1
|
Araujo-Ruiz K, Mondragón-Flores R. H +-translocating pyrophosphatases in protozoan parasites. Parasitol Res 2024; 123:353. [PMID: 39419910 PMCID: PMC11486809 DOI: 10.1007/s00436-024-08362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Integral membrane pyrophosphatases (mPPases) hydrolyze pyrophosphate. This enzymatic mechanism is coupled with the pumping of H + and/or Na + across membranes, which can be either K + -dependent or K + -independent. Inorganic proton-translocating pyrophosphatases (H + -PPases) can transport protons across cell membranes and are reported in various organisms such as plants, bacteria, and protozoan parasites. The evolutionary implications of these enzymes are of great interest for proposing approaches related to the treatment of parasitic of phytopathogenic diseases. This work presents a literature review on pyrophosphate, pyrophosphatases, their inhibitors and emphasizes H + -PPases found in various medically significant protozoan parasites such as Toxoplasma gondii, the causative agent of toxoplasmosis, and Plasmodium falciparum, the causative agent of malaria, as well as protozoan species that primarily affect animals, such as Eimeria maxima and Besnoitia besnoiti.
Collapse
Affiliation(s)
- Karina Araujo-Ruiz
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 Col. Zacatenco, Ciudad de México, 07360, México
| | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 Col. Zacatenco, Ciudad de México, 07360, México.
| |
Collapse
|
2
|
Gann PJI, Dharwadker D, Cherati SR, Vinzant K, Khodakovskaya M, Srivastava V. Targeted mutagenesis of the vacuolar H + translocating pyrophosphatase gene reduces grain chalkiness in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1261-1276. [PMID: 37256847 DOI: 10.1111/tpj.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Grain chalkiness is a major concern in rice production because it impacts milling yield and cooking quality, eventually reducing market value of the rice. A gene encoding vacuolar H+ translocating pyrophosphatase (V-PPase) is a major quantitative trait locus in indica rice, controlling grain chalkiness. Higher transcriptional activity of this gene is associated with increased chalk content. However, whether the suppression of V-PPase could reduce chalkiness is not clear. Furthermore, natural variation in the chalkiness of japonica rice has not been linked with V-PPase. Here, we describe promoter targeting of the japonica V-PPase allele that led to reduced grain chalkiness and the development of more translucent grains. Disruption of a putative GATA element by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 suppressed V-PPase activity, reduced grain chalkiness and impacted post-germination growth that could be rescued by the exogenous supply of sucrose. The mature grains of the targeted lines showed a much lower percentage of large or medium chalk. Interestingly, the targeted lines developed a significantly lower chalk under heat stress, a major inducer of grain chalk. Metabolomic analysis showed that pathways related to starch and sugar metabolism were affected in the developing grains of the targeted lines that correlated with higher inorganic pyrophosphate and starch contents and upregulation of starch biosynthesis genes. In summary, we show a biotechnology approach of reducing grain chalkiness in rice by downregulating the transcriptional activity of V-PPase that presumably leads to altered metabolic rates, including starch biosynthesis, resulting in more compact packing of starch granules and formation of translucent rice grains.
Collapse
Affiliation(s)
- Peter James Icalia Gann
- Cell and Molecular Biology Program, University of Arkansas, 115 Plant Science Building, Fayetteville, AR, 72701, USA
- Department of Crop, Soil and Environmental Sciences, University of Arkansas Division of Agriculture, 115 Plant Science Building, Fayetteville, AR, 72701, USA
| | - Dominic Dharwadker
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, West Maple Street, AR, 72701, USA
| | - Sajedeh Rezaei Cherati
- Department of Biology, University of Arkansas Little Rock, 2801 S University Avenue, Little Rock, AR, 727704, USA
| | - Kari Vinzant
- Department of Biology, University of Arkansas Little Rock, 2801 S University Avenue, Little Rock, AR, 727704, USA
| | - Mariya Khodakovskaya
- Department of Biology, University of Arkansas Little Rock, 2801 S University Avenue, Little Rock, AR, 727704, USA
| | - Vibha Srivastava
- Cell and Molecular Biology Program, University of Arkansas, 115 Plant Science Building, Fayetteville, AR, 72701, USA
- Department of Crop, Soil and Environmental Sciences, University of Arkansas Division of Agriculture, 115 Plant Science Building, Fayetteville, AR, 72701, USA
- Department of Horticulture, University of Arkansas Division of Agriculture, 315 Plant Science Building, Fayetteville, AR, 72701, USA
| |
Collapse
|
3
|
Tang C, Wang P, Zhu X, Qi K, Xie Z, Zhang H, Li X, Gao H, Gu T, Gu C, Li S, de Graaf BHJ, Zhang S, Wu J. Acetylation of inorganic pyrophosphatase by S-RNase signaling induces pollen tube tip swelling by repressing pectin methylesterase. THE PLANT CELL 2023; 35:3544-3565. [PMID: 37306489 PMCID: PMC10473231 DOI: 10.1093/plcell/koad162] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Self-incompatibility (SI) is a widespread genetically determined system in flowering plants that prevents self-fertilization to promote gene flow and limit inbreeding. S-RNase-based SI is characterized by the arrest of pollen tube growth through the pistil. Arrested pollen tubes show disrupted polarized growth and swollen tips, but the underlying molecular mechanism is largely unknown. Here, we demonstrate that the swelling at the tips of incompatible pollen tubes in pear (Pyrus bretschneideri [Pbr]) is mediated by the SI-induced acetylation of the soluble inorganic pyrophosphatase (PPA) PbrPPA5. Acetylation at Lys-42 of PbrPPA5 by the acetyltransferase GCN5-related N-acetyltransferase 1 (GNAT1) drives accumulation of PbrPPA5 in the nucleus, where it binds to the transcription factor PbrbZIP77, forming a transcriptional repression complex that inhibits the expression of the pectin methylesterase (PME) gene PbrPME44. The function of PbrPPA5 as a transcriptional repressor does not require its PPA activity. Downregulating PbrPME44 resulted in increased levels of methyl-esterified pectins in growing pollen tubes, leading to swelling at their tips. These observations suggest a mechanism for PbrPPA5-driven swelling at the tips of pollen tubes during the SI response. The targets of PbrPPA5 include genes encoding cell wall-modifying enzymes, which are essential for building a continuous sustainable mechanical structure for pollen tube growth.
Collapse
Affiliation(s)
- Chao Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Xiaoxuan Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Hao Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Xiaoqiang Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Hongru Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Shan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Shaoling Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
4
|
Tojo H, Tabeta H, Gunji S, Hirai MY, David P, Javot H, Ferjani A. Roles of type II H +-PPases and PPsPase1/PECP2 in early developmental stages and PPi homeostasis of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1031426. [PMID: 36778688 PMCID: PMC9911876 DOI: 10.3389/fpls.2023.1031426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The regulation of intracellular pyrophosphate (PPi) level is crucial for proper morphogenesis across all taxonomic kingdoms. PPi is released as a byproduct from ~200 metabolic reactions, then hydrolyzed by either membrane-bound (H+-PPase) or soluble pyrophosphatases (PPases). In Arabidopsis, the loss of the vacuolar H+-PPase/FUGU5, a key enzyme in PPi homeostasis, results in delayed growth and a number of developmental defects, pointing to the importance of PPi homeostasis in plant morphogenesis. The Arabidopsis genome encodes several PPases in addition to FUGU5, such as PPsPase1/PECP2, VHP2;1 and VHP2;2, although their significance regarding PPi homeostasis remains elusive. Here, to assess their contribution, phenotypic analyses of cotyledon aspect ratio, palisade tissue cellular phenotypes, adaxial side pavement cell complexity, stomatal distribution, and etiolated seedling length were performed, provided that they were altered due to excess PPi in a fugu5 mutant background. Overall, our analyses revealed that the above five traits were unaffected in ppspase1/pecp2, vhp2;1 and vhp2;2 loss-of-function mutants, as well as in fugu5 mutant lines constitutively overexpressing PPsPase1/PECP2. Furthermore, metabolomics revealed that ppspase1/pecp2, vhp2;1 and vhp2;2 etiolated seedlings exhibited metabolic profiles comparable to the wild type. Together, these results indicate that the contribution of PPsPase1/PECP2, VHP2;1 and VHP2;2 to PPi levels is negligible in comparison to FUGU5 in the early stages of seedling development.
