1
|
Zheng Y, Ou X, Li Q, Wu Z, Wu L, Li X, Zhang B, Sun Y. Genome-wide epigenetic dynamics of tea leaves under mechanical wounding stress during oolong tea postharvest processing. Food Res Int 2024; 194:114939. [PMID: 39232552 DOI: 10.1016/j.foodres.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Understanding the epigenetic responses to mechanical wounding stress during the postharvest processing of oolong tea provides insight into the reprogramming of the tea genome and its impact on tea quality. Here, we characterized the 5mC DNA methylation and chromatin accessibility landscapes of tea leaves subjected to mechanical wounding stress during the postharvest processing of oolong tea. Analysis of the differentially methylated regions and preferentially accessible promoters revealed many overrepresented TF-binding motifs, highlighting sets of TFs that are likely important for the quality of oolong tea. Within these sets, we constructed a chromatin accessibility-mediated gene regulatory network specific to mechanical wounding stress. In combination with the results of the TF-centred yeast one-hybrid assay, we identified potential binding sites of CsMYC2 and constructed a gene regulatory network centred on CsMYC2, clarifying the potential regulatory role of CsMYC2 in the postharvest processing of oolong tea. Interestingly, highly accessible chromatin and hypomethylated cytosine were found to coexist in the promoter region of the indole biosynthesis gene (tryptophan synthase β-subunit, CsTSB) under wounding stress, which indicates that these two important epigenetic regulatory mechanisms are jointly involved in regulating the synthesis of indole during the postharvest processing of oolong tea. These findings improve our understanding of the epigenetic regulatory mechanisms involved in quality formation during the postharvest processing of oolong tea.
Collapse
Affiliation(s)
- Yucheng Zheng
- College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China; Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Xiaoxi Ou
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Qiuming Li
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Zongjie Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Liangyu Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Xinlei Li
- Tea Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Bo Zhang
- College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China.
| | - Yun Sun
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China.
| |
Collapse
|
2
|
Yin M, Wang S, Wang Y, Wei R, Liang Y, Zuo L, Huo M, Huang Z, Lang J, Zhao X, Zhang F, Xu J, Fu B, Li Z, Wang W. Impact of Abiotic Stress on Rice and the Role of DNA Methylation in Stress Response Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2700. [PMID: 39409570 PMCID: PMC11478684 DOI: 10.3390/plants13192700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
With the intensification of global climate change and the increasing complexity of agricultural environments, the improvement of rice stress tolerance is an important focus of current breeding research. This review summarizes the current knowledge on the impact of various abiotic stresses on rice and the associated epigenetic responses (DNA methylation). Abiotic stress factors, including high temperature, drought, cold, heavy metal pollution, and high salinity, have a negative impact on crop productivity. Epigenetic changes are key regulatory factors in plant stress responses, and DNA methylation is one of the earliest discovered and thoroughly studied mechanisms in these epigenetic regulatory mechanisms. The normal growth of rice is highly dependent on the environment, and changes in the environment can lead to rice sterility and severe yield loss. Changes in the regulation of the DNA methylation pathway are involved in rice's response to stress. Various DNA methylation-regulating protein complexes that function during rice development have been identified. Significant changes in DNA methylation occur in numerous stress-responsive genes, particularly those in the abscisic acid signaling pathway. These findings underscore the complex mechanisms of the abiotic stress response in rice. We propose the effective improvement of tolerance traits by regulating the epigenetic status of rice and emphasize the role of DNA methylation in abiotic stress tolerance, thereby addressing global climate change and ensuring food security.
Collapse
Affiliation(s)
- Ming Yin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shanwen Wang
- Southwest United Graduate School, Kunming 650092, China;
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Yanfang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Ronghua Wei
- Department of Agronomy, Hebei Agricultural University, Baoding 071001, China;
| | - Yawei Liang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Liying Zuo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Mingyue Huo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Zekai Huang
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Jie Lang
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Xiuqin Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Fan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Binying Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wensheng Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- Southwest United Graduate School, Kunming 650092, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
3
|
Gong Z, Zheng J, Yang N, Li X, Qian S, Sun F, Geng S, Liang Y, Wang J. Whole-Genome Bisulfite Sequencing (WGBS) Analysis of Gossypium hirsutum under High-Temperature Stress Conditions. Genes (Basel) 2024; 15:1241. [PMID: 39457365 PMCID: PMC11507439 DOI: 10.3390/genes15101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND DNA methylation is an important part of epigenetic regulation and plays an important role in the response of plants to adverse stress. METHODS In this study, whole-genome bisulfite sequencing (WGBS) was performed on the high-temperature-resistant material Xinluzao 36 and the high-temperature-sensitive material Che 61-72 at 0 h and 12 h under high-temperature stress conditions. RESULTS The results revealed that the Gossypium hirsutum methylation levels of CG and CHG (H = A, C, or T) decreased after the high-temperature stress treatment, and the methylation level of the A subgenome was significantly greater than that of the D subgenome. The methylation level of CHH increased, and the methylation level of CHH in the D subgenome was significantly greater than that in the A subgenome after high-temperature stress treatment. The methylation density of CG is lower than that of CHG and CHH, and the methylation density of the middle region of chromosomes is greater than that of both ends, which is opposite to the distribution density of genes. There were 124 common differentially methylated genes in the CG, CHG, and CHH groups, and 5130 common DEGs and differentially methylated genes were found via joint analysis with RNA-seq; these genes were significantly enriched in the biosynthesis of plant hormones, thiamine metabolism, glutathione metabolism, and tyrosine metabolism pathways. DNA methylation did not affect the expression of many genes (accounting for 85.68% of the differentially methylated genes), DNA methylation-promoted gene expression was located mainly in the downstream region of the gene or gene body, and the expression of inhibitory genes was located mainly in the upstream region of the gene. CONCLUSIONS This study provides a theoretical basis for further exploration of the gene expression and functional regulatory mechanism of G. hirsutum DNA methylation under high-temperature stress conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yajun Liang
- Cash Crops Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.G.); (J.Z.); (N.Y.); (X.L.); (S.Q.); (F.S.); (S.G.); (J.W.)
| | | |
Collapse
|
4
|
Torres JR, Sanchez DH. Emerging roles of plant transcriptional gene silencing under heat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38864847 DOI: 10.1111/tpj.16875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
Plants continuously endure unpredictable environmental fluctuations that upset their physiology, with stressful conditions negatively impacting yield and survival. As a contemporary threat of rapid progression, global warming has become one of the most menacing ecological challenges. Thus, understanding how plants integrate and respond to elevated temperatures is crucial for ensuring future crop productivity and furthering our knowledge of historical environmental acclimation and adaptation. While the canonical heat-shock response and thermomorphogenesis have been extensively studied, evidence increasingly highlights the critical role of regulatory epigenetic mechanisms. Among these, the involvement under heat of heterochromatic suppression mediated by transcriptional gene silencing (TGS) remains the least understood. TGS refers to a multilayered metabolic machinery largely responsible for the epigenetic silencing of invasive parasitic nucleic acids and the maintenance of parental imprints. Its molecular effectors include DNA methylation, histone variants and their post-translational modifications, and chromatin packing and remodeling. This work focuses on both established and emerging insights into the contribution of TGS to the physiology of plants under stressful high temperatures. We summarized potential roles of constitutive and facultative heterochromatin as well as the most impactful regulatory genes, highlighting events where the loss of epigenetic suppression has not yet been associated with corresponding changes in epigenetic marks.
Collapse
Affiliation(s)
- José Roberto Torres
- Facultad de Agronomía, IFEVA (CONICET-UBA), Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Diego H Sanchez
- Facultad de Agronomía, IFEVA (CONICET-UBA), Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| |
Collapse
|
5
|
Ijaz A, Anwar Z, Ali A, Ditta A, Shani MY, Haidar S, Wang B, Fang L, Khan SMUD, Khan MKR. Unraveling the genetic and molecular basis of heat stress in cotton. Front Genet 2024; 15:1296622. [PMID: 38919956 PMCID: PMC11196824 DOI: 10.3389/fgene.2024.1296622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human activities and climate change have resulted in frequent and intense weather fluctuations, leading to diverse abiotic stresses on crops which hampers greatly their metabolic activities. Heat stress, a prevalent abiotic factor, significantly influences cotton plant biological activities resulting in reducing yield and production. We must deepen our understanding of how plants respond to heat stress across various dimensions, encompassing genes, RNAs, proteins, metabolites for effective cotton breeding. Multi-omics methods, primarily genomics, transcriptomics, proteomics, metabolomics, and phenomics, proves instrumental in studying cotton's responses to abiotic stresses. Integrating genomics, transcriptomics, proteomics, and metabolomic is imperative for our better understanding regarding genetics and molecular basis of heat tolerance in cotton. The current review explores fundamental omics techniques, covering genomics, transcriptomics, proteomics, and metabolomics, to highlight the progress made in cotton omics research.
Collapse
Affiliation(s)
- Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Yousaf Shani
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Boahua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Liu Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | | | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| |
Collapse
|
6
|
Jiang S, Zou M, Zhang C, Ma W, Xia C, Li Z, Zhao L, Liu Q, Yu F, Huang D, Xia Z. A high-quality haplotype genome of Michelia alba DC reveals differences in methylation patterns and flower characteristics. MOLECULAR HORTICULTURE 2024; 4:23. [PMID: 38807235 PMCID: PMC11134676 DOI: 10.1186/s43897-024-00098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
Michelia alba DC is a highly valuable ornamental plant of the Magnoliaceae family. This evergreen tropical tree commonly grows in Southeast Asia and is adored for its delightful fragrance. Our study assembled the M. alba haplotype genome MC and MM by utilizing Nanopore ultralong reads, Pacbio Hifi long reads and parental second-generation data. Moreover, the first methylation map of Magnoliaceae was constructed based on the methylation site data obtained using Nanopore data. Metabolomic datasets were generated from the flowers of three different species to assess variations in pigment and volatile compound accumulation. Finally, transcriptome data were generated to link genomic, methylation, and morphological patterns to reveal the reasons underlying the differences between M. alba and its parental lines in petal color, flower shape, and fragrance. We found that the AP1 and AP2 genes are crucial in M. alba petal formation, while the 4CL, PAL, and C4H genes control petal color. The data generated in this study serve as a foundation for future physiological and biochemical research on M. alba, facilitate the targeted improvement of M. alba varieties, and offer a theoretical basis for molecular research on Michelia L.
Collapse
Affiliation(s)
- Sirong Jiang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Meiling Zou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | | | - Wanfeng Ma
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Chengcai Xia
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zixuan Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | | | - Qi Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Fen Yu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Dongyi Huang
- College of Tropical Crops, Hainan University, Haikou, China.
| | - Zhiqiang Xia
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China.
