqaa072. [PMID: 33575620 PMCID: PMC7671412 DOI: 10.1093/nargab/lqaa072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/27/2020] [Accepted: 08/29/2020] [Indexed: 11/14/2022] Open
Abstract
We are motivated by biological studies intended to understand global gene expression fold change. Biologists have generally adopted a fixed cutoff to determine the significance of fold changes in gene expression studies (e.g. by using an observed fold change equal to two as a fixed threshold). Scientists can also use a t-test or a modified differential expression test to assess the significance of fold changes. However, these methods either fail to take advantage of the high dimensionality of gene expression data or fail to test fold change directly. Our research develops a new empirical Bayesian approach to substantially improve the power and accuracy of fold-change detection. Specifically, we more accurately estimate gene-wise error variation in the log of fold change. We then adopt a t-test with adjusted degrees of freedom for significance assessment. We apply our method to a dosage study in Arabidopsis and a Down syndrome study in humans to illustrate the utility of our approach. We also present a simulation study based on real datasets to demonstrate the accuracy of our method relative to error variance estimation and power in fold-change detection. Our developed R package with a detailed user manual is publicly available on GitHub at https://github.com/cuiyingbeicheng/Foldseq.
Collapse
Affiliation(s)
- Zhenxing Guo
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Ying Cui
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri at Columbia, Columbia, MO 65211, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri at Columbia, Columbia, MO 65211, USA
| | - Igor Albizua
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri at Columbia, Columbia, MO 65211, USA
| |
Collapse
|
32
|
Shi X, Chen C, Yang H, Hou J, Ji T, Cheng J, Veitia RA, Birchler JA. The Gene Balance Hypothesis: Epigenetics and Dosage Effects in Plants. Methods Mol Biol 2020; 2093:161-171. [PMID: 32088896 DOI: 10.1007/978-1-0716-0179-2_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Dosage effects in plants are caused by changes in the copy number of chromosomes, segments of chromosomes, or multiples of individual genes. Genes often exhibit a dosage effect in which the amount of product is closely correlated with the number of copies present. However, when larger segments of chromosomes are varied, there are trans-acting effects across the genome that are unleashed that modulate gene expression in cascading effects. These appear to be mediated by the stoichiometric relationship of gene regulatory machineries. There are both positive and negative modulations of target gene expression, but the latter is the plurality effect. When this inverse effect is combined with a dosage effect, compensation for a gene can occur in which its expression is similar to the normal diploid regardless of the change in chromosomal dosage. In contrast, changing the whole genome in a polyploidy series has fewer relative effects as the stoichiometric relationship is not disrupted. Together, these observations suggest that the stoichiometry of gene regulation is important as a reflection of the mode of assembly of the individual subunits involved in the effective regulatory macromolecular complexes. This principle has implications for gene expression mechanisms, quantitative trait genetics, and the evolution of genes depending on the mode of duplication, either segmentally or via whole-genome duplication.
Collapse
Affiliation(s)
- Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Reiner A Veitia
- Institut Jacques Monod, Paris, France
- Universite Paris-Diderot/Paris 7, Paris, France
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
33
|
Zhao N, Dong Q, Nadon BD, Ding X, Wang X, Dong Y, Liu B, Jackson SA, Xu C. Evolution of Homeologous Gene Expression in Polyploid Wheat. Genes (Basel) 2020; 11:genes11121401. [PMID: 33255795 PMCID: PMC7759873 DOI: 10.3390/genes11121401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 11/17/2022] Open
Abstract
Polyploidization has played a prominent role in the evolutionary history of plants. Two recent and sequential allopolyploidization events have resulted in the formation of wheat species with different ploidies, and which provide a model to study the effects of polyploidization on the evolution of gene expression. In this study, we identified differentially expressed genes (DEGs) between four BBAA tetraploid wheats of three different ploidy backgrounds. DEGs were found to be unevenly distributed among functional categories and duplication modes. We observed more DEGs in the extracted tetraploid wheat (ETW) than in natural tetraploid wheats (TD and TTR13) as compared to a synthetic tetraploid (AT2). Furthermore, DEGs showed higher Ka/Ks ratios than those that did not show expression changes (non-DEGs) between genotypes, indicating DEGs and non-DEGs experienced different selection pressures. For A-B homeolog pairs with DEGs, most of them had only one differentially expressed copy, however, when both copies of a homeolog pair were DEGs, the A and B copies were more likely to be regulated to the same direction. Our results suggest that both cis- and inter-subgenome trans-regulatory changes are important drivers in the evolution of homeologous gene expression in polyploid wheat, with ploidy playing a significant role in the process.