Collapse
Affiliation(s)
- Hiroshi Tojo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Hiromitsu Tabeta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Masami Y. Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pascale David
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Hélène Javot
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
- Aix Marseille Univ, CEA, CNRS, BIAM, Marseille, France
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| |
Collapse
|
5
|
Tabeta H, Gunji S, Kawade K, Ferjani A. Leaf-size control beyond transcription factors: Compensatory mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 13:1024945. [PMID: 36756231 PMCID: PMC9901582 DOI: 10.3389/fpls.2022.1024945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Plant leaves display abundant morphological richness yet grow to characteristic sizes and shapes. Beginning with a small number of undifferentiated founder cells, leaves evolve via a complex interplay of regulatory factors that ultimately influence cell proliferation and subsequent post-mitotic cell enlargement. During their development, a sequence of key events that shape leaves is both robustly executed spatiotemporally following a genomic molecular network and flexibly tuned by a variety of environmental stimuli. Decades of work on Arabidopsis thaliana have revisited the compensatory phenomena that might reflect a general and primary size-regulatory mechanism in leaves. This review focuses on key molecular and cellular events behind the organ-wide scale regulation of compensatory mechanisms. Lastly, emerging novel mechanisms of metabolic and hormonal regulation are discussed, based on recent advances in the field that have provided insights into, among other phenomena, leaf-size regulation.
Collapse
Affiliation(s)
- Hiromitsu Tabeta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kensuke Kawade
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
6
|
Gunji S, Kawade K, Tabeta H, Horiguchi G, Oikawa A, Asaoka M, Hirai MY, Tsukaya H, Ferjani A. Tissue-targeted inorganic pyrophosphate hydrolysis in a fugu5 mutant reveals that excess inorganic pyrophosphate triggers developmental defects in a cell-autonomous manner. FRONTIERS IN PLANT SCIENCE 2022; 13:945225. [PMID: 35991393 PMCID: PMC9386291 DOI: 10.3389/fpls.2022.945225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Excess PPi triggers developmental defects in a cell-autonomous manner. The level of inorganic pyrophosphate (PPi) must be tightly regulated in all kingdoms for the proper execution of cellular functions. In plants, the vacuolar proton pyrophosphatase (H+-PPase) has a pivotal role in PPi homeostasis. We previously demonstrated that the excess cytosolic PPi in the H+-PPase loss-of-function fugu5 mutant inhibits gluconeogenesis from seed storage lipids, arrests cell division in cotyledonary palisade tissue, and triggers a compensated cell enlargement (CCE). Moreover, PPi alters pavement cell (PC) shape, stomatal patterning, and functioning, supporting specific yet broad inhibitory effects of PPi on leaf morphogenesis. Whereas these developmental defects were totally rescued by the expression of the yeast soluble pyrophosphatase IPP1, sucrose supply alone canceled CCE in the palisade tissue but not the epidermal developmental defects. Hence, we postulated that the latter are likely triggered by excess PPi rather than a sucrose deficit. To formally test this hypothesis, we adopted a spatiotemporal approach by constructing and analyzing fugu5-1 PDF1 pro ::IPP1, fugu5-1 CLV1 pro ::IPP1, and fugu5-1 ICL pro ::IPP1, whereby PPi was removed specifically from the epidermis, palisade tissue cells, or during the 4 days following seed imbibition, respectively. It is important to note that whereas PC defects in fugu5-1 PDF1 pro ::IPP1 were completely recovered, those in fugu5-1 CLV1 pro ::IPP1 were not. In addition, phenotypic analyses of fugu5-1 ICL pro ::IPP1 lines demonstrated that the immediate removal of PPi after seed imbibition markedly improved overall plant growth, abolished CCE, but only partially restored the epidermal developmental defects. Next, the impact of spatial and temporal removal of PPi was investigated by capillary electrophoresis time-of-flight mass spectrometry (CE-TOF MS). Our analysis revealed that the metabolic profiles are differentially affected among all the above transgenic lines, and consistent with an axial role of central metabolism of gluconeogenesis in CCE. Taken together, this study provides a conceptual framework to unveil metabolic fluctuations within leaf tissues with high spatio-temporal resolution. Finally, our findings suggest that excess PPi exerts its inhibitory effect in planta in the early stages of seedling establishment in a tissue- and cell-autonomous manner.
Collapse
Affiliation(s)
- Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
- United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
| | - Kensuke Kawade
- National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hiromitsu Tabeta
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | - Mariko Asaoka
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| |
Collapse
|
7
|
Goh T, Sakamoto K, Wang P, Kozono S, Ueno K, Miyashima S, Toyokura K, Fukaki H, Kang BH, Nakajima K. Autophagy promotes organelle clearance and organized cell separation of living root cap cells in Arabidopsis thaliana. Development 2022; 149:275183. [PMID: 35485417 PMCID: PMC9245187 DOI: 10.1242/dev.200593] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
The root cap is a multilayered tissue covering the tip of a plant root that directs root growth through its unique functions, such as gravity sensing and rhizosphere interaction. To maintain the structure and function of the root cap, its constituent cells are constantly turned over through balanced cell division and cell detachment in the inner and outer cell layers, respectively. Upon displacement toward the outermost layer, columella cells at the central root cap domain functionally transition from gravity-sensing cells to secretory cells, but the mechanisms underlying this drastic cell fate transition are largely unknown. Here, using live-cell tracking microscopy, we show that organelles in the outermost cell layer undergo dramatic rearrangements. This rearrangement depends, at least partially, on spatiotemporally regulated activation of autophagy. Notably, this root cap autophagy does not lead to immediate cell death, but is instead necessary for organized separation of living root cap cells, highlighting a previously undescribed role of developmentally regulated autophagy in plants. This article has an associated ‘The people behind the papers’ interview. Summary: Time-lapse microscopy reveals the spatiotemporal dynamics of intracellular reorganization associated with the functional transition and cell separation in Arabidopsis root caps, and the roles of autophagy in these processes.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Kaoru Sakamoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Pengfei Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Saki Kozono
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Koki Ueno
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shunsuke Miyashima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Koichi Toyokura
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai, Kobe 657-8501, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai, Kobe 657-8501, Japan
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
8
|
Wang C, Jiang F, Zhu S. Complex Small RNA-mediated Regulatory Networks between Viruses/Viroids/Satellites and Host Plants. Virus Res 2022; 311:198704. [DOI: 10.1016/j.virusres.2022.198704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 12/26/2022]
|
9
|
A Lumenal Loop Associated with Catalytic Asymmetry in Plant Vacuolar H +-Translocating Pyrophosphatase. Int J Mol Sci 2021; 22:ijms222312902. [PMID: 34884707 PMCID: PMC8657866 DOI: 10.3390/ijms222312902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Membrane-integral inorganic pyrophosphatases (mPPases) couple pyrophosphate hydrolysis with H+ and Na+ pumping in plants and microbes. mPPases are homodimeric transporters with two catalytic sites facing the cytoplasm and demonstrating highly different substrate-binding affinities and activities. The structural aspects of the functional asymmetry are still poorly understood because the structure of the physiologically relevant dimer form with only one active site occupied by the substrate is unknown. We addressed this issue by molecular dynamics (MD) simulations of the H+-transporting mPPase of Vigna radiata, starting from its crystal structure containing a close substrate analog (imidodiphosphate, IDP) in both active sites. The MD simulations revealed pre-existing subunit asymmetry, which increased upon IDP binding to one subunit and persisted in the fully occupied dimer. The most significant asymmetrical change caused by IDP binding is a ‘rigid body’-like displacement of the lumenal loop connecting α-helices 2 and 3 in the partner subunit and opening its exit channel for water. This highly conserved 14–19-residue loop is found only in plant vacuolar mPPases and may have a regulatory function, such as pH sensing in the vacuole. Our data define the structural link between the loop and active sites and are consistent with the published structural and functional data.