- College of Tropical Crops, Hainan University, Haikou, China.
| |
Collapse
|
7
|
Sun Y, Wang X, Di Y, Li J, Li K, Wei H, Zhang F, Su Z. Systematic Analysis of DNA Demethylase Gene Families in Foxtail Millet ( Setaria italica L.) and Their Expression Variations after Abiotic Stresses. Int J Mol Sci 2024; 25:4464. [PMID: 38674049 PMCID: PMC11050331 DOI: 10.3390/ijms25084464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
DNA methylation is a highly conserved epigenetic modification involved in many biological processes, including growth and development, stress response, and secondary metabolism. DNA demethylase (DNA-deMTase) genes have been identified in some plant species; however, there are no reports on the identification and analysis of DNA-deMTase genes in Foxtail millet (Setaria italica L.). In this study, seven DNA-deMTases were identified in S. italica. These DNA-deMTase genes were divided into four subfamilies (DML5, DML4, DML3, and ROS1) by phylogenetic and gene structure analysis. Further analysis shows that the physical and chemical properties of these DNA-deMTases proteins are similar, contain the typical conserved domains of ENCO3c and are located in the nucleus. Furthermore, multiple cis-acting elements were observed in DNA-deMTases, including light responsiveness, phytohormone responsiveness, stress responsiveness, and elements related to plant growth and development. The DNA-deMTase genes are expressed in all tissues detected with certain tissue specificity. Then, we investigated the abundance of DNA-deMTase transcripts under abiotic stresses (cold, drought, salt, ABA, and MeJA). The results showed that different genes of DNA-deMTases were involved in the regulation of different abiotic stresses. In total, our findings will provide a basis for the roles of DNA-deMTase in response to abiotic stress.
Collapse
Affiliation(s)
- Yingying Sun
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Xin Wang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Yunfei Di
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Jinxiu Li
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Keyu Li
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Huanhuan Wei
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Fan Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Zhenxia Su
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
- Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| |
Collapse
|
8
|
Xie H, Zheng Y, Xue M, Huang Y, Qian D, Zhao M, Li J. DNA methylation-mediated ROS production contributes to seed abortion in litchi. MOLECULAR HORTICULTURE 2024; 4:12. [PMID: 38561782 PMCID: PMC10986121 DOI: 10.1186/s43897-024-00089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Although there is increasing evidence suggesting that DNA methylation regulates seed development, the underlying mechanisms remain poorly understood. Therefore, we aimed to shed light on this by conducting whole-genome bisulfite sequencing using seeds from the large-seeded cultivar 'HZ' and the abortive-seeded cultivar 'NMC'. Our analysis revealed that the 'HZ' seeds exhibited a hypermethylation level compared to the 'NMC' seeds. Furthermore, we found that the genes associated with differentially methylated regions (DMRs) and differentially expressed genes (DEGs) were mainly enriched in the reactive oxygen species (ROS) metabolic pathway. To investigate this further, we conducted nitroblue tetrazolium (NBT) and 2,7-Dichlorodihydrofluorescein (DCF) staining, which demonstrated a significantly higher amount of ROS in the 'NMC' seeds compared to the 'HZ' seeds. Moreover, we identified that the gene LcGPX6, involved in ROS scavenging, exhibited hypermethylation levels and parallelly lower expression levels in 'NMC' seeds compared to 'HZ' seeds. Interestingly, the ectopic expression of LcGPX6 in Arabidopsis enhanced ROS scavenging and resulted in lower seed production. Together, we suggest that DNA methylation-mediated ROS production plays a significant role in seed development in litchi, during which hypermethylation levels of LcGPX6 might repress its expression, resulting in the accumulation of excessive ROS and ultimately leading to seed abortion.
Collapse
Affiliation(s)
- Hanhan Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yedan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Mengyue Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yulian Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Dawei Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Bai Y, Dong Y, Zheng L, Zeng H, Wei Y, Shi H. Cassava phosphatase PP2C1 modulates thermotolerance via fine-tuning dephosphorylation of antioxidant enzymes. PLANT PHYSIOLOGY 2024; 194:2724-2738. [PMID: 38198213 DOI: 10.1093/plphys/kiae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Global warming is an adverse environmental factor that threatens crop yields and food security. 2C-type protein phosphatases (PP2Cs), as core protein phosphatase components, play important roles in plant hormone signaling to cope with various environmental stresses. However, the function and underlying mechanism of PP2Cs in the heat stress response remain elusive in tropical crops. Here, we report that MePP2C1 negatively regulated thermotolerance in cassava (Manihot esculenta Crantz), accompanied by the modulation of reactive oxygen species (ROS) accumulation and the underlying antioxidant enzyme activities of catalase (CAT) and ascorbate peroxidase (APX). Further investigation found that MePP2C1 directly interacted with and dephosphorylated MeCAT1 and MeAPX2 at serine (S) 112 and S160 residues, respectively. Moreover, in vitro and in vivo assays showed that protein phosphorylation of MeCAT1S112 and MeAPX2S160 was essential for their enzyme activities, and MePP2C1 negatively regulated thermotolerance and redox homeostasis by dephosphorylating MeCAT1S112 and MeAPX2S160. Taken together, this study illustrates the direct relationship between MePP2C1-mediated protein dephosphorylation of MeCAT1 and MeAPX2 and ROS accumulation in thermotolerance to provide insights for adapting to global warming via fine-tuning thermotolerance of the tropical crop cassava.
Collapse
Affiliation(s)
- Yujing Bai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Yabin Dong
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Liyan Zheng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Hongqiu Zeng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Yunxie Wei
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Haitao Shi
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| |
Collapse
|
10
|
Li Y, Ma H, Wu Y, Ma Y, Yang J, Li Y, Yue D, Zhang R, Kong J, Lindsey K, Zhang X, Min L. Single-Cell Transcriptome Atlas and Regulatory Dynamics in Developing Cotton Anthers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304017. [PMID: 37974530 PMCID: PMC10797427 DOI: 10.1002/advs.202304017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/08/2023] [Indexed: 11/19/2023]
Abstract
Plant anthers are composed of different specialized cell types with distinct roles in plant reproduction. High temperature (HT) stress causes male sterility, resulting in crop yield reduction. However, the spatial expression atlas and regulatory dynamics during anther development and in response to HT remain largely unknown. Here, the first single-cell transcriptome atlas and chromatin accessibility survey in cotton anther are established, depicting the specific expression and epigenetic landscape of each type of cell in anthers. The reconstruction of meiotic cells, tapetal cells, and middle layer cell developmental trajectories not only identifies novel expressed genes, but also elucidates the precise degradation period of middle layer and reveals a rapid function transition of tapetal cells during the tetrad stage. By applying HT, heterogeneity in HT response is shown among cells of anthers, with tapetal cells responsible for pollen wall synthesis are most sensitive to HT. Specifically, HT shuts down the chromatin accessibility of genes specifically expressed in the tapetal cells responsible for pollen wall synthesis, such as QUARTET 3 (QRT3) and CYTOCHROME P450 703A2 (CYP703A2), resulting in a silent expression of these genes, ultimately leading to abnormal pollen wall and male sterility. Collectively, this study provides substantial information on anthers and provides clues for heat-tolerant crop creation.
Collapse
Affiliation(s)
- Yanlong Li
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Huanhuan Ma
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Jing Yang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yawei Li
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Rui Zhang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Jie Kong
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiang830091China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurham27710UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
11
|
Hu Q, Wu Y, Hong T, Wu D, Wang L. OsMED16, a tail subunit of Mediator complex, interacts with OsE2Fa to synergistically regulate rice leaf development and blast resistance. Int J Biol Macromol 2023; 253:126728. [PMID: 37678689 DOI: 10.1016/j.ijbiomac.2023.126728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/20/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Mediator, a universal eukaryotic coactivator, is a multiprotein complex to transduce information from the DNA-bound transcription factors to the RNA polymerase II transcriptional machinery. In this study, the biofunctions of a rice mediator subunit OsMED16 in leaf development and blast resistance were characterized. OsMED16 encodes a putative protein of 1170 amino acids, which is 393 bp shorted than the version in Rice Genome Annotation Project databases. Overexpression of OsMED16 plants exhibited wider leaves with larger and more numerous cells in lateral axis, and enhanced resistance to M. oryzae with hyperaccumulated salicylic acid. Further analysis revealed that OsMED16 interacts with OsE2Fa in nuclei, and the complex could directly regulate the transcriptional levels of several genes involved in cell cycle regulation and SA mediated blast resistance, such as OsCC52A1, OsCDKA1, OsCDKB2;2, OsICS1 and OsWRKY45. Altogether, this study proved that OsMED16 is a positive regulator of rice leaf development and blast resistance, and providing new insights into the crosstalk between cell cycle regulation and immunity.
Collapse
Affiliation(s)
- Qin Hu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Daxue East Road 100, Nanning 530004, China; College of Agriculture, Guangxi University, Daxue East Road 100, Nanning 530004, China.
| | - Yanfei Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Youyi Avenue 368, Wuhan 430062, China
| | - Tianshu Hong
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Daxue East Road 100, Nanning 530004, China; College of Agriculture, Guangxi University, Daxue East Road 100, Nanning 530004, China
| | - Deng Wu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Daxue East Road 100, Nanning 530004, China; College of Agriculture, Guangxi University, Daxue East Road 100, Nanning 530004, China
| | - Lulu Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Daxue East Road 100, Nanning 530004, China; College of Agriculture, Guangxi University, Daxue East Road 100, Nanning 530004, China
| |
Collapse
|
12
|
Yung WS, Huang C, Li MW, Lam HM. Changes in epigenetic features in legumes under abiotic stresses. THE PLANT GENOME 2023; 16:e20237. [PMID: 35730915 DOI: 10.1002/tpg2.20237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Legume crops are rich in nutritional value for human and livestock consumption. With global climate change, developing stress-resilient crops is crucial for ensuring global food security. Because of their nitrogen-fixing ability, legumes are also important for sustainable agriculture. Various abiotic stresses, such as salt, drought, and elevated temperatures, are known to adversely affect legume production. The responses of plants to abiotic stresses involve complicated cellular processes including stress hormone signaling, metabolic adjustments, and transcriptional regulations. Epigenetic mechanisms play a key role in regulating gene expressions at both transcriptional and posttranscriptional levels. Increasing evidence suggests the importance of epigenetic regulations of abiotic stress responses in legumes, and recent investigations have extended the scope to the epigenomic level using next-generation sequencing technologies. In this review, the current knowledge on the involvement of epigenetic features, including DNA methylation, histone modification, and noncoding RNAs, in abiotic stress responses in legumes is summarized and discussed. Since most of the available information focuses on a single aspect of these epigenetic features, integrative analyses involving omics data in multiple layers are needed for a better understanding of the dynamic chromatin statuses and their roles in transcriptional regulation. The inheritability of epigenetic modifications should also be assessed in future studies for their applications in improving stress tolerance in legumes through the stable epigenetic optimization of gene expressions.