Collapse
Affiliation(s)
- Na Zhao
- Department of Agronomy, Jilin Agricultural University, Changchun 130118, China;
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
| | - Brian D. Nadon
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
| | - Xiaoyang Ding
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
| | - Yuzhu Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
- Bayer Crop Science, Chesterfield, MO 63017, USA
- Correspondence: or (S.A.J.); (C.X.); Tel.: +86-0431-8509-9367 (C.X.)
| | - Chunming Xu
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Q.D.); (X.W.); (Y.D.); (B.L.)
- Correspondence: or (S.A.J.); (C.X.); Tel.: +86-0431-8509-9367 (C.X.)
| |
Collapse
|
34
|
Coate JE, Farmer AD, Schiefelbein JW, Doyle JJ. Expression Partitioning of Duplicate Genes at Single Cell Resolution in Arabidopsis Roots. Front Genet 2020; 11:596150. [PMID: 33240334 PMCID: PMC7670048 DOI: 10.3389/fgene.2020.596150] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023] Open
Abstract
Gene duplication is a key evolutionary phenomenon, prevalent in all organisms but particularly so in plants, where whole genome duplication (WGD; polyploidy) is a major force in genome evolution. Much effort has been expended in attempting to understand the evolution of duplicate genes, addressing such questions as why some paralog pairs rapidly return to single copy status whereas, in other pairs, both paralogs are retained and may diverge in expression pattern or function. The effect of a gene - its site of expression and thus the initial locus of its function - occurs at the level of a cell comprising a single cell type at a given state of the cell's development. Using Arabidopsis thaliana single cell transcriptomic data we categorized patterns of expression for 11,470 duplicate gene pairs across 36 cell clusters comprising nine cell types and their developmental states. Among these 11,470 pairs, 10,187 (88.8%) had at least one copy expressed in at least one of the 36 cell clusters. Pairs produced by WGD more often had both paralogs expressed in root cells than did pairs produced by small scale duplications. Three quarters of gene pairs expressed in the 36 cell clusters (7,608/10,187) showed extreme expression bias in at least one cluster, including 352 cases of reciprocal bias, a pattern consistent with expression subfunctionalization. More than twice as many pairs showed reciprocal expression bias between cell states than between cell types or between roots and leaves. A group of 33 gene pairs with reciprocal expression bias showed evidence of concerted divergence of gene networks in stele vs. epidermis. Pairs with both paralogs expressed without bias were less likely to have paralogs with divergent mutant phenotypes; such bias-free pairs showed evidence of preservation by maintenance of dosage balance. Overall, we found considerable evidence of shifts in gene expression following duplication, including in >80% of pairs encoding 7,653 genes expressed ubiquitously in all root cell types and states for which we inferred the polarity of change.
Collapse
Affiliation(s)
- Jeremy E. Coate
- Department of Biology, Reed College, Portland, OR, United States
| | - Andrew D. Farmer
- National Center for Genome Resources, Santa Fe, NM, United States
| | - John W. Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Jeff J. Doyle
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States
| |
Collapse
|
35
|
Zwaenepoel A, Van de Peer Y. Model-Based Detection of Whole-Genome Duplications in a Phylogeny. Mol Biol Evol 2020; 37:2734-2746. [PMID: 32359154 DOI: 10.1093/molbev/msaa111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ancient whole-genome duplications (WGDs) leave signatures in comparative genomic data sets that can be harnessed to detect these events of presumed evolutionary importance. Current statistical approaches for the detection of ancient WGDs in a phylogenetic context have two main drawbacks. The first is that unwarranted restrictive assumptions on the "background" gene duplication and loss rates make inferences unreliable in the face of model violations. The second is that most methods can only be used to examine a limited set of a priori selected WGD hypotheses and cannot be used to discover WGDs in a phylogeny. In this study, we develop an approach for WGD inference using gene count data that seeks to overcome both issues. We employ a phylogenetic birth-death model that includes WGD in a flexible hierarchical Bayesian approach and use reversible-jump Markov chain Monte Carlo to perform Bayesian inference of branch-specific duplication, loss, and WGD retention rates across the space of WGD configurations. We evaluate the proposed method using simulations, apply it to data sets from flowering plants, and discuss the statistical intricacies of model-based WGD inference.