Collapse
|
10
|
Khoudi H. Significance of vacuolar proton pumps and metal/H + antiporters in plant heavy metal tolerance. PHYSIOLOGIA PLANTARUM 2021; 173:384-393. [PMID: 33937997 DOI: 10.1111/ppl.13447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Soil and water are among the most valuable resources on earth. Unfortunately, their contamination with heavy metals has become a global problem. Heavy metals are not biodegradable and cannot be chemically degraded; therefore, they tend to accumulate in soils or to be transported by streaming water and contaminate both surface and groundwater. Cadmium (Cd) has no known biological function but is one of the most toxic metals. It represents a serious environmental concern since its accumulation in soils is associated with health risks to plants, animals and humans. On the other hand, copper (Cu) and zinc (Zn) are heavy metals that are indispensable to plants but become toxic when their concentration in soils exceeds a certain optimal level. Plants have evolved many mechanisms to cope with heavy metal toxicity; vacuolar sequestration is one of them. Vacuolar sequestration can be achieved through either phytochelatin-dependent or phytochelatin-independent pathways. Most of the transgenic plants meant for phytoremediation described in the literature result from the manipulation of genes involved in the phytochelatin-dependent pathway. However, recent evidence has emerged to support the importance of the phytochelatin-independent pathway in heavy metal sequestration into the vacuole, with metal/H+ antiporters and proton pumps playing an important role. In this review, the importance of vacuolar proton pumps and metal/H+ antiporters transporting Cd, Cu, and Zn is discussed. In addition, the recent advances in the production of transgenic plants with potential application in phytoremediation and food safety through the manipulation of genes encoding V-PPase proton pumps is described.
Collapse
Affiliation(s)
- Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
11
|
Balaji S. The transferred translocases: An old wine in a new bottle. Biotechnol Appl Biochem 2021; 69:1587-1610. [PMID: 34324237 DOI: 10.1002/bab.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
The role of translocases was underappreciated and was not included as a separate class in the enzyme commission until August 2018. The recent research interests in proteomics of orphan enzymes, ionomics, and metallomics along with high-throughput sequencing technologies generated overwhelming data and revamped this enzyme into a separate class. This offers a great opportunity to understand the role of new or orphan enzymes in general and specifically translocases. The enzymes belonging to translocases regulate/permeate the transfer of ions or molecules across the membranes. These enzyme entries were previously associated with other enzyme classes, which are now transferred to a new enzyme class 7 (EC 7). The entries that are reclassified are important to extend the enzyme list, and it is the need of the hour. Accordingly, there is an upgradation of entries of this class of enzymes in several databases. This review is a concise compilation of translocases with reference to the number of entries currently available in the databases. This review also focuses on function as well as dysfunction of translocases during normal and disordered states, respectively.
Collapse
Affiliation(s)
- S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
12
|
Pyrophosphate as an alternative energy currency in plants. Biochem J 2021; 478:1515-1524. [PMID: 33881486 DOI: 10.1042/bcj20200940] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
In the conditions of [Mg2+] elevation that occur, in particular, under low oxygen stress and are the consequence of the decrease in [ATP] and increase in [ADP] and [AMP], pyrophosphate (PPi) can function as an alternative energy currency in plant cells. In addition to its production by various metabolic pathways, PPi can be synthesized in the combined reactions of pyruvate, phosphate dikinase (PPDK) and pyruvate kinase (PK) by so-called PK/PPDK substrate cycle, and in the reverse reaction of membrane-bound H+-pyrophosphatase, which uses the energy of electrochemical gradients generated on tonoplast and plasma membrane. The PPi can then be consumed in its active forms of MgPPi and Mg2PPi by PPi-utilizing enzymes, which require an elevated [Mg2+]. This ensures a continuous operation of glycolysis in the conditions of suppressed ATP synthesis, keeping metabolism energy efficient and less dependent on ATP.
Collapse
|
13
|
Molecular characterization and transcriptional regulation of two types of H +-pyrophosphatases in the scuticociliate parasite Philasterides dicentrarchi. Sci Rep 2021; 11:8519. [PMID: 33875762 PMCID: PMC8055999 DOI: 10.1038/s41598-021-88102-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/08/2021] [Indexed: 02/02/2023] Open
Abstract
Proton-translocating inorganic pyrophosphatases (H+-PPases) are an ancient family of membrane bound enzymes that couple pyrophosphate (PPi) hydrolysis to H+ translocation across membranes. In this study, we conducted a molecular characterization of two isoenzymes (PdVP1 and PdVP2) located in respectively the alveolar sacs and in the membranes of the intracellular vacuoles of a scuticociliate parasite (Philasterides dicentrarchi) of farmed turbot. We analyzed the genetic expression of the isoenzymes after administration of antiparasitic drugs and after infection in the host. PdVP1 and PdVP2 are encoded by two genes of 2485 and 3069 bp, which respectively contain 3 and 11 exons and express proteins of 746 and 810 aa of molecular mass 78.9 and 87.6 kDa. Topological predictions from isoenzyme sequences indicate the formation of thirteen transmembrane regions (TMRs) for PdVP1 and seventeen TMRs for PdVP2. Protein structure modelling indicated that both isoenzymes are homodimeric, with three Mg2+ binding sites and an additional K+ binding site in PdVP2. The levels of identity and similarity between the isoenzyme sequences are respectively 33.5 and 51.2%. The molecular weights of the native proteins are 158 kDa (PdVP1) and 178 kDa (PdVP2). The isoenzyme sequences are derived from paralogous genes that form a monophyletic grouping with other ciliate species. Genetic expression of the isoenzymes is closely related to the acidification of alveolar sacs (PdVP1) and intracellular vacuoles (PdVP2): antiparasitic drugs inhibit transcription, while infection increases transcription of both isoenzymes. The study findings show that P. dicentrarchi possesses two isoenzymes with H+-PPase activity which are located in acidophilic cell compartment membranes and which are activated during infection in the host and are sensitive to antiparasitic drugs. The findings open the way to using molecular modelling to design drugs for the treatment of scuticociliatosis.