Collapse
Affiliation(s)
- Wai-Shing Yung
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese Univ. of Hong Kong, Shatin, Hong Kong SAR, P.R. China
| | - Cheng Huang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese Univ. of Hong Kong, Shatin, Hong Kong SAR, P.R. China
- College of Agronomy, Hunan Agricultural Univ., Changsha, 410128, P.R. China
| | - Man-Wah Li
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese Univ. of Hong Kong, Shatin, Hong Kong SAR, P.R. China
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese Univ. of Hong Kong, Shatin, Hong Kong SAR, P.R. China
| |
Collapse
|
13
|
Li Y, Chen M, Khan AH, Ma Y, He X, Yang J, Zhang R, Ma H, Zuo C, Li Y, Kong J, Wang M, Zhu L, Zhang X, Min L. Histone H3 lysine 27 trimethylation suppresses jasmonate biosynthesis and signaling to affect male fertility under high temperature in cotton. PLANT COMMUNICATIONS 2023; 4:100660. [PMID: 37455428 PMCID: PMC10721488 DOI: 10.1016/j.xplc.2023.100660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
High-temperature (HT) stress causes male sterility in crops, thus decreasing yields. To explore the possible contribution of histone modifications to male fertility under HT conditions, we defined the histone methylation landscape for the marks histone H3 lysine 27 trimethylation (H3K27me3) and histone H3 lysine 4 trimethylation (H3K4me3) by chromatin immunoprecipitation sequencing (ChIP-seq) in two differing upland cotton (Gossypium hirsutum) varieties. We observed a global disruption in H3K4me3 and H3K27me3 modifications, especially H3K27me3, in cotton anthers subjected to HT. HT affected the bivalent H3K4me3-H3K27me3 modification more than either monovalent modification. We determined that removal of H3K27me3 at the promoters of jasmonate-related genes increased their expression, maintaining male fertility under HT in the HT-tolerant variety at the anther dehiscence stage. Modulating jasmonate homeostasis or signaling resulted in an anther indehiscence phenotype under HT. Chemical suppression of H3K27me3 deposition increased jasmonic acid contents and maintained male fertility under HT. In summary, our study provides new insights into the regulation of male fertility by histone modifications under HT and suggests a potential strategy for improving cotton HT tolerance.
Collapse
Affiliation(s)
- Yanlong Li
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Miao Chen
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jing Yang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
| | - Rui Zhang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanhuan Ma
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chunyang Zuo
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yawei Li
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
14
|
Zhang M, Zhang X, Wang R, Zang R, Guo L, Qi T, Tang H, Chen L, Wang H, Qiao X, Wu J, Xing C. Heat-responsive microRNAs participate in regulating the pollen fertility stability of CMS-D2 restorer line under high-temperature stress. Biol Res 2023; 56:58. [PMID: 37941013 PMCID: PMC10634144 DOI: 10.1186/s40659-023-00465-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Anther development and pollen fertility of cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) restorer lines are susceptible to continuous high-temperature (HT) stress in summer, which seriously hinders the large-scale application of "three-line" hybrids in production. Here, integrated small RNA, transcriptome, degradome, and hormone profiling was performed to explore the roles of microRNAs (miRNAs) in regulating fertility stability in mature pollens of isonuclear alloplasmic near-isogenic restorer lines NH and SH under HT stress at two environments. A total of 211 known and 248 novel miRNAs were identified, of which 159 were differentially expressed miRNAs (DEMs). Additionally, 45 DEMs in 39 miRNA clusters (PmCs) were also identified, and most highly expressed miRNAs were significantly induced in SH under extreme HT, especially four MIR482 and six MIR6300 family miRNAs. PmC28 was located in the fine-mapped interval of the Rf1 gene and contained two DEMs, gra-miR482_L-2R + 2 and gma-miR2118a-3p_R + 1_1ss18TG. Transcriptome sequencing identified 6281 differentially expressed genes, of which heat shock protein (HSP)-related genes, such as HSP70, HSP22, HSP18.5-C, HSP18.2 and HSP17.3-B, presented significantly reduced expression levels in SH under HT stress. Through integrating multi-omics data, we constructed a comprehensive molecular network of miRNA-mRNA-gene-KEGG containing 35 pairs of miRNA/target genes involved in regulating the pollen development in response to HT, among which the mtr-miR167a_R + 1, tcc-miR167c and ghr-miR390a, tcc-miR396c_L-1 and ghr-MIR169b-p3_1ss6AG regulated the pollen fertility by influencing ARF8 responsible for the auxin signal transduction, ascorbate and aldarate metabolism, and the sugar and lipid metabolism and transport pathways, respectively. Further combination with hormone analysis revealed that HT-induced jasmonic acid signaling could activate the expression of downstream auxin synthesis-related genes and cause excessive auxin accumulation, followed by a cascade of auxin signal transduction, ultimately resulting in pollen abortion. The results provide a new understanding of how heat-responsive miRNAs regulate the stability of fertility restoration for CMS-D2 cotton under heat stress.
Collapse
Affiliation(s)
- Meng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Ruijie Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Rong Zang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liangliang Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
15
|
Zhang(张宇鹏) Y, Fan G, Toivainen T, Tengs T, Yakovlev I, Krokene P, Hytönen T, Fossdal CG, Grini PE. Warmer temperature during asexual reproduction induce methylome, transcriptomic, and lasting phenotypic changes in Fragaria vesca ecotypes. HORTICULTURE RESEARCH 2023; 10:uhad156. [PMID: 37719273 PMCID: PMC10500154 DOI: 10.1093/hr/uhad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023]
Abstract
Plants must adapt with increasing speed to global warming to maintain their fitness. One rapid adaptation mechanism is epigenetic memory, which may provide organisms sufficient time to adapt to climate change. We studied how the perennial Fragaria vesca adapted to warmer temperatures (28°C vs. 18°C) over three asexual generations. Differences in flowering time, stolon number, and petiole length were induced by warmer temperature in one or more ecotypes after three asexual generations and persisted in a common garden environment. Induced methylome changes differed between the four ecotypes from Norway, Iceland, Italy, and Spain, but shared methylome responses were also identified. Most differentially methylated regions (DMRs) occurred in the CHG context, and most CHG and CHH DMRs were hypermethylated at the warmer temperature. In eight CHG DMR peaks, a highly similar methylation pattern could be observed between ecotypes. On average, 13% of the differentially methylated genes between ecotypes also showed a temperature-induced change in gene expression. We observed ecotype-specific methylation and expression patterns for genes related to gibberellin metabolism, flowering time, and epigenetic mechanisms. Furthermore, we observed a negative correlation with gene expression when repetitive elements were found near (±2 kb) or inside genes. In conclusion, lasting phenotypic changes indicative of an epigenetic memory were induced by warmer temperature and were accompanied by changes in DNA methylation patterns. Both shared methylation patterns and transcriptome differences between F. vesca accessions were observed, indicating that DNA methylation may be involved in both general and ecotype-specific phenotypic variation.
Collapse
Affiliation(s)
- YuPeng Zhang(张宇鹏)
- EVOGENE, Department of Biosciences, University of Oslo, 0313 Oslo, Norway
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Guangxun Fan
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Tuomas Toivainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Torstein Tengs
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Igor Yakovlev
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Paal Krokene
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Carl Gunnar Fossdal
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Paul E. Grini
- EVOGENE, Department of Biosciences, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
16
|
Zhang YX, Wang XF, Niu YQ, Wang YG, Zhang WJ, Song ZP, Yang J, Li LF. Evolutionary roles of polyploidization-derived structural variations in the phenotypic diversification of Panax species. Mol Ecol 2023; 32:4999-5012. [PMID: 37525516 DOI: 10.1111/mec.17088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
Genomic structural variations (SVs) are widespread in plant and animal genomes and play important roles in phenotypic novelty and species adaptation. Frequent whole genome duplications followed by (re)diploidizations have resulted in high diversity of genome architecture among extant species. In this study, we identified abundant genomic SVs in the Panax genus that are hypothesized to have occurred through during the repeated polyploidizations/(re)diploidizations. Our genome-wide comparisons demonstrated that although these polyploidization-derived SVs have evolved at distinct evolutionary stages, a large number of SV-intersecting genes showed enrichment in functionally important pathways related to secondary metabolites, photosynthesis and basic cellular activities. In line with these observations, our metabolic analyses of these Panax species revealed high diversity of primary and secondary metabolites both at the tissue and interspecific levels. In particular, genomic SVs identified at ginsenoside biosynthesis genes, including copy number variation and large fragment deletion, appear to have played important roles in the evolution and diversification of ginsenosides. A further herbivore deterrence experiment demonstrated that, as major triterpenoidal saponins found exclusively in Panax, ginsenosides provide protection against insect herbivores. Our study provides new insights on how polyploidization-derived SVs have contributed to phenotypic novelty and plant adaptation.
Collapse
Affiliation(s)
- Yu-Xin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin-Feng Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Qian Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Guo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Ju Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhi-Ping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin-Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Kong W, Zhu Q, Zhang Q, Zhu Y, Yang J, Chai K, Lei W, Jiang M, Zhang S, Lin J, Zhang X. 5mC DNA methylation modification-mediated regulation in tissue functional differentiation and important flavor substance synthesis of tea plant ( Camellia sinensis L.). HORTICULTURE RESEARCH 2023; 10:uhad126. [PMID: 37560013 PMCID: PMC10407603 DOI: 10.1093/hr/uhad126] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/05/2023] [Indexed: 08/11/2023]
Abstract
In plants, 5mC DNA methylation is an important and conserved epistatic mark involving genomic stability, gene transcriptional regulation, developmental regulation, abiotic stress response, metabolite synthesis, etc. However, the roles of 5mC DNA methylation modification (5mC methylation) in tea plant growth and development (in pre-harvest processing) and flavor substance synthesis in pre- and post-harvest processing are unknown. We therefore conducted a comprehensive methylation analysis of four key pre-harvest tissues (root, leaf, flower, and fruit) and two processed leaves during oolong tea post-harvest processing. We found that differential 5mC methylation among four key tissues is closely related to tissue functional differentiation and that genes expressed tissue-specifically, responsible for tissue-specific functions, maintain relatively low 5mC methylation levels relative to non-tissue-specifically expressed genes. Importantly, hypomethylation modifications of CsAlaDC and TS/GS genes in roots provided the molecular basis for the dominant synthesis of theanine in roots. In addition, integration of 5mC DNA methylationomics, metabolomics, and transcriptomics of post-harvest leaves revealed that content changes in flavor metabolites during oolong tea processing were closely associated with transcription level changes in corresponding metabolite synthesis genes, and changes in transcript levels of these important synthesis genes were strictly regulated by 5mC methylation. We further report that some key genes during processing are regulated by 5mC methylation, which can effectively explain the content changes of important aroma metabolites, including α-farnesene, nerolidol, lipids, and taste substances such as catechins. Our results not only highlight the key roles of 5mC methylation in important flavor substance synthesis in pre- and post-harvest processing, but also provide epimutation-related gene targets for future improvement of tea quality or breeding of whole-tissue high-theanine varieties.