Collapse
Affiliation(s)
- Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
36
|
Shi T, Rahmani RS, Gugger PF, Wang M, Li H, Zhang Y, Li Z, Wang Q, Van de Peer Y, Marchal K, Chen J. Distinct Expression and Methylation Patterns for Genes with Different Fates following a Single Whole-Genome Duplication in Flowering Plants. Mol Biol Evol 2020; 37:2394-2413. [PMID: 32343808 PMCID: PMC7403625 DOI: 10.1093/molbev/msaa105] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
For most sequenced flowering plants, multiple whole-genome duplications (WGDs) are found. Duplicated genes following WGD often have different fates that can quickly disappear again, be retained for long(er) periods, or subsequently undergo small-scale duplications. However, how different expression, epigenetic regulation, and functional constraints are associated with these different gene fates following a WGD still requires further investigation due to successive WGDs in angiosperms complicating the gene trajectories. In this study, we investigate lotus (Nelumbo nucifera), an angiosperm with a single WGD during the K-pg boundary. Based on improved intraspecific-synteny identification by a chromosome-level assembly, transcriptome, and bisulfite sequencing, we explore not only the fundamental distinctions in genomic features, expression, and methylation patterns of genes with different fates after a WGD but also the factors that shape post-WGD expression divergence and expression bias between duplicates. We found that after a WGD genes that returned to single copies show the highest levels and breadth of expression, gene body methylation, and intron numbers, whereas the long-retained duplicates exhibit the highest degrees of protein-protein interactions and protein lengths and the lowest methylation in gene flanking regions. For those long-retained duplicate pairs, the degree of expression divergence correlates with their sequence divergence, degree in protein-protein interactions, and expression level, whereas their biases in expression level reflecting subgenome dominance are associated with the bias of subgenome fractionation. Overall, our study on the paleopolyploid nature of lotus highlights the impact of different functional constraints on gene fate and duplicate divergence following a single WGD in plant.
Collapse
Affiliation(s)
- Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Razgar Seyed Rahmani
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD
| | - Muhua Wang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhizhong Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingfeng Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Information Technology, IDLab, IMEC, Ghent University, Ghent, Belgium
| | - Jinming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
37
|
Carretero‐Paulet L, Van de Peer Y. The evolutionary conundrum of whole-genome duplication. AMERICAN JOURNAL OF BOTANY 2020; 107:1101-1105. [PMID: 32815563 PMCID: PMC7540024 DOI: 10.1002/ajb2.1520] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/06/2020] [Indexed: 05/07/2023]
Affiliation(s)
| | - Yves Van de Peer
- Department of Plant Biotechnology and BioinformaticsGhent UniversityBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaSouth Africa
| |
Collapse
|
38
|
Zhang X, Li X, Zhao R, Zhou Y, Jiao Y. Evolutionary strategies drive a balance of the interacting gene products for the CBL and CIPK gene families. THE NEW PHYTOLOGIST 2020; 226:1506-1516. [PMID: 31967665 DOI: 10.1111/nph.16445] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/08/2020] [Indexed: 05/20/2023]
Abstract
Genes encoding interacting proteins tend to be co-retained after whole-genome duplication (WGD). The preferential retention after WGD has been explained by the gene balance hypothesis (GBH). However, small-scale duplications could independently occur in the connected gene families. Certain evolutionary strategies might keep the dosage balanced. Here, we examined the gene duplication, interaction and expression patterns of calcineurin B-like (CBL) and CBL-interacting protein kinase (CIPK) gene families to understand the underlying principles. The ratio of the CBL and CIPK gene numbers evolved from 5 : 7 in Physcomitrella to 10 : 26 in Arabidopsis, and retrotransposition, tandem duplication, and WGDs contributed to the expansion. Two pairs of CBLs and six pairs of CIPKs were retained after the α WGD in Arabidopsis, in which specific interaction patterns were identified. In some cases, two retained CBLs (CIPKs) might compete to interact with a sole CIPK (CBL). Results of gene expression analyses indicated that the relatively over-retained duplicates tend to show asymmetric expression, thus avoiding competition. In conclusion, our results suggested that the highly specific interaction, together with the differential gene expression pattern, jointly maintained the balanced dosage for the interacting CBL and CIPK proteins.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ran Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Song MJ, Potter BI, Doyle JJ, Coate JE. Gene Balance Predicts Transcriptional Responses Immediately Following Ploidy Change in Arabidopsis thaliana. THE PLANT CELL 2020; 32:1434-1448. [PMID: 32184347 PMCID: PMC7203931 DOI: 10.1105/tpc.19.00832] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/18/2020] [Accepted: 03/14/2020] [Indexed: 05/22/2023]