Collapse
|
14
|
Modulation of photosynthesis and other proteins during water-stress. Mol Biol Rep 2021; 48:3681-3693. [PMID: 33856605 DOI: 10.1007/s11033-021-06329-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 10/25/2022]
Abstract
Protein changes under drought or water stress conditions have been widely investigated. These investigations have given us enormous understanding of how drought is manifested in plants and how plants respond and adopt to such conditions. Chlorophyll fluoroescence, gas exchange, OMICS, biochemical and molecular analyses have shed light on regulation of physiology and photosynthesis of plants under drought. Use of proteomics has greatly increased the repertoire of drought-associated proteins which nevertheless, need to be investigated for their mechanistic and functional roles. Roles of such proteins have been succinctly discussed in various review articles, however more information on their functional role in countering drought is needed. In this review, recent developments in the field, alterations in the abundance of plant proteins in response to drought, monitored through numerous proteomic and immuno-blot analyses, and how these could affect plants growth and development, are discussed.
Collapse
|
15
|
Hussain SB, Shi CY, Guo LX, Du W, Bai YX, Kamran HM, Fernie AR, Liu YZ. Type I H+-pyrophosphatase regulates the vacuolar storage of sucrose in citrus fruit. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5935-5947. [PMID: 32589717 DOI: 10.1093/jxb/eraa298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to evaluate the general role of the vacuolar pyrophosphatase proton pump (V-PPase) in sucrose accumulation in citrus species. First, three citrus V-PPase genes, designated CsVPP-1, CsVPP-2, and CsVPP-4, were identified in the citrus genome. CsVPP-1 and CsVPP-2 belonging to citrus type I V-PPase genes are targeted to the tonoplast, and CsVPP-4 belonging to citrus type II V-PPase genes is located in the Golgi bodies. Moreover, there was a significantly positive correlation between transcript levels of type I V-PPase genes and sucrose, rather than hexose, content in fruits of seven citrus cultivars. Drought and abscisic acid treatments significantly induced the CsVPP-1 and CsVPP-2 transcript levels, as well as the sucrose content. The overexpression of type I V-PPase genes significantly increased PPase activity, decreased pyrophosphate contents, and increased sucrose contents, whereas V-PPase inhibition produced the opposite effect in both citrus fruits and leaves. Furthermore, altering the expression levels of type I V-PPase genes significantly influenced the transcript levels of sucrose transporter genes. Taken together, this study demonstrated that CsVPP-1 and CsVPP-2 play key roles in sucrose storage in the vacuole by regulating pyrophosphate homeostasis, ultimately the sucrose biosynthesis and transcript levels of sucrose transport genes, providing a novel lead for engineering or breeding modified taste in citrus and other fruits.
Collapse
Affiliation(s)
- Syed Bilal Hussain
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Cai-Yun Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Ling-Xia Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Wei Du
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Ying-Xing Bai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Hafiz Muhammad Kamran
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Yong-Zhong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
16
|
Pérez-Castiñeira JR, Serrano A. The H +-Translocating Inorganic Pyrophosphatase From Arabidopsis thaliana Is More Sensitive to Sodium Than Its Na +-Translocating Counterpart From Methanosarcina mazei. FRONTIERS IN PLANT SCIENCE 2020; 11:1240. [PMID: 32903538 PMCID: PMC7438732 DOI: 10.3389/fpls.2020.01240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Overexpression of membrane-bound K+-dependent H+-translocating inorganic pyrophosphatases (H+-PPases) from higher plants has been widely used to alleviate the sensitivity toward NaCl in these organisms, a strategy that had been previously tested in Saccharomyces cerevisiae. On the other hand, H+-PPases have been reported to functionally complement the yeast cytosolic soluble pyrophosphatase (IPP1). Here, the efficiency of the K+-dependent Na+-PPase from the archaeon Methanosarcina mazei (MVP) to functionally complement IPP1 has been compared to that of its H+-pumping counterpart from Arabidopsis thaliana (AVP1). Both membrane-bound integral PPases (mPPases) supported yeast growth equally well under normal conditions, however, cells expressing MVP grew significantly better than those expressing AVP1 under salt stress. The subcellular distribution of the heterologously-expressed mPPases was crucial in order to observe the phenotypes associated with the complementation. In vitro studies showed that the PPase activity of MVP was less sensitive to Na+ than that of AVP1. Consistently, when yeast cells expressing MVP were grown in the presence of NaCl only a marginal increase in their internal PPi levels was observed with respect to control cells. By contrast, yeast cells that expressed AVP1 had significantly higher levels of this metabolite under the same conditions. The H+-pumping activity of AVP1 was also markedly inhibited by Na+. Our results suggest that mPPases primarily act by hydrolysing the PPi generated in the cytosol when expressed in yeast, and that AVP1 is more susceptible to Na+ inhibition than MVP both in vivo and in vitro. Based on this experimental evidence, we propose Na+-PPases as biotechnological tools to generate salt-tolerant plants.
Collapse
Affiliation(s)
| | - Aurelio Serrano
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| |
Collapse
|
17
|
Optimization of nucleotide sugar supply for polysaccharide formation via thermodynamic buffering. Biochem J 2020; 477:341-356. [PMID: 31967651 DOI: 10.1042/bcj20190807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Plant polysaccharides (cellulose, hemicellulose, pectin, starch) are either direct (i.e. leaf starch) or indirect products of photosynthesis, and they belong to the most abundant organic compounds in nature. Although each of these polymers is made by a specific enzymatic machinery, frequently in different cell locations, details of their synthesis share certain common features. Thus, the production of these polysaccharides is preceded by the formation of nucleotide sugars catalyzed by fully reversible reactions of various enzymes, mostly pyrophosphorylases. These 'buffering' enzymes are, generally, quite active and operate close to equilibrium. The nucleotide sugars are then used as substrates for irreversible reactions of various polysaccharide-synthesizing glycosyltransferases ('engine' enzymes), e.g. plastidial starch synthases, or plasma membrane-bound cellulose synthase and callose synthase, or ER/Golgi-located variety of glycosyltransferases forming hemicellulose and pectin backbones. Alternatively, the irreversible step might also be provided by a carrier transporting a given immediate precursor across a membrane. Here, we argue that local equilibria, established within metabolic pathways and cycles resulting in polysaccharide production, bring stability to the system via the arrangement of a flexible supply of nucleotide sugars. This metabolic system is itself under control of adenylate kinase and nucleoside-diphosphate kinase, which determine the availability of nucleotides (adenylates, uridylates, guanylates and cytidylates) and Mg2+, the latter serving as a feedback signal from the nucleotide metabolome. Under these conditions, the supply of nucleotide sugars to engine enzymes is stable and constant, and the metabolic process becomes optimized in its load and consumption, making the system steady and self-regulated.
Collapse
|
18
|
Sanz-Luque E, Bhaya D, Grossman AR. Polyphosphate: A Multifunctional Metabolite in Cyanobacteria and Algae. FRONTIERS IN PLANT SCIENCE 2020; 11:938. [PMID: 32670331 PMCID: PMC7332688 DOI: 10.3389/fpls.2020.00938] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/09/2020] [Indexed: 05/19/2023]
Abstract
Polyphosphate (polyP), a polymer of orthophosphate (PO4 3-) of varying lengths, has been identified in all kingdoms of life. It can serve as a source of chemical bond energy (phosphoanhydride bond) that may have been used by biological systems prior to the evolution of ATP. Intracellular polyP is mainly stored as granules in specific vacuoles called acidocalcisomes, and its synthesis and accumulation appear to impact a myriad of cellular functions. It serves as a reservoir for inorganic PO4 3- and an energy source for fueling cellular metabolism, participates in maintaining adenylate and metal cation homeostasis, functions as a scaffold for sequestering cations, exhibits chaperone function, covalently binds to proteins to modify their activity, and enables normal acclimation of cells to stress conditions. PolyP also appears to have a role in symbiotic and parasitic associations, and in higher eukaryotes, low polyP levels seem to impact cancerous proliferation, apoptosis, procoagulant and proinflammatory responses and cause defects in TOR signaling. In this review, we discuss the metabolism, storage, and function of polyP in photosynthetic microbes, which mostly includes research on green algae and cyanobacteria. We focus on factors that impact polyP synthesis, specific enzymes required for its synthesis and degradation, sequestration of polyP in acidocalcisomes, its role in cellular energetics, acclimation processes, and metal homeostasis, and then transition to its potential applications for bioremediation and medical purposes.