Collapse
Affiliation(s)
- Weilong Kong
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qing Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Yiwang Zhu
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Jingjing Yang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Kun Chai
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Wenlong Lei
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Mengwei Jiang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Shengcheng Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| |
Collapse
|
18
|
Panchal A, Maurya J, Seni S, Singh RK, Prasad M. An insight into the roles of regulatory ncRNAs in plants: An abiotic stress and developmental perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107823. [PMID: 37327647 DOI: 10.1016/j.plaphy.2023.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/29/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
Different environmental cues lead to changes in physiology, biochemistry and molecular status of plant's growth. Till date, various genes have been accounted for their role in regulating plant development and response to abiotic stress. Excluding genes that code for a functional protein in a cell, a large chunk of the eukaryotic transcriptome consists of non-coding RNAs (ncRNAs) which lack protein coding capacity but are still functional. Recent advancements in Next Generation Sequencing (NGS) technology have led to the unearthing of different types of small and large non-coding RNAs in plants. Non-coding RNAs are broadly categorised into housekeeping ncRNAs and regulatory ncRNAs which work at transcriptional, post-transcriptional and epigenetic levels. Diverse ncRNAs play different regulatory roles in nearly all biological processes including growth, development and response to changing environments. This response can be perceived and counteracted by plants using diverse evolutionarily conserved ncRNAs like miRNAs, siRNAs and lncRNAs to participate in complex molecular regimes by activating gene-ncRNA-mRNA regulatory modules to perform the downstream function. Here, we review the current understanding with a focus on recent advancements in the functional studies of the regulatory ncRNAs at the nexus of abiotic stresses and development. Also, the potential roles of ncRNAs in imparting abiotic stress tolerance and yield improvement in crop plants are also discussed with their future prospects.
Collapse
Affiliation(s)
- Anurag Panchal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Jyoti Maurya
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Sushmita Seni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
19
|
Khan AH, Min L, Ma Y, Zeeshan M, Jin S, Zhang X. High-temperature stress in crops: male sterility, yield loss and potential remedy approaches. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:680-697. [PMID: 36221230 PMCID: PMC10037161 DOI: 10.1111/pbi.13946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 05/16/2023]
Abstract
Global food security is one of the utmost essential challenges in the 21st century in providing enough food for the growing population while coping with the already stressed environment. High temperature (HT) is one of the main factors affecting plant growth, development and reproduction and causes male sterility in plants. In male reproductive tissues, metabolic changes induced by HT involve carbohydrates, lipids, hormones, epigenetics and reactive oxygen species, leading to male sterility and ultimately reducing yield. Understanding the mechanism and genes involved in these pathways during the HT stress response will provide a new path to improve crops by using molecular breeding and biotechnological approaches. Moreover, this review provides insight into male sterility and integrates this with suggested strategies to enhance crop tolerance under HT stress conditions at the reproductive stage.
Collapse
Affiliation(s)
- Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Muhammad Zeeshan
- Guangxi Key Laboratory for Agro‐Environment and Agro‐Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of AgricultureGuanxi UniversityNanningChina
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
20
|
Li B, Wei A, Tong X, Han Y, Liu N, Chen Z, Yang H, Wu H, Lv M, Wang NN, Du S. A Genome-Wide Association Study to Identify Novel Candidate Genes Related to Low-Nitrogen Tolerance in Cucumber (Cucumis sativus L.). Genes (Basel) 2023; 14:genes14030662. [PMID: 36980933 PMCID: PMC10048605 DOI: 10.3390/genes14030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Cucumber is one of the most important vegetables, and nitrogen is essential for the growth and fruit production of cucumbers. It is crucial to develop cultivars with nitrogen limitation tolerance or high nitrogen efficiency for green and efficient development in cucumber industry. To reveal the genetic basis of cucumber response to nitrogen starvation, a genome-wide association study (GWAS) was conducted on a collection of a genetically diverse population of cucumber (Cucumis sativus L.) comprising 88 inbred and DH accessions including the North China type, the Eurasian type, the Japanese and South China type mixed subtype, and the South China type subtype. Phenotypic evaluation of six traits under control (14 mM) and treatment (3.5 mM) N conditions depicted the presence of broad natural variation in the studied population. The GWAS results showed that there were significant differences in the population for nitrogen limitation treatment. Nine significant loci were identified corresponding to six LD blocks, three of which overlapped. Sixteen genes were selected by GO annotation associated with nitrogen. Five low-nitrogen stress tolerance genes were finally identified by gene haplotype analysis: CsaV3_3G003630 (CsNRPD1), CsaV3_3G002970 (CsNRT1.1), CsaV3_4G030260 (CsSnRK2.5), CsaV3_4G026940, and CsaV3_3G011820 (CsNPF5.2). Taken together, the experimental data and identification of candidate genes presented in this study offer valuable insights and serve as a useful reference for the genetic enhancement of nitrogen limitation tolerance in cucumbers.
Collapse
Affiliation(s)
- Bowen Li
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Aimin Wei
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Xueqiang Tong
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Yike Han
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Nan Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Zhengwu Chen
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Hongyu Yang
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Huaxiang Wu
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Mingjie Lv
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300061, China
| | - Ning Ning Wang
- College of Life Science, Nankai University, Tianjin 300071, China
- College of Agricultural Science, Nankai University, Tianjin 300071, China
| | - Shengli Du
- College of Life Science, Nankai University, Tianjin 300071, China
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
- Correspondence:
| |
Collapse
|
21
|
Pazzaglia J, Dattolo E, Ruocco M, Santillán-Sarmiento A, Marin-Guirao L, Procaccini G. DNA methylation dynamics in a coastal foundation seagrass species under abiotic stressors. Proc Biol Sci 2023; 290:20222197. [PMID: 36651048 PMCID: PMC9845983 DOI: 10.1098/rspb.2022.2197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
DNA methylation (DNAm) has been intensively studied in terrestrial plants in response to environmental changes, but its dynamic changes in a temporal scale remain unexplored in marine plants. The seagrass Posidonia oceanica ranks among the slowest-growing and longest-living plants on Earth, and is particularly vulnerable to sea warming and local anthropogenic pressures. Here, we analysed the dynamics of DNAm changes in plants collected from coastal areas differentially impacted by eutrophication (i.e. oligotrophic, Ol; eutrophic, Eu) and exposed to abiotic stressors (nutrients, temperature increase and their combination). Levels of global DNAm (% 5-mC) and the expression of key genes involved in DNAm were assessed after one, two and five weeks of exposure. Results revealed a clear differentiation between plants, depending on environmental stimuli, time of exposure and plants' origin. % 5-mC levels were higher during the initial stress exposure especially in Ol plants, which upregulated almost all genes involved in DNAm. Contrarily, Eu plants showed lower expression levels, which increased under chronic exposure to stressors, particularly to temperature. These findings show that DNAm is dynamic in P. oceanica during stress exposure and underlined that environmental epigenetic variations could be implicated in the regulation of acclimation and phenotypic differences depending on local conditions.
Collapse
Affiliation(s)
- Jessica Pazzaglia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Alex Santillán-Sarmiento
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
- Faculty of Engineering, National University of Chimborazo, Riobamba, Ecuador
| | - Lazaro Marin-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
- Seagrass Ecology Group, Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Murcia, Spain
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| |
Collapse
|
22
|
Yan Y, Li C, Liu Z, Zhuang JJ, Kong JR, Yang ZK, Yu J, Shah Alam M, Ruan CC, Zhang HM, Xu JH. A new demethylase gene, OsDML4, is involved in high temperature-increased grain chalkiness in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7273-7284. [PMID: 36073837 DOI: 10.1093/jxb/erac367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
High temperature (HT) can affect the accumulation of seed storage materials and cause adverse effects on the yield and quality of rice. DNA methylation plays an important role in plant growth and development. Here, we identified a new demethylase gene OsDML4 and discovered its function in cytosine demethylation to affect endosperm formation. Loss of function of OsDML4 induced chalky endosperm only under HT and dramatically reduced the transcription and accumulation of glutelins and 16 kDa prolamin. The expression of two transcription factor genes RISBZ1 and RPBF was significantly decreased in the osdml4 mutants, which caused adverse effects on the formation of protein bodies (PBs) with greatly decreased PB-II number, and incomplete and abnormally shaped PB-IIs. Whole-genome bisulfite sequencing analysis of seeds at 15 d after pollination revealed much higher global methylation levels of CG, CHG, and CHH contexts in the osdml4 mutants compared with the wild type. Moreover, the RISBZ1 promoter was hypermethylated but the RPBF promoter was almost unchanged under HT. No significant difference was detected between the wild type and osdml4 mutants under normal temperature. Our study demonstrated a novel OsDML4-mediated DNA methylation involved in the formation of chalky endosperm only under HT and provided a new perspective in regulating endosperm development and the accumulation of seed storage proteins in rice.