Abstract
The gene balance hypothesis postulates that there is selection on gene copy number (gene dosage) to preserve the stoichiometric balance among interacting proteins. This presupposes that gene product abundance is governed by gene dosage and that gene dosage responses are consistent for interacting genes in a dosage-balance-sensitive network or complex. Gene dosage responses, however, have rarely been quantified, and the available data suggest that they are highly variable. We sequenced the transcriptomes of two synthetic autopolyploid accessions of Arabidopsis (Arabidopsis thaliana) and their diploid progenitors, as well as one natural tetraploid and its synthetic diploid produced via haploid induction, to estimate transcriptome size and dosage responses immediately following ploidy change. Similar to what has been observed in previous studies, overall transcriptome size does not exhibit a simple doubling in response to genome doubling, and individual gene dosage responses are highly variable in all three accessions, indicating that expression is not strictly coupled with gene dosage. Nonetheless, putatively dosage balance-sensitive gene groups (Gene Ontology terms, metabolic networks, gene families, and predicted interacting proteins) exhibit smaller and more coordinated dosage responses than do putatively dosage-insensitive gene groups, suggesting that constraints on dosage balance operate immediately following whole-genome duplication and that duplicate gene retention patterns are shaped by selection to preserve dosage balance.
Collapse
Affiliation(s)
- Michael J Song
- University and Jepson Herbaria and Department of Integrative Biology, University of California, Berkeley, California 94720
| | - Barney I Potter
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Jeff J Doyle
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, Oregon 97202
| |
Collapse
|
40
|
Defoort J, Van de Peer Y, Carretero-Paulet L. The Evolution of Gene Duplicates in Angiosperms and the Impact of Protein-Protein Interactions and the Mechanism of Duplication. Genome Biol Evol 2020; 11:2292-2305. [PMID: 31364708 PMCID: PMC6735927 DOI: 10.1093/gbe/evz156] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 01/17/2023] Open
Abstract
Gene duplicates, generated through either whole genome duplication (WGD) or small-scale duplication (SSD), are prominent in angiosperms and are believed to play an important role in adaptation and in generating evolutionary novelty. Previous studies reported contrasting evolutionary and functional dynamics of duplicate genes depending on the mechanism of origin, a behavior that is hypothesized to stem from constraints to maintain the relative dosage balance between the genes concerned and their interaction context. However, the mechanisms ultimately influencing loss and retention of gene duplicates over evolutionary time are not yet fully elucidated. Here, by using a robust classification of gene duplicates in Arabidopsis thaliana, Solanum lycopersicum, and Zea mays, large RNAseq expression compendia and an extensive protein-protein interaction (PPI) network from Arabidopsis, we investigated the impact of PPIs on the differential evolutionary and functional fate of WGD and SSD duplicates. In all three species, retained WGD duplicates show stronger constraints to diverge at the sequence and expression level than SSD ones, a pattern that is also observed for shared PPI partners between Arabidopsis duplicates. PPIs are preferentially distributed among WGD duplicates and specific functional categories. Furthermore, duplicates with PPIs tend to be under stronger constraints to evolve than their counterparts without PPIs regardless of their mechanism of origin. Our results support dosage balance constraint as a specific property of genes involved in biological interactions, including physical PPIs, and suggest that additional factors may be differently influencing the evolution of genes following duplication, depending on the species, time, and mechanism of origin.