Collapse
Affiliation(s)
- Emanuel Sanz-Luque
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Devaki Bhaya
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
| |
Collapse
|
19
|
Leonetti P, Miesen P, van Rij RP, Pantaleo V. Viral and subviral derived small RNAs as pathogenic determinants in plants and insects. Adv Virus Res 2020; 107:1-36. [PMID: 32711727 DOI: 10.1016/bs.aivir.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The phenotypic manifestations of disease induced by viruses and subviral infectious entities are the result of complex molecular interactions between host and viral factors. The viral determinants of the diseased phenotype have traditionally been sought at the level of structural or non-structural proteins. However, the discovery of RNA silencing mechanisms has led to speculations that determinants of the diseased phenotype are caused by viral nucleic acid sequences in addition to proteins. RNA silencing is a gene regulation mechanism conserved within eukaryotic kingdoms (with the exception of some yeast species), and in plants and insects it also functions as an antiviral mechanism. Non-coding RNAs of viral origin, ranging in size from 21 to 24 nucleotides (viral small interfering RNAs, vsiRNAs) accumulate in virus-infected tissues and organs, in some cases to comparable levels as the entire complement of host-encoded small interfering RNAs. Upon incorporation into RNA-induced silencing complexes, vsiRNAs can mediate cleavage or induce translational inhibition of nucleic acid targets in a sequence-specific manner. This review focuses on recent findings that suggest an increased complexity of small RNA-based interactions between virus and host. We mainly address plant viruses, but where applicable discuss insect viruses as well. Prominence is given to studies that have indisputably demonstrated that vsiRNAs determine diseased phenotype by either carrying sequence determinants or, indirectly, by altering host-gene regulatory pathways. Results from these studies suggest biotechnological applications, which are also discussed.
Collapse
Affiliation(s)
- Paola Leonetti
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vitantonio Pantaleo
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, CNR, Bari, Italy..
| |
Collapse
|
20
|
Fukuda M, Mieda M, Sato R, Kinoshita S, Tomoyama T, Ferjani A, Maeshima M, Segami S. Lack of Vacuolar H + -Pyrophosphatase and Cytosolic Pyrophosphatases Causes Fatal Developmental Defects in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:655. [PMID: 32528505 PMCID: PMC7266078 DOI: 10.3389/fpls.2020.00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The cytosolic level of inorganic pyrophosphate (PPi) is finely regulated, with PPi hydrolyzed primarily by the vacuolar H+-pyrophosphatase (H+-PPase, VHP1/FUGU5/AVP1) and secondarily by five cytosolic soluble pyrophosphatases (sPPases; PPa1-PPa5) in Arabidopsis thaliana. Loss-of-function mutants of H+-PPase (fugu5s) have been reported to show atrophic phenotypes in their rosette leaves when nitrate is the sole nitrogen source in the culture medium. For this phenotype, two questions remain unanswered: why does atrophy depend on physical contact between shoots and the medium, and how does ammonium prevent such atrophy. To understand the mechanism driving this phenotype, we analyzed the growth and phenotypes of mutants on ammonium-free medium in detail. fugu5-1 showed cuticle defects, cell swelling, reduced β-glucan levels, and vein malformation in the leaves, suggesting cell wall weakening and cell lethality. Based on the observation in the double mutants fugu5-1 ppa1 and fugu5-1 ppa4 of more severe atrophy compared to fugu5-1, the nitrogen-dependent phenotype might be linked to PPi metabolism. To elucidate the role of ammonium in this process, we examined the fluctuations of sPPase mRNA levels and the possibility of alternative PPi-removing factors, such as other types of pyrophosphatase. First, we found that both the protein and mRNA levels of sPPases were unaffected by the nitrogen source. Second, to assess the influence of other PPi-removing factors, we examined the phenotypes of triple knockout mutants of H+-PPase and two sPPases on ammonium-containing medium. Both fugu5 ppa1 ppa2 and fugu5 ppa1 ppa4 had nearly lethal embryonic phenotypes, with the survivors showing striking dwarfism and abnormal morphology. Moreover, fugu5 ppa1+/- ppa4 showed severe atrophy at the leaf margins. The other triple mutants, fugu5 ppa1 ppa5 and fugu5 ppa2 ppa4, exhibited death of root hairs and were nearly sterile due to deformed pistils, respectively, even when grown on standard medium. Together, these results suggest that H+-PPase and sPPases act in concert to maintain PPi homeostasis, that the existence of other PPi removers is unlikely, and that ammonium may suppress the production of PPi during nitrogen metabolism rather than stimulating PPi hydrolysis.
Collapse
Affiliation(s)
- Mayu Fukuda
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Marika Mieda
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ryosuke Sato
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Satoru Kinoshita
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takaaki Tomoyama
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
21
|
Yang J, Zhang T, Li J, Wu N, Wu G, Yang J, Chen X, He L, Chen J. Chinese wheat mosaic virus-derived vsiRNA-20 can regulate virus infection in wheat through inhibition of vacuolar- (H + )-PPase induced cell death. THE NEW PHYTOLOGIST 2020; 226:205-220. [PMID: 31815302 PMCID: PMC7065157 DOI: 10.1111/nph.16358] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/22/2019] [Indexed: 05/18/2023]
Abstract
Vacuolar (H+ )-PPases (VPs), are key regulators of active proton (H+ ) transport across membranes using the energy generated from PPi hydrolysis. The VPs also play vital roles in plant responses to various abiotic stresses. Their functions in plant responses to pathogen infections are unknown. Here, we show that TaVP, a VP of wheat (Triticum aestivum) is important for wheat resistance to Chinese wheat mosaic virus (CWMV) infection. Furthermore, overexpression of TaVP in plants induces the activity of PPi hydrolysis, leading to plants cell death. A virus-derived small interfering RNA (vsiRNA-20) generated from CWMV RNA1 can regulate the mRNA accumulation of TaVP in wheat. The accumulation of vsiRNA-20 can suppress cell death induced by TaVP in a dosage-dependent manner. Moreover, we show that the accumulation of vsiRNA-20 can affect PPi hydrolysis and the concentration of H+ in CWMV-infected wheat cells to create a more favorable cellular environment for CWMV replication. We propose that vsiRNA-20 regulates TaVP expression to prevent cell death and to maintain a weak alkaline environment in cytoplasm to enhance CWMV infection in wheat. This finding may be used as a novel strategy to minimize virus pathogenicity and to develop new antiviral stratagems.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlZhejiang Provincial Key Laboratory of Plant VirologyInstitute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
- School of Forestry and BiotechnologyZhejiang Agriculture and Forestry UniversityHangzhou310021China
| | - Juan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Ne Wu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlZhejiang Provincial Key Laboratory of Plant VirologyInstitute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- School of Forestry and BiotechnologyZhejiang Agriculture and Forestry UniversityHangzhou310021China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Jin Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Xuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Long He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlZhejiang Provincial Key Laboratory of Plant VirologyInstitute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| |
Collapse
|
22
|
Gunji S, Oda Y, Takigawa-Imamura H, Tsukaya H, Ferjani A. Excess Pyrophosphate Restrains Pavement Cell Morphogenesis and Alters Organ Flatness in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:31. [PMID: 32153602 PMCID: PMC7047283 DOI: 10.3389/fpls.2020.00031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/13/2020] [Indexed: 05/31/2023]
Abstract