Collapse
Affiliation(s)
- Yan Yan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chao Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong 276034, China
| | - Zhen Liu
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Jun-Jie Zhuang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jia-Rui Kong
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Kun Yang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jie Yu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Mohammad Shah Alam
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Cheng-Cheng Ruan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Heng-Mu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong 276034, China
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
23
|
Liu Y, Wang J, Liu B, Xu ZY. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2252-2274. [PMID: 36149776 DOI: 10.1111/jipb.13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
24
|
Ding Y, Zou LH, Wu J, Ramakrishnan M, Gao Y, Zhao L, Zhou M. The pattern of DNA methylation alteration, and its association with the expression changes of non-coding RNAs and mRNAs in Moso bamboo under abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111451. [PMID: 36075278 DOI: 10.1016/j.plantsci.2022.111451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic changes play an important role in plant growth and development and in stress response. However, DNA methylation pattern and its relationship with the expression changes of non-coding RNAs and mRNAs of Moso bamboo in response to abiotic stress is still largely unknown. In this work, we used whole-genome bisulfite sequencing in combination with whole-transcriptome sequencing to analyze the DNA methylation and transcription patterns of mRNAs and non-coding RNAs in Moso bamboo under abiotic stresses such as cold, heat, ultraviolet (UV) and salinity. We found that CHH methylation in the promoter region was positively correlated with gene expression, while CHG and CHH methylations in the gene body regions were negatively associated with gene expression. Moreover, CG and CHG methylations in the promoter regions were negatively correlated with the transcript abundance of long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs). Similarly, the methylation levels of three contexts in the genic regions were negatively correlated with the transcript abundance of lncRNAs and miRNAs but positively correlated with that of circRNAs. In addition, we suggested that the reduction of 21-nt and 24-nt small interfering RNA (siRNA) expression tended to increase methylation levels in the genic regions. We found that stress-responsive genes such as CRPK1, HSFB2A and CIPK were differentially methylated and expressed. Our results also proposed that DNA methylation may regulate the expression of the transcription factors (TFs) and plant hormone signalling genes such as IAA9, MYC2 and ERF110 in response to abiotic stress. This study firstly reports the abiotic stress-responsive DNA methylation pattern and its involvement of expression of coding RNAs and non-coding RNAs in Moso bamboo. The results expand the knowledge of epigenetic mechanisms in Moso bamboo under abiotic stress and support in-depth deciphering of the function of specific non-coding RNAs in future studies.
Collapse
Affiliation(s)
- Yiqian Ding
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Long-Hai Zou
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| | - Jiajun Wu
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Muthusamy Ramakrishnan
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yubang Gao
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Liangzhen Zhao
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China; Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingbing Zhou
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| |
Collapse
|
25
|
Shi M, Wang C, Wang P, Zhang M, Liao W. Methylation in DNA, histone, and RNA during flowering under stress condition: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111431. [PMID: 36028071 DOI: 10.1016/j.plantsci.2022.111431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Flowering is the most critical transition period in the whole lifecycle of plants, and it is a highly sensitive period to stress. New combinations of temperature, drought stress, carbon dioxide and other abiotic/biotic conditions resulting from contemporary climate change affect the flowering process. Plants have evolved several strategies to deal with environmental stresses, including epigenetic modifications. Numerous studies show that environmental stresses trigger methylation/demethylation during flowering to preserve/accelerate plant lifecycle. What's more, histone and DNA methylation can be induced to respond to stresses, resulting in changes of flowering gene expression and enhancing stress tolerance in plants. Furthermore, RNA methylation may influence stress-regulated flowering by regulating mRNA stability and antioxidant mechanism. Our review presents the involvement of methylation in stress-repressed and stress-induced flowering. The crosstalk between methylation and small RNAs, phytohormones and exogenous substances (such as salicylic acid, nitric oxide) during flowering under different stresses were discussed. The latest regulatory evidence of RNA methylation in stress-regulated flowering was collected for the first time. Meanwhile, the limited evidences of methylation in biotic stress-induced flowering were summarized. Thus, the review provides insights into understanding of methylation mechanism in stress-regulated flowering and makes use for the development of regulating plant flowering at epigenetic level in the future.
Collapse
Affiliation(s)
- Meimei Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Meiling Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
26
|
Zhang Y, Zhou Y, Zhu W, Liu J, Cheng F. Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:965745. [PMID: 36311129 PMCID: PMC9597485 DOI: 10.3389/fpls.2022.965745] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/26/2022] [Indexed: 05/24/2023]
Abstract
To survive in adverse environmental conditions, plants have evolved sophisticated genetic and epigenetic regulatory mechanisms to balance their growth and abiotic stress tolerance. An increasing number of non-coding RNAs (ncRNAs), including small RNAs (sRNAs) and long non-coding RNAs (lncRNAs) have been identified as essential regulators which enable plants to coordinate multiple aspects of growth and responses to environmental stresses through modulating the expression of target genes at both the transcriptional and posttranscriptional levels. In this review, we summarize recent advances in understanding ncRNAs-mediated prioritization towards plant growth or tolerance to abiotic stresses, especially to cold, heat, drought and salt stresses. We highlight the diverse roles of evolutionally conserved microRNAs (miRNAs) and small interfering RNAs (siRNAs), and the underlying phytohormone-based signaling crosstalk in regulating the balance between plant growth and abiotic stress tolerance. We also review current discoveries regarding the potential roles of ncRNAs in stress memory in plants, which offer their descendants the potential for better fitness. Future ncRNAs-based breeding strategies are proposed to optimize the balance between growth and stress tolerance to maximize crop yield under the changing climate.
Collapse
Affiliation(s)
- Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ye Zhou
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fang Cheng
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
27
|
Yang Z, Yan H, Wang J, Nie G, Feng G, Xu X, Li D, Huang L, Zhang X. DNA hypermethylation promotes the flowering of orchardgrass during vernalization. PLANT PHYSIOLOGY 2022; 190:1490-1505. [PMID: 35861426 PMCID: PMC9516772 DOI: 10.1093/plphys/kiac335] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Vernalization, influenced by environmental factors, is an essential process associated with the productivity of temperate crops, during which epigenetic regulation of gene expression plays an important role. Although DNA methylation is one of the major epigenetic mechanisms associated with the control of gene expression, global changes in DNA methylation in the regulation of gene expression during vernalization-induced flowering of temperate plants remain largely undetermined. To characterize vernalization-associated DNA methylation dynamics, we performed whole-genome bisulfite-treated sequencing and transcriptome sequencing in orchardgrass (Dactylis glomerata) during vernalization. The results revealed that increased levels of genome DNA methylation during the early vernalization of orchardgrass were associated with transcriptional changes in DNA methyltransferase and demethylase genes. Upregulated expression of vernalization-related genes during early vernalization was attributable to an increase in mCHH in the promoter regions of these genes. Application of an exogenous DNA methylation accelerator or overexpression of orchardgrass NUCLEAR POLY(A) POLYMERASE (DgPAPS4) promoted earlier flowering, indicating that DNA hypermethylation plays an important role in vernalization-induced flowering. Collectively, our findings revealed that vernalization-induced hypermethylation is responsible for floral primordium initiation and development. These observations provide a theoretical foundation for further studies on the molecular mechanisms underlying the control of vernalization in temperate grasses.
Collapse
Affiliation(s)
| | | | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, Florida 32611, USA
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dandan Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | | | | |
Collapse
|
28
|
Hou Q, Zhang T, Qi Y, Dong Z, Wan X. Epigenetic Dynamics and Regulation of Plant Male Reproduction. Int J Mol Sci 2022; 23:ijms231810420. [PMID: 36142333 PMCID: PMC9499625 DOI: 10.3390/ijms231810420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Flowering plant male germlines develop within anthers and undergo epigenetic reprogramming with dynamic changes in DNA methylation, chromatin modifications, and small RNAs. Profiling the epigenetic status using different technologies has substantially accumulated information on specific types of cells at different stages of male reproduction. Many epigenetically related genes involved in plant gametophyte development have been identified, and the mutation of these genes often leads to male sterility. Here, we review the recent progress on dynamic epigenetic changes during pollen mother cell differentiation, microsporogenesis, microgametogenesis, and tapetal cell development. The reported epigenetic variations between male fertile and sterile lines are summarized. We also summarize the epigenetic regulation-associated male sterility genes and discuss how epigenetic mechanisms in plant male reproduction can be further revealed.
Collapse
|
29
|
Molecular and epigenetic basis of heat stress responses and acclimatization in plants. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Li Y, Li Y, Su Q, Wu Y, Zhang R, Li Y, Ma Y, Ma H, Guo X, Zhu L, Min L, Zhang X. High temperature induces male sterility via MYB66-MYB4-Casein kinase I signaling in cotton. PLANT PHYSIOLOGY 2022; 189:2091-2109. [PMID: 35522025 PMCID: PMC9342968 DOI: 10.1093/plphys/kiac213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
High temperature (HT) causes male sterility and decreases crop yields. Our previous works have demonstrated that sugar and auxin signaling pathways, Gossypium hirsutum Casein kinase I (GhCKI), and DNA methylation are all involved in HT-induced male sterility in cotton. However, the signaling mechanisms leading to distinct GhCKI expression patterns induced by HT between HT-tolerant and HT-sensitive cotton anthers remain largely unknown. Here, we identified a GhCKI promoter (ProGhCKI) region that functions in response to HT in anthers and found the transcription factor GhMYB4 binds to this region to act as an upstream positive regulator of GhCKI. In the tapetum of early-stage cotton anthers, upregulated expression of GhMYB4 under HT and overexpressed GhMYB4 under normal temperature both led to severe male sterility phenotypes, coupled with enhanced expression of GhCKI. We also found that GhMYB4 interacts with GhMYB66 to form a heterodimer to enhance its binding to ProGhCKI. However, GhMYB66 showed an expression pattern similar to GhMYB4 under HT but did not directly bind to ProGhCKI. Furthermore, HT reduced siRNA-mediated CHH DNA methylations in the GhMYB4 promoter, which enhanced the expression of GhMYB4 in tetrad stage anthers and promoted the formation of the GhMYB4/GhMYB66 heterodimer, which in turn elevated the transcription of GhCKI in the tapetum, leading to male sterility. Overall, we shed light on the GhMYB66-GhMYB4-GhCKI regulatory pathway in response to HT in cotton anthers.
Collapse
Affiliation(s)
| | | | - Qian Su
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Rui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yawei Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanhuan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiaoping Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
31
|
A review on CRISPR/Cas-based epigenetic regulation in plants. Int J Biol Macromol 2022; 219:1261-1271. [DOI: 10.1016/j.ijbiomac.2022.08.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/13/2022] [Accepted: 08/29/2022] [Indexed: 01/09/2023]
|
32
|
Integrated Analysis of Microarray, Small RNA, and Degradome Datasets Uncovers the Role of MicroRNAs in Temperature-Sensitive Genic Male Sterility in Wheat. Int J Mol Sci 2022; 23:ijms23158057. [PMID: 35897633 PMCID: PMC9332412 DOI: 10.3390/ijms23158057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/10/2022] [Accepted: 07/17/2022] [Indexed: 01/27/2023] Open
Abstract
Temperature-sensitive genic male sterile (TGMS) line Beijing Sterility 366 (BS366) has been utilized in hybrid breeding for a long time, but the molecular mechanism underlying male sterility remains unclear. Expression arrays, small RNA, and degradome sequencing were used in this study to explore the potential role of miRNA in the cold-induced male sterility of BS366. Microspore observation showed defective cell plates in dyads and tetrads and shrunken microspores at the vacuolated stage. Differential regulation of Golgi vesicle transport, phragmoplast formation, sporopollenin biosynthesis, pollen exine formation, and lipid metabolism were observed between cold and control conditions. Pollen development was significantly represented in the 352 antagonistic miRNA-target pairs in the integrated analysis of miRNA and mRNA profiles. The specific cleavage of ARF17 and TIR1 by miR160 and miR393 were found in the cold-treated BS366 degradome, respectively. Thus, the cold-mediated miRNAs impaired cell plate formation through repression of Golgi vesicle transport and phragmoplast formation. The repressed expression of ARF17 and TIR1 impaired pollen exine formation. The results of this study will contribute to our understanding of the roles of miRNAs in male sterility in wheat.