Collapse
Affiliation(s)
- Jonas Defoort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Lorenzo Carretero-Paulet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| |
Collapse
|
41
|
Chen Y, Li K, Chu X, Carey LB, Qian W. Synchronized replication of genes encoding the same protein complex in fast-proliferating cells. Genome Res 2019; 29:1929-1938. [PMID: 31662304 PMCID: PMC6886510 DOI: 10.1101/gr.254342.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
DNA replication perturbs the dosage balance among genes; at mid-S phase, early-replicating genes have doubled their copies while late-replicating ones have not. Dosage imbalance among genes, especially within members of a protein complex, is toxic to cells. However, the molecular mechanisms that cells use to deal with such imbalance remain not fully understood. Here, we validate at the genomic scale that the dosage between early- and late-replicating genes is imbalanced in HeLa cells. We propose the synchronized replication hypothesis that genes sensitive to stoichiometric relationships will be replicated simultaneously to maintain stoichiometry. In support of this hypothesis, we observe that genes encoding the same protein complex have similar replication timing but mainly in fast-proliferating cells such as embryonic stem cells and cancer cells. We find that the synchronized replication observed in cancer cells, but not in slow-proliferating differentiated cells, is due to convergent evolution during tumorigenesis that restores synchronized replication timing within protein complexes. Taken together, our study reveals that the demand for dosage balance during S phase plays an important role in the optimization of the replication-timing program; this selection is relaxed during differentiation as the cell cycle prolongs and is restored during tumorigenesis as the cell cycle shortens.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lucas B Carey
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.,Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Sriswasdi S, Takashima M, Manabe RI, Ohkuma M, Iwasaki W. Genome and transcriptome evolve separately in recently hybridized Trichosporon fungi. Commun Biol 2019; 2:263. [PMID: 31341962 PMCID: PMC6642101 DOI: 10.1038/s42003-019-0515-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/25/2019] [Indexed: 11/28/2022] Open
Abstract
Genome hybridization is an important evolutionary event that gives rise to species with novel capabilities. However, the merging of distinct genomes also brings together incompatible regulatory networks that must be resolved during the course of evolution. Understanding of the early stages of post-hybridization evolution is particularly important because changes in these stages have long-term evolutionary consequences. Here, via comparative transcriptomic analyses of two closely related, recently hybridized Trichosporon fungi, T. coremiiforme and T. ovoides, and three extant relatives, we show that early post-hybridization evolutionary processes occur separately at the gene sequence and gene expression levels but together contribute to the stabilization of hybrid genome and transcriptome. Our findings also highlight lineage-specific consequences of genome hybridization, revealing that the transcriptional regulatory dynamics in these hybrids responded completely differently to gene loss events: one involving both subgenomes and another that is strictly subgenome-specific.
Collapse
Affiliation(s)
- Sira Sriswasdi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 Japan
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathum Wan, Bangkok 10330 Thailand
- Computational Molecular Biology Group, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathum Wan, Bangkok 10330 Thailand
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba-shi, Ibaraki 305-0074 Japan
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 Japan
| | - Ri-ichiroh Manabe
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba-shi, Ibaraki 305-0074 Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8568 Japan
- Atmosphere and Ocean Research Institute, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan
| |
Collapse
|
43
|
Zwaenepoel A, Van de Peer Y. Inference of Ancient Whole-Genome Duplications and the Evolution of Gene Duplication and Loss Rates. Mol Biol Evol 2019; 36:1384-1404. [PMID: 31004147 DOI: 10.1093/molbev/msz088] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gene tree-species tree reconciliation methods have been employed for studying ancient whole-genome duplication (WGD) events across the eukaryotic tree of life. Most approaches have relied on using maximum likelihood trees and the maximum parsimony reconciliation thereof to count duplication events on specific branches of interest in a reference species tree. Such approaches do not account for uncertainty in the gene tree and reconciliation, or do so only heuristically. The effects of these simplifications on the inference of ancient WGDs are unclear. In particular, the effects of variation in gene duplication and loss rates across the species tree have not been considered. Here, we developed a full probabilistic approach for phylogenomic reconciliation-based WGD inference, accounting for both gene tree and reconciliation uncertainty using a method based on the principle of amalgamated likelihood estimation. The model and methods are implemented in a maximum likelihood and Bayesian setting and account for variation of duplication and loss rates across the species tree, using methods inspired by phylogenetic divergence time estimation. We applied our newly developed framework to ancient WGDs in land plants and investigated the effects of duplication and loss rate variation on reconciliation and gene count based assessment of these earlier proposed WGDs.