In Arabidopsis thaliana, the vacuolar proton-pumping pyrophosphatase (H+-PPase) is highly expressed in young tissues, which consume large amounts of energy in the form of nucleoside triphosphates and produce pyrophosphate (PPi) as a byproduct. We reported that excess PPi in the H+-PPase loss-of-function fugu5 mutant severely compromised gluconeogenesis from seed storage lipids, arrested cell division in cotyledonary palisade tissue, and triggered compensated cell enlargement; this phenotype was recovered upon sucrose supply. Thus, we provided evidence that the hydrolysis of inhibitory PPi, rather than vacuolar acidification, is the major contribution of H+-PPase during seedling establishment. Here, examination of the epidermis revealed that fugu5 pavement cells exhibited defective puzzle-cell formation. Importantly, removal of PPi from fugu5 background by the yeast cytosolic PPase IPP1, in fugu5-1 AVP1pro::IPP1 transgenic lines, restored the phenotypic aberrations of fugu5 pavement cells. Surprisingly, pavement cells in mutants with defects in gluconeogenesis (pck1-2) or the glyoxylate cycle (icl-2; mls-2) showed no phenotypic alteration, indicating that reduced sucrose production from seed storage lipids is not the cause of fugu5 epidermal phenotype. fugu5 had oblong cotyledons similar to those of angustifolia-1 (an-1), whose leaf pavement cells display an abnormal arrangement of cortical microtubules (MTs). To gain insight into the genetic interaction between ANGUSTIFOLIA and H+-PPase in pavement cell differentiation, an-1 fugu5-1 was analyzed. Surprisingly, epidermis developmental defects were synergistically enhanced in the double mutant. In fact, an-1 fugu5-1 pavement cells showed a striking three-dimensional growth phenotype on both abaxial and adaxial sides of cotyledons, which was recovered by hydrolysis of PPi in an-1 fugu5-1 AVP1pro::IPP1. Live imaging revealed that cortical MTs exhibited a reduced velocity, were slightly fragmented and sparse in the above lines compared to the WT. Consistently, addition of PPi in vitro led to a dose-dependent delay of tubulin polymerization, thus supporting a link between PPi and MT dynamics. Moreover, mathematical simulation of three-dimensional growth based on cotyledon proximo-distal and medio-lateral phenotypic quantification implicated restricted cotyledon expansion along the medio-lateral axis in the crinkled surface of an-1 fugu5-1. Together, our data suggest that PPi homeostasis is a prerequisite for proper pavement cell morphogenesis, epidermal growth and development, and organ flattening.
Collapse
Affiliation(s)
- Shizuka Gunji
- United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
| | - Yoshihisa Oda
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| | - Hisako Takigawa-Imamura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ali Ferjani
- United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
23
|
Furutani M, Hirano Y, Nishimura T, Nakamura M, Taniguchi M, Suzuki K, Oshida R, Kondo C, Sun S, Kato K, Fukao Y, Hakoshima T, Morita MT. Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nat Commun 2020; 11:76. [PMID: 31900388 PMCID: PMC6941992 DOI: 10.1038/s41467-019-13729-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 11/13/2019] [Indexed: 01/07/2023] Open
Abstract
In many plant species, roots maintain specific growth angles relative to the direction of gravity, known as gravitropic set point angles (GSAs). These contribute to the efficient acquisition of water and nutrients. AtLAZY1/LAZY1-LIKE (LZY) genes are involved in GSA control by regulating auxin flow toward the direction of gravity in Arabidopsis. Here, we demonstrate that RCC1-like domain (RLD) proteins, identified as LZY interactors, are essential regulators of polar auxin transport. We show that interaction of the CCL domain of LZY with the BRX domain of RLD is important for the recruitment of RLD from the cytoplasm to the plasma membrane by LZY. A structural analysis reveals the mode of the interaction as an intermolecular β-sheet in addition to the structure of the BRX domain. Our results offer a molecular framework in which gravity signal first emerges as polarized LZY3 localization in gravity-sensing cells, followed by polar RLD1 localization and PIN3 relocalization to modulate auxin flow.
Collapse
Affiliation(s)
- Masahiko Furutani
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- FAFU-UCR Joint Center, Fujian Provincial Key Laboratory of Haixia Applied Plant System Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yoshinori Hirano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0101, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan
| | - Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan
| | - Masatoshi Taniguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Kanako Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryuichiro Oshida
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Chiemi Kondo
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Song Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- FAFU-UCR Joint Center, Fujian Provincial Key Laboratory of Haixia Applied Plant System Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Kagayaki Kato
- Laboratory of Biological Diversity, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan
- Bioimage Informatics Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Myodaiji, Okazaki, 444-8585, Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Toshio Hakoshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0101, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan.
| |
Collapse
|
24
|
Holmes AOM, Kalli AC, Goldman A. The Function of Membrane Integral Pyrophosphatases From Whole Organism to Single Molecule. Front Mol Biosci 2019; 6:132. [PMID: 31824962 PMCID: PMC6882861 DOI: 10.3389/fmolb.2019.00132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/08/2019] [Indexed: 12/02/2022] Open
Abstract
Membrane integral pyrophosphatases (mPPases) are responsible for the hydrolysis of pyrophosphate. This enzymatic mechanism is coupled to the pumping of H+ or Na+ across membranes in a process that can be K+ dependent or independent. Understanding the movements and dynamics throughout the mPPase catalytic cycle is important, as this knowledge is essential for improving or impeding protein function. mPPases have been shown to play a crucial role in plant maturation and abiotic stress tolerance, and so have the potential to be engineered to improve plant survival, with implications for global food security. mPPases are also selectively toxic drug targets, which could be pharmacologically modulated to reduce the virulence of common human pathogens. The last few years have seen the publication of many new insights into the function and structure of mPPases. In particular, there is a new body of evidence that the catalytic cycle is more complex than originally proposed. There are structural and functional data supporting a mechanism involving half-of-the-sites reactivity, inter-subunit communication, and exit channel motions. A more advanced and in-depth understanding of mPPases has begun to be uncovered, leaving the field of research with multiple interesting avenues for further exploration and investigation.
Collapse
Affiliation(s)
- Alexandra O. M. Holmes
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Antreas C. Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Adrian Goldman
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Primo C, Pizzio GA, Yang J, Gaxiola RA, Scholz-Starke J, Hirschi KD. Plant proton pumping pyrophosphatase: the potential for its pyrophosphate synthesis activity to modulate plant growth. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:989-996. [PMID: 31081197 DOI: 10.1111/plb.13007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/09/2019] [Indexed: 05/25/2023]
Abstract
Cellular pyrophosphate (PPi) homeostasis is vital for normal plant growth and development. Plant proton-pumping pyrophosphatases (H+ -PPases) are enzymes with different tissue-specific functions related to the regulation of PPi homeostasis. Enhanced expression of plant H+ -PPases increases biomass and yield in different crop species. Here, we emphasise emerging studies utilising heterologous expression in yeast and plant vacuole electrophysiology approaches, as well as phylogenetic relationships and structural analysis, to showcase that the H+ -PPases possess a PPi synthesis function. We postulate this synthase activity contributes to modulating and promoting plant growth both in H+ -PPase-engineered crops and in wild-type plants. We propose a model where the PPi synthase activity of H+ -PPases maintains the PPi pool when cells adopt PPi-dependent glycolysis during high energy demands and/or low oxygen environments. We conclude by proposing experiments to further investigate the H+ -PPase-mediated PPi synthase role in plant growth.