Collapse
|
33
|
Kong C, Su H, Deng S, Ji J, Wang Y, Zhang Y, Yang L, Fang Z, Lv H. Global DNA Methylation and mRNA-miRNA Variations Activated by Heat Shock Boost Early Microspore Embryogenesis in Cabbage ( Brassica oleracea). Int J Mol Sci 2022; 23:5147. [PMID: 35563550 PMCID: PMC9103256 DOI: 10.3390/ijms23095147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/05/2022] Open
Abstract
Microspore culture, a type of haploid breeding, is extensively used in the cultivation of cruciferous crops such as cabbage. Heat shock (HS) treatment is essential to improve the embryo rate during the culture process; however, its molecular role in boosting early microspore embryogenesis (ME) remains unknown. Here we combined DNA methylation levels, miRNAs, and transcriptome profiles in isolated microspores of cabbage '01-88' under HS (32 °C for 24 h) and normal temperature (25 °C for 24 h) to investigate the regulatory roles of DNA methylation and miRNA in early ME. Global methylation levels were significantly different in the two pre-treatments, and 508 differentially methylated regions (DMRs) were identified; 59.92% of DMRs were correlated with transcripts, and 39.43% of miRNA locus were associated with methylation levels. Significantly, the association analysis revealed that 31 differentially expressed genes (DEGs) were targeted by methylation and miRNA and were mainly involved in the reactive oxygen species (ROS) response and abscisic acid (ABA) signaling, indicating that HS induced DNA methylation, and miRNA might affect ME by influencing ROS and ABA. This study revealed that DNA methylation and miRNA interfered with ME by modulating key genes and pathways, which could broaden our understanding of the molecular regulation of ME induced by HS pre-treatment.
Collapse
Affiliation(s)
- Congcong Kong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Henan Su
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Siping Deng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| |
Collapse
|
34
|
Saha D, Shaw AK, Datta S, Mitra J, Kar G. DNA hypomethylation is the plausible driver of heat stress adaptation in Linum usitatissimum. PHYSIOLOGIA PLANTARUM 2022; 174:e13689. [PMID: 35462427 DOI: 10.1111/ppl.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Heat stress has a significant impact on the climatic adaptation of flax, a cool-season economic crop. Genome-wide DNA methylation patterns are crucial for understanding how flax cultivars respond to heat adversities. It is worth noting that the DNA methylome in flax has yet to be investigated at the nucleotide level. Although heat stress above 40°C caused oxidative damage in flax leaves, 5-azacytidine, a hypomethylating agent, reduced this effect by 15%-24%. Differences in the expression of the LuMET1 (DNA methyltransferase) gene suggested that DNA methylation/demethylation may play a major role in the flax heat stress response. Thus, whole-genome bisulfite sequencing-derived DNA methylation profiles in flax, with or without heat stress and 5-azaC, were developed and analyzed here. In response to heat stress, a high percentage of significant differentially methylated regions (DMRs), particularly hypomethylated DMRs, were identified in the CHH nucleotide sequence context (H = A/T/C). Some of these DMRs overlapped with transposable element insertions. The majority of DMRs were discovered in intergenic regions, but several DMR loci were also found near genes relevant to heat stress response and epigenetic processes. These DMRs, in particular, are linked to CpG islands, implying a possible role in promoter methylation and gene silencing. The DMRs discovered in this study are crucial for understanding and identifying the key players in heat stress response in flax, which will help in developing climate-smart flax varieties.
Collapse
Affiliation(s)
- Dipnarayan Saha
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, India
| | - Arun Kumar Shaw
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, India
| | - Subhojit Datta
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, India
| | - Jiban Mitra
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, India
| | - Gouranga Kar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, India
| |
Collapse
|
35
|
You J, Li M, Li H, Bai Y, Zhu X, Kong X, Chen X, Zhou R. Integrated Methylome and Transcriptome Analysis Widen the Knowledge of Cytoplasmic Male Sterility in Cotton ( Gossypium barbadense L.). FRONTIERS IN PLANT SCIENCE 2022; 13:770098. [PMID: 35574131 PMCID: PMC9093596 DOI: 10.3389/fpls.2022.770098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
DNA methylation is defined as a conserved epigenetic modification mechanism that plays a key role in maintaining normal gene expression without altering the DNA sequence. Several studies have reported that altered methylation patterns were associated with male sterility in some plants such as rice and wheat, but global methylation profiles and their possible roles in cytoplasmic male sterility (CMS), especially in cotton near-isogenic lines, remain unclear. In this study, bisulfite sequencing technology and RNA-Seq were used to investigate CMS line 07-113A and its near-isogenic line 07-113B. Using integrated methylome and transcriptome analyses, we found that the number of hypermethylated genes in the differentially methylated regions, whether in the promoter region or in the gene region, was more in 07-113A than the number in 07-113B. The data indicated that 07-113A was more susceptible to methylation. In order to further analyze the regulatory network of male sterility, transcriptome sequencing and DNA methylation group data were used to compare the characteristics of near-isogenic lines 07-113A and 07-113B in cotton during the abortion stage. Combined methylation and transcriptome analysis showed that differentially expressed methylated genes were mainly concentrated in vital metabolic pathways including the starch and sucrose metabolism pathways and galactose metabolism. And there was a negative correlation between gene methylation and gene expression. In addition, five key genes that may be associated with CMS in cotton were identified. These data will support further understanding of the effect of DNA methylation on gene expression and their potential roles in cotton CMS.
Collapse
Affiliation(s)
- Jingyi You
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Min Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Hongwei Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Yulin Bai
- Xinjiang Yida Textile Co., Ltd, Urumqi, China
| | - Xuan Zhu
- Dali Bai Autonomous Prefecture Agricultural Science Extension Institute, Dali, China
| | - Xiangjun Kong
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaoyan Chen
- Dali Bai Autonomous Prefecture Agricultural Science Extension Institute, Dali, China
| | - Ruiyang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
36
|
Tan Z, Shi J, Lv R, Li Q, Yang J, Ma Y, Li Y, Wu Y, Zhang R, Ma H, Li Y, Zhu L, Zhu L, Zhang X, Kong J, Yang W, Min L. Fast anther dehiscence status recognition system established by deep learning to screen heat tolerant cotton. PLANT METHODS 2022; 18:53. [PMID: 35449108 PMCID: PMC9026675 DOI: 10.1186/s13007-022-00884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND From an economic perspective, cotton is one of the most important crops in the world. The fertility of male reproductive organs is a key determinant of cotton yield. Anther dehiscence or indehiscence directly determines the probability of fertilization in cotton. Thus, rapid and accurate identification of cotton anther dehiscence status is important for judging anther growth status and promoting genetic breeding research. The development of computer vision technology and the advent of big data have prompted the application of deep learning techniques to agricultural phenotype research. Therefore, two deep learning models (Faster R-CNN and YOLOv5) were proposed to detect the number and dehiscence status of anthers. RESULT The single-stage model based on YOLOv5 has higher recognition speed and the ability to deploy to the mobile end. Breeding researchers can apply this model to terminals to achieve a more intuitive understanding of cotton anther dehiscence status. Moreover, three improvement strategies are proposed for the Faster R-CNN model, where the improved model has higher detection accuracy than the YOLOv5 model. We have made three improvements to the Faster R-CNN model and after the ensemble of the three models and original Faster R-CNN model, R2 of "open" reaches to 0.8765, R2 of "close" reaches to 0.8539, R2 of "all" reaches to 0.8481, higher than the prediction results of either model alone, which are completely able to replace the manual counting results. We can use this model to quickly extract the dehiscence rate of cotton anthers under high temperature (HT) conditions. In addition, the percentage of dehiscent anthers of 30 randomly selected cotton varieties were observed from the cotton population under normal conditions and HT conditions through the ensemble of the Faster R-CNN model and manual counting. The results show that HT decreased the percentage of dehiscent anthers in different cotton lines, consistent with the manual method. CONCLUSIONS Deep learning technology have been applied to cotton anther dehiscence status recognition instead of manual methods for the first time to quickly screen HT-tolerant cotton varieties. Deep learning can help to explore the key genetic improvement genes in the future, promoting cotton breeding and improvement.
Collapse
Affiliation(s)
- Zhihao Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jiawei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rongjie Lv
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qingyuan Li
- Forestry and Fruit Tree Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, 430075, China
| | - Jing Yang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yanlong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huanhuan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yawei Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China.
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
37
|
Yadav NS, Titov V, Ayemere I, Byeon B, Ilnytskyy Y, Kovalchuk I. Multigenerational Exposure to Heat Stress Induces Phenotypic Resilience, and Genetic and Epigenetic Variations in Arabidopsis thaliana Offspring. FRONTIERS IN PLANT SCIENCE 2022; 13:728167. [PMID: 35419019 PMCID: PMC8996174 DOI: 10.3389/fpls.2022.728167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Plants are sedentary organisms that constantly sense changes in their environment and react to various environmental cues. On a short-time scale, plants respond through alterations in their physiology, and on a long-time scale, plants alter their development and pass on the memory of stress to the progeny. The latter is controlled genetically and epigenetically and allows the progeny to be primed for future stress encounters, thus increasing the likelihood of survival. The current study intended to explore the effects of multigenerational heat stress in Arabidopsis thaliana. Twenty-five generations of Arabidopsis thaliana were propagated in the presence of heat stress. The multigenerational stressed lineage F25H exhibited a higher tolerance to heat stress and elevated frequency of homologous recombination, as compared to the parallel control progeny F25C. A comparison of genomic sequences revealed that the F25H lineage had a three-fold higher number of mutations [single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs)] as compared control lineages, suggesting that heat stress induced genetic variations in the heat-stressed progeny. The F25H stressed progeny showed a 7-fold higher number of non-synonymous mutations than the F25C line. Methylome analysis revealed that the F25H stressed progeny showed a lower global methylation level in the CHH context than the control progeny. The F25H and F25C lineages were different from the parental control lineage F2C by 66,491 and 80,464 differentially methylated positions (DMPs), respectively. F25H stressed progeny displayed higher frequency of methylation changes in the gene body and lower in the body of transposable elements (TEs). Gene Ontology analysis revealed that CG-DMRs were enriched in processes such as response to abiotic and biotic stimulus, cell organizations and biogenesis, and DNA or RNA metabolism. Hierarchical clustering of these epimutations separated the heat stressed and control parental progenies into distinct groups which revealed the non-random nature of epimutations. We observed an overall higher number of epigenetic variations than genetic variations in all comparison groups, indicating that epigenetic variations are more prevalent than genetic variations. The largest difference in epigenetic and genetic variations was observed between control plants comparison (F25C vs. F2C), which clearly indicated that the spontaneous nature of epigenetic variations and heat-inducible nature of genetic variations. Overall, our study showed that progenies derived from multigenerational heat stress displayed a notable adaption in context of phenotypic, genotypic and epigenotypic resilience.