Collapse
Affiliation(s)
- Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
44
|
Alonso-Serra J, Safronov O, Lim KJ, Fraser-Miller SJ, Blokhina OB, Campilho A, Chong SL, Fagerstedt K, Haavikko R, Helariutta Y, Immanen J, Kangasjärvi J, Kauppila TJ, Lehtonen M, Ragni L, Rajaraman S, Räsänen RM, Safdari P, Tenkanen M, Yli-Kauhaluoma JT, Teeri TH, Strachan CJ, Nieminen K, Salojärvi J. Tissue-specific study across the stem reveals the chemistry and transcriptome dynamics of birch bark. THE NEW PHYTOLOGIST 2019; 222:1816-1831. [PMID: 30724367 DOI: 10.1111/nph.15725] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/25/2019] [Indexed: 05/09/2023]
Abstract
Tree bark is a highly specialized array of tissues that plays important roles in plant protection and development. Bark tissues develop from two lateral meristems; the phellogen (cork cambium) produces the outermost stem-environment barrier called the periderm, while the vascular cambium contributes with phloem tissues. Although bark is diverse in terms of tissues, functions and species, it remains understudied at higher resolution. We dissected the stem of silver birch (Betula pendula) into eight major tissue types, and characterized these by a combined transcriptomics and metabolomics approach. We further analyzed the varying bark types within the Betulaceae family. The two meristems had a distinct contribution to the stem transcriptomic landscape. Furthermore, inter- and intraspecies analyses illustrated the unique molecular profile of the phellem. We identified multiple tissue-specific metabolic pathways, such as the mevalonate/betulin biosynthesis pathway, that displayed differential evolution within the Betulaceae. A detailed analysis of suberin and betulin biosynthesis pathways identified a set of underlying regulators and highlighted the important role of local, small-scale gene duplication events in the evolution of metabolic pathways. This work reveals the transcriptome and metabolic diversity among bark tissues and provides insights to its development and evolution, as well as its biotechnological applications.
Collapse
Affiliation(s)
- Juan Alonso-Serra
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Helsinki, Finland
| | - Omid Safronov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Helsinki, Finland
| | - Kean-Jin Lim
- Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Helsinki, Finland
- Department of Agricultural Sciences, University of Helsinki, Helsinki, 00014, Helsinki, Finland
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Sara J Fraser-Miller
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, 9054, Dunedin, New Zealand
| | - Olga B Blokhina
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Helsinki, Finland
| | - Ana Campilho
- Research Center in Biodiversity and Genetic Resources, Department of Biology, Faculty of Sciences, University of Porto, 4485-661, Porto, Portugal
| | - Sun-Li Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
- Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland
| | - Kurt Fagerstedt
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Helsinki, Finland
| | - Raisa Haavikko
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Ykä Helariutta
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Helsinki, Finland
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Juha Immanen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Helsinki, Finland
- Natural Resources Institute Finland (Luke), 00710, Helsinki, Finland
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Helsinki, Finland
| | - Tiina J Kauppila
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Mari Lehtonen
- Laboratory Center, Finnish Environment Institute (SYKE), 00790, Helsinki, Finland
| | - Laura Ragni
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, D-72076, Tübingen, Germany
| | - Sitaram Rajaraman
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Helsinki, Finland
| | - Riikka-Marjaana Räsänen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Pezhman Safdari
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Helsinki, Finland
| | - Maija Tenkanen
- Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland
| | - Jari T Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Teemu H Teeri
- Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Helsinki, Finland
- Department of Agricultural Sciences, University of Helsinki, Helsinki, 00014, Helsinki, Finland
| | - Clare J Strachan
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Kaisa Nieminen
- Natural Resources Institute Finland (Luke), 00710, Helsinki, Finland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore, Singapore
| |
Collapse
|
45
|
Affiliation(s)
- James A Birchler
- Division of Biological SciencesUniversity of MissouriColumbia, Missouri 65211
| |
Collapse
|
46
|
Birchler JA, Veitia RA. Genomic Balance and Speciation. Epigenet Insights 2019; 12:2516865719840291. [PMID: 30968064 PMCID: PMC6444768 DOI: 10.1177/2516865719840291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