Collapse
Affiliation(s)
- C Primo
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - G A Pizzio
- Center for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - J Yang
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - R A Gaxiola
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - J Scholz-Starke
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - K D Hirschi
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Zhang F, Yan X, Han X, Tang R, Chu M, Yang Y, Yang YH, Zhao F, Fu A, Luan S, Lan W. A Defective Vacuolar Proton Pump Enhances Aluminum Tolerance by Reducing Vacuole Sequestration of Organic Acids. PLANT PHYSIOLOGY 2019; 181:743-761. [PMID: 31350362 PMCID: PMC6776860 DOI: 10.1104/pp.19.00626] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 05/04/2023]
Abstract
Plants cope with aluminum (Al) toxicity by secreting organic acids (OAs) into the apoplastic space, which is driven by proton (H+) pumps. Here, we show that mutation of vacuolar H+-translocating adenosine triphosphatase (H+-ATPase) subunit a2 (VHA-a2) and VHA-a3 of the vacuolar H+-ATPase enhances Al resistance in Arabidopsis (Arabidopsis thaliana). vha-a2 vha-a3 mutant plants displayed less Al sensitivity with less Al accumulation in roots compared to wild-type plants when grown under excessive Al3+ Interestingly, in response to Al3+ exposure, plants showed decreased vacuolar H+ pump activity and reduced expression of VHA-a2 and VHA-a3, which were accompanied by increased plasma membrane H+ pump (PM H+-ATPase) activity. Genetic analysis of plants with altered PM H+-ATPase activity established a correlation between Al-induced increase in PM H+-ATPase activity and enhanced Al resistance in vha-a2 vha-a3 plants. We determined that external OAs, such as malate and citrate whose secretion is driven by PM H+-ATPase, increased with PM H+-ATPase activity upon Al stress. On the other hand, elevated secretion of malate and citrate in vha-a2 vha-a3 root exudates appeared to be independent of OAs metabolism and tolerance of phosphate starvation but was likely related to impaired vacuolar sequestration. These results suggest that coordination of vacuolar H+-ATPase and PM H+-ATPase dictates the distribution of OAs into either the vacuolar lumen or the apoplastic space that, in turn, determines Al tolerance capacity in plants.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Xiaoyi Yan
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Xingbao Han
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Moli Chu
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Yang Yang
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Yong-Hua Yang
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Fugeng Zhao
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Aigen Fu
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Wenzhi Lan
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| |
Collapse
|
27
|
Chang CL, Serapion JC, Hung HH, Lin YC, Tsai YC, Jane WN, Chang MC, Lai MH, Hsing YIC. Studies of a rice sterile mutant sstl from the TRIM collection. BOTANICAL STUDIES 2019; 60:12. [PMID: 31292815 PMCID: PMC6620220 DOI: 10.1186/s40529-019-0260-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rice (Oryza sativa) is one of the main crops in the world, and more than 3.9 billion people will consume rice by 2025. Sterility significantly affects rice production and leads to yield defects. The undeveloped anthers or abnormal pollen represent serious defects in rice male sterility. Therefore, understanding the mechanism of male sterility is an important task. Here, we investigated a rice sterile mutant according to its developmental morphology and transcriptional profiles. RESULTS An untagged T-DNA insertional mutant showed defective pollen and abnormal anthers as compared with its semi-sterile mutant (sstl) progeny segregates. Transcriptomic analysis of sterile sstl-s revealed several biosynthesis pathways, such as downregulated cell wall, lipids, secondary metabolism, and starch synthesis. This downregulation is consistent with the morphological characterization of sstl-s anthers with irregular exine, absence of intine, no starch accumulation in pollen grains and no accumulated flavonoids in anthers. Moreover, defective microsporangia development led to abnormal anther locule and aborted microspores. The downregulated lipids, starch, and cell wall synthesis-related genes resulted in loss of fertility. CONCLUSIONS We illustrate the importance of microsporangia in the development of anthers and functional microspores. Abnormal development of pollen grains, pollen wall, anther locule, etc. result in severe yield reduction.
Collapse
Affiliation(s)
- Chia-Ling Chang
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Jerry C. Serapion
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Han-Hui Hung
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, 413 Taiwan
| | - Yan-Cheng Lin
- Department of Life Science, National Taiwan University, Taipei, 106 Taiwan
| | - Yuan-Ching Tsai
- Department of Agronomy, National Chiayi University, Chiayi, 600 Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, 413 Taiwan
| | - Yue-ie C. Hsing
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| |
Collapse
|
28
|
Asaoka M, Inoue SI, Gunji S, Kinoshita T, Maeshima M, Tsukaya H, Ferjani A. Excess Pyrophosphate within Guard Cells Delays Stomatal Closure. PLANT & CELL PHYSIOLOGY 2019; 60:875-887. [PMID: 30649470 DOI: 10.1093/pcp/pcz002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/28/2018] [Indexed: 05/08/2023]
Abstract
A variety of cellular metabolic reactions generate inorganic pyrophosphate (PPi) as an ATP hydrolysis byproduct. The vacuolar H+-translocating pyrophosphatase (H+-PPase) loss-of-function fugu5 mutant is susceptible to drought and displays pleotropic postgerminative growth defects due to excess PPi. It was recently reported that stomatal closure after abscisic acid (ABA) treatment is delayed in vhp1-1, a fugu5 allele. In contrast, we found that specific removal of PPi rescued all of the above fugu5 developmental and growth defects. Hence, we speculated that excess PPi itself, rather than vacuolar acidification, might delay stomatal closure. To test this hypothesis, we constructed transgenic plants expressing the yeast IPP1 gene (encoding a cytosolic pyrophosphatase) driven by a guard cell-specific promoter (pGC1::IPP1) in the fugu5 background. Our measurements confirmed stomatal closure defects in fugu5, further supporting a role for H+-PPase in stomatal functioning. Importantly, while pGC1::IPP1 transgenics morphologically mimicked fugu5, stomatal closure was restored in response to ABA and darkness. Quantification of water loss revealed that fugu5 stomata were almost completely insensitive to ABA. In addition, growth of pGC1::IPP1 plants was promoted compared to fugu5 throughout their life; however, it did not reach the wild type level. fugu5 also displayed an increased stomatal index, in violation of the one-cell-spacing rule, and phenotypes recovered upon removal of PPi by pAVP1::IPP1 (FUGU5, VHP1 and AVP1 are the same gene encoding H+-PPase), but not in the pGC1::IPP1 line. Taken together, these results clearly support our hypothesis that dysfunction in stomata is triggered by excess PPi within guard cells, probably via perturbed guard cell metabolism.
Collapse
Affiliation(s)
- Mariko Asaoka
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo, Japan
| | - Shin-Ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shizuka Gunji
- United Graduated School of Education, Tokyo Gakugei University, Tokyo, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo, Japan
- United Graduated School of Education, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
29
|
Patir-Nebioglu MG, Andrés Z, Krebs M, Fink F, Drzewicka K, Stankovic-Valentin N, Segami S, Schuck S, Büttner M, Hell R, Maeshima M, Melchior F, Schumacher K. Pyrophosphate modulates plant stress responses via SUMOylation. eLife 2019; 8:44213. [PMID: 30785397 PMCID: PMC6382351 DOI: 10.7554/elife.44213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/05/2019] [Indexed: 01/11/2023] Open
Abstract
Pyrophosphate (PPi), a byproduct of macromolecule biosynthesis is maintained at low levels by soluble inorganic pyrophosphatases (sPPase) found in all eukaryotes. In plants, H+-pumping pyrophosphatases (H+-PPase) convert the substantial energy present in PPi into an electrochemical gradient. We show here, that both cold- and heat stress sensitivity of fugu5 mutants lacking the major H+-PPase isoform AVP1 is correlated with reduced SUMOylation. In addition, we show that increased PPi concentrations interfere with SUMOylation in yeast and we provide evidence that SUMO activating E1-enzymes are inhibited by micromolar concentrations of PPi in a non-competitive manner. Taken together, our results do not only provide a mechanistic explanation for the beneficial effects of AVP1 overexpression in plants but they also highlight PPi as an important integrator of metabolism and stress tolerance.