Collapse
|
38
|
Rapid Identification of Pollen- and Anther-Specific Genes in Response to High-Temperature Stress Based on Transcriptome Profiling Analysis in Cotton. Int J Mol Sci 2022; 23:ijms23063378. [PMID: 35328797 PMCID: PMC8954629 DOI: 10.3390/ijms23063378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
Anther indehiscence and pollen sterility caused by high temperature (HT) stress have become a major problem that decreases the yield of cotton. Pollen- and anther-specific genes play a critical role in the process of male reproduction and the response to HT stress. In order to identify pollen-specific genes that respond to HT stress, a comparative transcriptome profiling analysis was performed in the pollen and anthers of Gossypium hirsutum HT-sensitive Line H05 against other tissue types under normal temperature (NT) conditions, and the analysis of a differentially expressed gene was conducted in the pollen of H05 under NT and HT conditions. In total, we identified 1111 pollen-specific genes (PSGs), 1066 anther-specific genes (ASGs), and 833 pollen differentially expressed genes (DEGs). Moreover, we found that the late stage of anther included more anther- and pollen-specific genes (APSGs). Stress-related cis-regulatory elements (CREs) and hormone-responsive CREs are enriched in the promoters of APSGs, suggesting that APSGs may respond to HT stress. However, 833 pollen DEGs had only 10 common genes with 1111 PSGs, indicating that PSGs are mainly involved in the processes of pollen development and do not respond to HT stress. Promoters of these 10 common genes are enriched for stress-related CREs and MeJA-responsive CREs, suggesting that these 10 common genes are involved in the process of pollen development while responding to HT stress. This study provides a pathway for rapidly identifying cotton pollen-specific genes that respond to HT stress.
Collapse
|
39
|
Chen C, Wang M, Zhu J, Tang Y, Zhang H, Zhao Q, Jing M, Chen Y, Xu X, Jiang J, Shen Z. Long-term effect of epigenetic modification in plant-microbe interactions: modification of DNA methylation induced by plant growth-promoting bacteria mediates promotion process. MICROBIOME 2022; 10:36. [PMID: 35209943 PMCID: PMC8876431 DOI: 10.1186/s40168-022-01236-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 01/23/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Soil microbiomes are considered a cornerstone of the next green revolution, and plant growth-promoting bacteria (PGPB) are critical for microbiome engineering. However, taking plant-beneficial microorganisms from discovery to agricultural application remains challenging, as the mechanisms underlying the interactions between beneficial strains and plants in native soils are still largely unknown. Increasing numbers of studies have indicated that strains introduced to manipulate microbiomes are usually eliminated in soils, while others have reported that application of PGPB as inocula significantly improves plant growth. This contradiction suggests the need for a deeper understanding of the mechanisms underlying microbe-induced growth promotion. RESULTS We showed PGPB-induced long-term plant growth promotion after elimination of the PGPB inoculum in soils and explored the three-way interactions among the exogenous inoculum, indigenous microbiome, and plant, which were key elements of the plant growth-promoting process. We found the rhizosphere microbiome assembly was mainly driven by plant development and root recruitments greatly attenuated the influence of inocula on the rhizosphere microbiome. Neither changes in the rhizosphere microbiome nor colonization of inocula in roots was necessary for plant growth promotion. In roots, modification of DNA methylation in response to inoculation affects gene expression related to PGPB-induced growth promotion, and disruptions of the inoculation-induced DNA methylation patterns greatly weakened the plant growth promotion. Together, our results showed PGPB-induced DNA methylation modifications in roots mediated the promotion process and these modifications remained functional after elimination of the inoculum from the microbiome. CONCLUSION This study suggests a new mechanism in which PGPB affect DNA methylation in roots to promote plant growth, which provides important insights into microbiome-plant interactions and offers new strategies for plant microbiome engineering beyond the perspective of maintaining inoculum persistence in soils. Video abstract.
Collapse
Affiliation(s)
- Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Miao Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jingzhi Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yongwei Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hanchao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qiming Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Minyu Jing
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xihui Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China.
| | - Jiandong Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China.
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
40
|
Malik S, Zhao D. Epigenetic Regulation of Heat Stress in Plant Male Reproduction. FRONTIERS IN PLANT SCIENCE 2022; 13:826473. [PMID: 35222484 PMCID: PMC8866763 DOI: 10.3389/fpls.2022.826473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/21/2022] [Indexed: 05/28/2023]
Abstract
In flowering plants, male reproductive development is highly susceptible to heat stress. In this mini-review, we summarized different anomalies in tapetum, microspores, and pollen grains during anther development under heat stress. We then discussed how epigenetic control, particularly DNA methylation, is employed to cope with heat stress in male reproduction. Further understanding of epigenetic mechanisms by which plants manage heat stress during male reproduction will provide new genetic engineering and molecular breeding tools for generating heat-resistant crops.
Collapse
|
41
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
42
|
Zhang J, Li J, Saeed S, Batchelor WD, Alariqi M, Meng Q, Zhu F, Zou J, Xu Z, Si H, Wang Q, Zhang X, Zhu H, Jin S, Yuan D. Identification and Functional Analysis of lncRNA by CRISPR/Cas9 During the Cotton Response to Sap-Sucking Insect Infestation. FRONTIERS IN PLANT SCIENCE 2022; 13:784511. [PMID: 35283887 PMCID: PMC8905227 DOI: 10.3389/fpls.2022.784511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/31/2022] [Indexed: 05/04/2023]
Abstract
Sap-sucking insects cause severe damage to cotton production. Long non-coding RNAs (lncRNAs) play vital regulatory roles in various development processes and stress response, however, the function of lncRNAs during sap-sucking insect infection in cotton is largely unknown. In this study, the transcriptome profiles between resistant (HR) and susceptible (ZS) cotton cultivars under whitefly infestation at different time points (0, 4, 12, 24, and 48 h) were compared. A total of 6,651 lncRNAs transcript and 606 differentially expressed lncRNAs were identified from the RNA-seq data. A co-expression network indicated that lncA07 and lncD09 were potential hub genes that play a regulatory role in cotton defense against aphid infestation. Furthermore, CRISPR/Cas9 knock-out mutant of lncD09 and lncA07 showed a decrease of jasmonic acid (JA) content, which potentially lead to increased susceptibility toward insect infestation. Differentially expressed genes between wild type and lncRNA knock-out plants are enriched in modulating development and resistance to stimulus. Additionally, some candidate genes such as Ghir_A01G022270, Ghir_D04G014430, and Ghir_A01G022270 are involved in the regulation of the JA-mediated signaling pathway. This result provides a novel insight of the lncRNA role in the cotton defense system against pests.
Collapse
Affiliation(s)
- Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Muna Alariqi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qingying Meng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fuhui Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiawei Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Si
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiongqiong Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Shuangxia Jin,
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Daojun Yuan,
| |
Collapse
|
43
|
Liu YJ, Li D, Gong J, Wang YB, Chen ZB, Pang BS, Chen XC, Gao JG, Yang WB, Zhang FT, Tang YM, Zhao CP, Gao SQ. Comparative transcriptome and DNA methylation analysis in temperature-sensitive genic male sterile wheat BS366. BMC Genomics 2021; 22:911. [PMID: 34930131 PMCID: PMC8686610 DOI: 10.1186/s12864-021-08163-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Known as the prerequisite component for the heterosis breeding system, the male sterile line determines the hybrid yield and seed purity. Therefore, a deep understanding of the mechanism and gene network that leads to male sterility is crucial. BS366, a temperature-sensitive genic male sterile (TGMS) line, is male sterile under cold conditions (12 °C with 12 h of daylight) but fertile under normal temperature (20 °C with 12 h of daylight). Results During meiosis, BS366 was defective in forming tetrads and dyads due to the abnormal cell plate. During pollen development, unusual vacuolated pollen that could not accumulate starch grains at the binucleate stage was also observed. Transcriptome analysis revealed that genes involved in the meiotic process, such as sister chromatid segregation and microtubule-based movement, were repressed, while genes involved in DNA and histone methylation were induced in BS366 under cold conditions. MethylRAD was used for reduced DNA methylation sequencing of BS366 spikes under both cold and control conditions. The differentially methylated sites (DMSs) located in the gene region were mainly involved in carbohydrate and fatty acid metabolism, lipid metabolism, and transport. Differentially expressed and methylated genes were mainly involved in cell division. Conclusions These results indicated that the methylation of genes involved in carbon metabolism or fatty acid metabolism might contribute to male sterility in BS366 spikes, providing novel insight into the molecular mechanism of wheat male sterility. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08163-3.
Collapse
Affiliation(s)
- Yong-Jie Liu
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Dan Li
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Jie Gong
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Yong-Bo Wang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhao-Bo Chen
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bin-Shuang Pang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Xian-Chao Chen
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian-Gang Gao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wei-Bing Yang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Feng-Ting Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Yi-Miao Tang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China.
| | - Chang-Ping Zhao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China.
| | - Shi-Qing Gao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China.
| |
Collapse
|
44
|
Rashid MM, Vaishnav A, Verma RK, Sharma P, Suprasanna P, Gaur RK. Epigenetic regulation of salinity stress responses in cereals. Mol Biol Rep 2021; 49:761-772. [PMID: 34773178 DOI: 10.1007/s11033-021-06922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Cereals are important crops and are exposed to various types of environmental stresses that affect the overall growth and yield. Among the various abiotic stresses, salt stress is a major environmental factor that influences the genetic, physiological, and biochemical responses of cereal crops. Epigenetic regulation which includes DNA methylation, histone modification, and chromatin remodelling plays an important role in salt stress tolerance. Recent studies in rice genomics have highlighted that the epigenetic changes are heritable and therefore can be considered as molecular signatures. An epigenetic mechanism under salinity induces phenotypic responses involving modulations in gene expression. Association between histone modification and altered DNA methylation patterns and differential gene expression has been evidenced for salt sensitivity in rice and other cereal crops. In addition, epigenetics also creates stress memory that helps the plant to better combat future stress exposure. In the present review, we have discussed epigenetic influences in stress tolerance, adaptation, and evolution processes. Understanding the epigenetic regulation of salinity could help for designing salt-tolerant varieties leading to improved crop productivity.