The role of genomic balance in accumulating species hybrid incompatibilities is discussed. Aneuploidy has been shown to produce more global modulations than polyploidy with the responsible genes being transcription factors and signaling components involved in molecular complexes, illustrating a stoichiometric component to gene expression. Genomic imbalance is usually detrimental to the organism and in many cases results in lethality. Here, it is proposed that once gene flow is prevented between or within populations by various speciation initiating processes, the stoichiometric relationship of members of macromolecular complexes can change via compensatory drift with the eventual result of newly established functional balances. However, when these new relationships are brought together in interspecific hybrids, detrimental consequences will occur. We suggest that these detrimental interactions contribute to hybrid incompatibilities.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Reiner A Veitia
- Institut Jacques Monod, Universite Paris Diderot, Paris, France
| |
Collapse
|
47
|
Wang L, Ma H, Lin J. Angiosperm-Wide and Family-Level Analyses of AP2/ ERF Genes Reveal Differential Retention and Sequence Divergence After Whole-Genome Duplication. FRONTIERS IN PLANT SCIENCE 2019; 10:196. [PMID: 30863419 PMCID: PMC6399210 DOI: 10.3389/fpls.2019.00196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/05/2019] [Indexed: 05/21/2023]
Abstract
Plants are immobile and often face stressful environmental conditions, prompting the evolution of genes regulating environmental responses. Such evolution is achieved largely through gene duplication and subsequent divergence. One of the most important gene families involved in regulating plant environmental responses and development is the AP2/ERF superfamily; however, the evolutionary history of these genes is unclear across angiosperms and in major angiosperm families adapted to various ecological niches. Specifically, the impact on gene copy number of whole-genome duplication events occurring around the time of the origins of several plant families is unknown. Here, we present the first angiosperm-wide comparative study of AP2/ERF genes, identifying 75 Angiosperm OrthoGroups (AOGs), each derived from an ancestral angiosperm gene copy. Among these AOGs, 21 retain duplicates with increased copy number in many angiosperm lineages, while the remaining 54 AOGs tend to maintain low copy number. Further analyses of multiple species in the Brassicaceae family indicated that family-specific duplicates experienced differential selective pressures in coding regions, with some paralogs showing signs of positive selection. Further, cis regulatory elements also exhibit extensive divergence between duplicates in Arabidopsis. Moreover, comparison of expression levels suggested that AP2/ERF genes with frequently retained duplicates are enriched for broad expression patterns, offering increased opportunities for functional diversification via changes in expression patterns, and providing a mechanism for repeated duplicate retention in some AOGs. Our results represent the most comprehensive evolutionary history of the AP2/ERF gene family, and support the hypothesis that AP2/ERF genes with broader expression patterns are more likely to be retained as duplicates than those with narrower expression profiles, which could lead to a higher chance of duplicate gene subfunctionalization. The greater tendency of some AOGs to retain duplicates, allowing expression and functional divergence, may facilitate the evolution of complex signaling networks in response to new environmental conditions.
Collapse
Affiliation(s)
- Linbo Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Juan Lin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Vaattovaara A, Brandt B, Rajaraman S, Safronov O, Veidenberg A, Luklová M, Kangasjärvi J, Löytynoja A, Hothorn M, Salojärvi J, Wrzaczek M. Mechanistic insights into the evolution of DUF26-containing proteins in land plants. Commun Biol 2019; 2:56. [PMID: 30775457 PMCID: PMC6368629 DOI: 10.1038/s42003-019-0306-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Large protein families are a prominent feature of plant genomes and their size variation is a key element for adaptation. However, gene and genome duplications pose difficulties for functional characterization and translational research. Here we infer the evolutionary history of the DOMAIN OF UNKNOWN FUNCTION (DUF) 26-containing proteins. The DUF26 emerged in secreted proteins. Domain duplications and rearrangements led to the appearance of CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES (CRKs) and PLASMODESMATA-LOCALIZED PROTEINS (PDLPs). The DUF26 is land plant-specific but structural analyses of PDLP ectodomains revealed strong similarity to fungal lectins and thus may constitute a group of plant carbohydrate-binding proteins. CRKs expanded through tandem duplications and preferential retention of duplicates following whole genome duplications, whereas PDLPs evolved according to the dosage balance hypothesis. We propose that new gene families mainly expand through small-scale duplications, while fractionation and genetic drift after whole genome multiplications drive families towards dosage balance.