Collapse
Affiliation(s)
- M Görkem Patir-Nebioglu
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Zaida Andrés
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Melanie Krebs
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Fabian Fink
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Katarzyna Drzewicka
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Nicolas Stankovic-Valentin
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sebastian Schuck
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Rüdiger Hell
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Frauke Melchior
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Karin Schumacher
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
30
|
Scholz-Starke J, Primo C, Yang J, Kandel R, Gaxiola RA, Hirschi KD. The flip side of the Arabidopsis type I proton-pumping pyrophosphatase (AVP1): Using a transmembrane H + gradient to synthesize pyrophosphate. J Biol Chem 2018; 294:1290-1299. [PMID: 30510138 DOI: 10.1074/jbc.ra118.006315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/29/2018] [Indexed: 01/19/2023] Open
Abstract
Energy partitioning and plant growth are mediated in part by a type I H+-pumping pyrophosphatase (H+-PPase). A canonical role for this transporter has been demonstrated at the tonoplast where it serves a job-sharing role with V-ATPase in vacuolar acidification. Here, we investigated whether the plant H+-PPase from Arabidopsis also functions in "reverse mode" to synthesize PPi using the transmembrane H+ gradient. Using patch-clamp recordings on Arabidopsis vacuoles, we observed inward currents upon Pi application on the cytosolic side. These currents were strongly reduced in vacuoles from two independent H+-PPase mutant lines (vhp1-1 and fugu5-1) lacking the classical PPi-induced outward currents related to H+ pumping, whereas they were significantly larger in vacuoles with engineered heightened expression of the H+-PPase. Current amplitudes related to reverse-mode H+ transport depended on the membrane potential, cytosolic Pi concentration, and magnitude of the pH gradient across the tonoplast. Of note, experiments on vacuolar membrane-enriched vesicles isolated from yeast expressing the Arabidopsis H+-PPase (AVP1) demonstrated Pi-dependent PPi synthase activity in the presence of a pH gradient. Our work establishes that a plant H+-PPase can operate as a PPi synthase beyond its canonical role in vacuolar acidification and cytosolic PPi scavenging. We propose that the PPi synthase activity of H+-PPase contributes to a cascade of events that energize plant growth.
Collapse
Affiliation(s)
- Joachim Scholz-Starke
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova, Italy.
| | - Cecilia Primo
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Jian Yang
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Raju Kandel
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Roberto A Gaxiola
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Kendal D Hirschi
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
31
|
Vacuolar Proton Pyrophosphatase Is Required for High Magnesium Tolerance in Arabidopsis. Int J Mol Sci 2018; 19:ijms19113617. [PMID: 30453498 PMCID: PMC6274811 DOI: 10.3390/ijms19113617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/11/2018] [Accepted: 11/11/2018] [Indexed: 11/17/2022] Open
Abstract
Magnesium (Mg2+) is an essential nutrient in all organisms. However, high levels of Mg2+ in the environment are toxic to plants. In this study, we identified the vacuolar-type H⁺-pyrophosphatase, AVP1, as a critical enzyme for optimal plant growth under high-Mg conditions. The Arabidopsis avp1 mutants displayed severe growth retardation, as compared to the wild-type plants upon excessive Mg2+. Unexpectedly, the avp1 mutant plants retained similar Mg content to wild-type plants under either normal or high Mg conditions, suggesting that AVP1 may not directly contribute to Mg2+ homeostasis in plant cells. Further analyses confirmed that the avp1 mutant plants contained a higher pyrophosphate (PPi) content than wild type, coupled with impaired vacuolar H⁺-pyrophosphatase activity. Interestingly, expression of the Saccharomyces cerevisiae cytosolic inorganic pyrophosphatase1 gene IPP1, which facilitates PPi hydrolysis but not proton translocation into vacuole, rescued the growth defects of avp1 mutants under high-Mg conditions. These results provide evidence that high-Mg sensitivity in avp1 mutants possibly resulted from elevated level of cytosolic PPi. Moreover, genetic analysis indicated that mutation of AVP1 was additive to the defects in mgt6 and cbl2 cbl3 mutants that are previously known to be impaired in Mg2+ homeostasis. Taken together, our results suggest AVP1 is required for cellular PPi homeostasis that in turn contributes to high-Mg tolerance in plant cells.
Collapse
|
32
|
Pyrophosphate inhibits gluconeogenesis by restricting UDP-glucose formation in vivo. Sci Rep 2018; 8:14696. [PMID: 30279540 PMCID: PMC6168488 DOI: 10.1038/s41598-018-32894-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/18/2018] [Indexed: 12/02/2022] Open
Abstract
Pyrophosphate (PPi) is produced by anabolic reactions and serves as an energy donor in the cytosol of plant cells; however, its accumulation to toxic levels disrupts several common biosynthetic pathways and is lethal. Before acquiring photosynthetic capacity, young seedlings must endure a short but critical heterotrophic period, during which they are nourished solely by sugar produced from seed reserves by the anabolic process of gluconeogenesis. Previously, we reported that excess PPi in H+-PPase-knockout fugu5 mutants of Arabidopsis thaliana severely compromised gluconeogenesis. However, the precise metabolic target of PPi inhibition in vivo remained elusive. Here, CE-TOF MS analyses of major metabolites characteristic of gluconeogenesis from seed lipids showed that the Glc6P;Fru6P level significantly increased and that Glc1P level was consistently somewhat higher in fugu5 compared to wild type. In contrast, the UDP-Glc level decreased significantly in the mutants. Importantly, specific removal of PPi in fugu5, and thus in AVP1pro:IPP1 transgenic lines, restored the Glc1P and the Glc6P;Fru6P levels, increased the UDP-Glc level ~2.0-fold, and subsequently increased sucrose synthesis. Given the reversible nature of the Glc1P/UDP-Glc reaction, our results indicate that UGP-Glc pyrophosphorylase is the major target when excess PPi exerts inhibitory effects in vivo. To validate our findings, we analyzed metabolite responses using a mathematical theory called structural sensitivity analysis (SSA), in which the responses of concentrations in reaction systems to perturbations in enzyme activity are determined from the structure of the network alone. A comparison of our experimental data with the results of pure structural theory predicted the existence of unknown reactions as the necessary condition for the above metabolic profiles, and confirmed the above results. Our data support the notion that H+-PPase plays a pivotal role in cytosolic PPi homeostasis in plant cells. We propose that the combination of metabolomics and SSA is powerful when seeking to identify and predict metabolic targets in living cells.
Collapse
|
33
|
Farquharson KL. Life of PPi: Soluble PPases and H +-PPase Act Cooperatively to Keep Pyrophosphate Levels in Check. THE PLANT CELL 2018; 30:951. [PMID: 29716989 PMCID: PMC6002200 DOI: 10.1105/tpc.18.00342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|