Collapse
Affiliation(s)
- Md Mahtab Rashid
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.,Department of Plant Pathology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281121, India.,Agroecology and Environment, Agroscope (Reckenholz), 8046, Zürich, Switzerland
| | - Rakesh Kumar Verma
- Department of Biosciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Pradeep Sharma
- Department of Biotechnology, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - P Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - R K Gaur
- Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India.
| |
Collapse
|
45
|
Rui C, Zhang Y, Fan Y, Han M, Dai M, Wang Q, Chen X, Lu X, Wang D, Wang S, Gao W, Yu JZ, Ye W. Insight Between the Epigenetics and Transcription Responding of Cotton Hypocotyl Cellular Elongation Under Salt-Alkaline Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:772123. [PMID: 34868171 PMCID: PMC8632653 DOI: 10.3389/fpls.2021.772123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Gossypium barbadense is a cultivated cotton not only known for producing superior fiber but also for its salt and alkaline resistance. Here, we used Whole Genome Bisulfite Sequencing (WGBS) technology to map the cytosine methylation of the whole genome of the G. barbadense hypocotyl at single base resolution. The methylation sequencing results showed that the mapping rates of the three samples were 75.32, 77.54, and 77.94%, respectively. In addition, the Bisulfite Sequence (BS) conversion rate was 99.78%. Approximately 71.03, 53.87, and 6.26% of the cytosine were methylated at CG, CHG, and CHH sequence contexts, respectively. A comprehensive analysis of DNA methylation and transcriptome data showed that the methylation level of the promoter region was a positive correlation in the CHH context. Saline-alkaline stress was related to the methylation changes of many genes, transcription factors (TFs) and transposable elements (TEs), respectively. We explored the regulatory mechanism of DNA methylation in response to salt and alkaline stress during cotton hypocotyl elongation. Our data shed light into the relationship of methylation regulation at the germination stage of G. barbadense hypocotyl cell elongation and salt-alkali treatment. The results of this research help understand the early growth regulation mechanism of G. barbadense in response to abiotic stress.
Collapse
Affiliation(s)
- Cun Rui
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| | - Yuexin Zhang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Yapeng Fan
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Mingge Han
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Maohua Dai
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Qinqin Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Wenwei Gao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| | - John Z. Yu
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, TX, United States
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
46
|
Liu H, Sun Z, Hu L, Li C, Wang X, Yue Z, Han Y, Yang G, Ma K, Yin G. Comparative Transcriptome Analysis of Male Sterile Anthers Induced by High Temperature in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:727966. [PMID: 34759937 PMCID: PMC8573241 DOI: 10.3389/fpls.2021.727966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/20/2021] [Indexed: 05/28/2023]
Abstract
Global warming will have a negative effect on agricultural production as high temperature (HT) stress can seriously threaten plant growth and reproduction. Male sterility caused by HT may be exploited by the creation of a male-sterile line, which has great potential for application in crop heterosis. Therefore, it is important to understand the molecular mechanisms of anther abortion induced by HT in wheat, which remain unclear at present. In this study, we performed phenotype improve language in the abstract and comparative transcriptome analysis of the male sterile anthers induced by HT in wheat. Compared with Normal anthers, the cytological analysis indicated that HT-induced male sterile anthers were smaller and had no starch accumulation in pollen grains, which is consistent with the results observed by scanning electron microscopy (SEM). The 9601 differentially expressed genes (DEGs) identified by transcriptome sequencing compared with the Normal anthers were noticeably involved in the following pathways: starch and sucrose metabolism, phosphatidylinositol (PI) signaling system, peroxidase activity and response to oxidative stress, and heme binding. In addition, TUNEL assays were performed and the results further confirmed the excessive accumulation of reactive oxygen species (ROS) in sterile anthers. Moreover, a total of 38 hub genes were obtained from the protein-protein interaction network analysis of these pathways, including genes, for example, heat shock protein 90 (HSP90), thioredoxin-like protein 1, peroxidase (POD), calreticulin, UDP glucose pyrophosphorylase (UGPase), sucrose synthase, phosphatidylinositol-4-phosphate 5-Kinase (PIP5K), cytochrome c, and Cystathionine beta-synthase X6-like (CBSX6-like). These findings provide insights for predicting the functions of the candidate genes, and the comprehensive analysis of our results is helpful for studying the abortive interaction mechanism induced by HT in wheat.
Collapse
Affiliation(s)
- Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Zhoukou Academy of Agricultural Sciences, Zhoukou, China
| | - Zhongke Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Lizong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Xueqin Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Zonghao Yue
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yulin Han
- Zhoukou Academy of Agricultural Sciences, Zhoukou, China
| | - Guangyu Yang
- Zhoukou Academy of Agricultural Sciences, Zhoukou, China
| | - Keshi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Guihong Yin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
47
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
48
|
Ni P, Huang N, Nie F, Zhang J, Zhang Z, Wu B, Bai L, Liu W, Xiao CL, Luo F, Wang J. Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning. Nat Commun 2021; 12:5976. [PMID: 34645826 PMCID: PMC8514461 DOI: 10.1038/s41467-021-26278-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
In plants, cytosine DNA methylations (5mCs) can happen in three sequence contexts as CpG, CHG, and CHH (where H = A, C, or T), which play different roles in the regulation of biological processes. Although long Nanopore reads are advantageous in the detection of 5mCs comparing to short-read bisulfite sequencing, existing methods can only detect 5mCs in the CpG context, which limits their application in plants. Here, we develop DeepSignal-plant, a deep learning tool to detect genome-wide 5mCs of all three contexts in plants from Nanopore reads. We sequence Arabidopsis thaliana and Oryza sativa using both Nanopore and bisulfite sequencing. We develop a denoising process for training models, which enables DeepSignal-plant to achieve high correlations with bisulfite sequencing for 5mC detection in all three contexts. Furthermore, DeepSignal-plant can profile more 5mC sites, which will help to provide a more complete understanding of epigenetic mechanisms of different biological processes.
Collapse
Affiliation(s)
- Peng Ni
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Neng Huang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Fan Nie
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Jun Zhang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Zhi Zhang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Bo Wu
- School of Computing, Clemson University, Clemson, SC, 29634-0974, USA
| | - Lu Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chuan-Le Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Tianhe District, Guangzhou, China.
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC, 29634-0974, USA.
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China.
| |
Collapse
|
49
|
Gogolev YV, Ahmar S, Akpinar BA, Budak H, Kiryushkin AS, Gorshkov VY, Hensel G, Demchenko KN, Kovalchuk I, Mora-Poblete F, Muslu T, Tsers ID, Yadav NS, Korzun V. OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. PLANTS (BASEL, SWITZERLAND) 2021; 10:1423. [PMID: 34371624 PMCID: PMC8309286 DOI: 10.3390/plants10071423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022]
Abstract
The incredible success of crop breeding and agricultural innovation in the last century greatly contributed to the Green Revolution, which significantly increased yields and ensures food security, despite the population explosion. However, new challenges such as rapid climate change, deteriorating soil, and the accumulation of pollutants require much faster responses and more effective solutions that cannot be achieved through traditional breeding. Further prospects for increasing the efficiency of agriculture are undoubtedly associated with the inclusion in the breeding strategy of new knowledge obtained using high-throughput technologies and new tools in the future to ensure the design of new plant genomes and predict the desired phenotype. This article provides an overview of the current state of research in these areas, as well as the study of soil and plant microbiomes, and the prospective use of their potential in a new field of microbiome engineering. In terms of genomic and phenomic predictions, we also propose an integrated approach that combines high-density genotyping and high-throughput phenotyping techniques, which can improve the prediction accuracy of quantitative traits in crop species.
Collapse
Affiliation(s)
- Yuri V. Gogolev
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | | | - Hikmet Budak
- Montana BioAg Inc., Missoula, MT 59802, USA; (B.A.A.); (H.B.)
| | - Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Vladimir Y. Gorshkov
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, 40225 Dusseldorf, Germany;
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | - Tugdem Muslu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey;
| | - Ivan D. Tsers
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Viktor Korzun
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555 Einbeck, Germany
| |
Collapse
|
50
|
Ma Y, Min L, Wang J, Li Y, Wu Y, Hu Q, Ding Y, Wang M, Liang Y, Gong Z, Xie S, Su X, Wang C, Zhao Y, Fang Q, Li Y, Chi H, Chen M, Khan AH, Lindsey K, Zhu L, Li X, Zhang X. A combination of genome-wide and transcriptome-wide association studies reveals genetic elements leading to male sterility during high temperature stress in cotton. THE NEW PHYTOLOGIST 2021; 231:165-181. [PMID: 33665819 PMCID: PMC8252431 DOI: 10.1111/nph.17325] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/23/2021] [Indexed: 05/23/2023]
Abstract
Global warming has reduced the productivity of many field-grown crops, as the effects of high temperatures can lead to male sterility in such plants. Genetic regulation of the high temperature (HT) response in the major crop cotton is poorly understood. We determined the functionality and transcriptomes of the anthers of 218 cotton accessions grown under HT stress. By analyzing transcriptome divergence and implementing a genome-wide association study (GWAS), we identified three thermal tolerance associated loci which contained 75 protein coding genes and 27 long noncoding RNAs, and provided expression quantitative trait loci (eQTLs) for 13 132 transcripts. A transcriptome-wide association study (TWAS) confirmed six causal elements for the HT response (three genes overlapped with the GWAS results) which are involved in protein kinase activity. The most susceptible gene, GhHRK1, was confirmed to be a previously uncharacterized negative regulator of the HT response in both cotton and Arabidopsis. These functional variants provide a new understanding of the genetic basis for HT tolerance in male reproductive organs.
Collapse
Affiliation(s)
- Yizan Ma
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Ling Min
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Junduo Wang
- Xinjiang Academy of Agricultural ScienceXinjiang830000China
| | - Yaoyao Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Qin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yuanhao Ding
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yajun Liang
- Xinjiang Academy of Agricultural ScienceXinjiang830000China
| | - Zhaolong Gong
- Xinjiang Academy of Agricultural ScienceXinjiang830000China
| | - Sai Xie
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Xiaojun Su
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Chaozhi Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yunlong Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Qidi Fang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yanlong Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Huabin Chi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Miao Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Xueyuan Li
- Xinjiang Academy of Agricultural ScienceXinjiang830000China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|