Collapse
Affiliation(s)
- Aleksia Vaattovaara
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Benjamin Brandt
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Sitaram Rajaraman
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Omid Safronov
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Andres Veidenberg
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5 (POB56), FI-00014 Helsinki, Finland
| | - Markéta Luklová
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
- Present Address: Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC—Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5 (POB56), FI-00014 Helsinki, Finland
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| |
Collapse
|
49
|
Hou J, Shi X, Chen C, Islam MS, Johnson AF, Kanno T, Huettel B, Yen MR, Hsu FM, Ji T, Chen PY, Matzke M, Matzke AJM, Cheng J, Birchler JA. Global impacts of chromosomal imbalance on gene expression in Arabidopsis and other taxa. Proc Natl Acad Sci U S A 2018; 115:E11321-E11330. [PMID: 30429332 PMCID: PMC6275517 DOI: 10.1073/pnas.1807796115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Changes in dosage of part of the genome (aneuploidy) have long been known to produce much more severe phenotypic consequences than changes in the number of whole genomes (ploidy). To examine the basis of these differences, global gene expression in mature leaf tissue for all five trisomies and in diploids, triploids, and tetraploids of Arabidopsis thaliana was studied. The trisomies displayed a greater spread of expression modulation than the ploidy series. In general, expression of genes on the varied chromosome ranged from compensation to dosage effect, whereas genes from the remainder of the genome ranged from no effect to reduced expression approaching the inverse level of chromosomal imbalance (2/3). Genome-wide DNA methylation was examined in each genotype and found to shift most prominently with trisomy 4 but otherwise exhibited little change, indicating that genetic imbalance is generally mechanistically unrelated to DNA methylation. Independent analysis of gene functional classes demonstrated that ribosomal, proteasomal, and gene body methylated genes were less modulated compared with all classes of genes, whereas transcription factors, signal transduction components, and organelle-targeted protein genes were more tightly inversely affected. Comparing transcription factors and their targets in the trisomies and in expression networks revealed considerable discordance, illustrating that altered regulatory stoichiometry is a major contributor to genetic imbalance. Reanalysis of published data on gene expression in disomic yeast and trisomic mouse cells detected similar stoichiometric effects across broad phylogenetic taxa, and indicated that these effects reflect normal gene regulatory processes.
Collapse
Affiliation(s)
- Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Md Soliman Islam
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Adam F Johnson
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam 550000
| | - Tatsuo Kanno
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding, Cologne, Germany 50829
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Fei-Man Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO 65211
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Marjori Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529;
| | - Antonius J M Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529;
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211;
| |
Collapse
|
50
|
Blischak PD, Mabry ME, Conant GC, Pires JC. Integrating Networks, Phylogenomics, and Population Genomics for the Study of Polyploidy. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-121415-032302] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Duplication events are regarded as sources of evolutionary novelty, but our understanding of general trends for the long-term trajectory of additional genomic material is still lacking. Organisms with a history of whole genome duplication (WGD) offer a unique opportunity to study potential trends in the context of gene retention and/or loss, gene and network dosage, and changes in gene expression. In this review, we discuss the prevalence of polyploidy across the tree of life, followed by an overview of studies investigating genome evolution and gene expression. We then provide an overview of methods in network biology, phylogenomics, and population genomics that are critical for advancing our understanding of evolution post-WGD, highlighting the need for models that can accommodate polyploids. Finally, we close with a brief note on the importance of random processes in the evolution of polyploids with respect to neutral versus selective forces, ancestral polymorphisms, and the formation of autopolyploids versus allopolyploids.
Collapse
Affiliation(s)
- Paul D. Blischak
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Makenzie E. Mabry
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Gavin C. Conant
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
- Current affiliation: Bioinformatics Research Center, Program in Genetics and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - J. Chris Pires
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211-7310, USA
| |
Collapse
|