1
|
Zhang C, Zhou Z, Liu W, Huang T, Zhao Y, Chen P, Zhou Z, Wang D, Yi M, Fang J. Preparation and Characterization of Poly(l-lactide-co-glycolide-co-ε-caprolactone) Porous Microspheres. J MACROMOL SCI B 2020. [DOI: 10.1080/00222348.2020.1847407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Chao Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Zhihua Zhou
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan University of Science and Technology, Xiangtan, P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Wenjuan Liu
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Tianlong Huang
- Department of Orthopedics, the Second Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Yanmin Zhao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Ping Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Ziwei Zhou
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Dan Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Meiling Yi
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Jianjun Fang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| |
Collapse
|
2
|
Setti C, Suarato G, Perotto G, Athanassiou A, Bayer IS. Investigation of in vitro hydrophilic and hydrophobic dual drug release from polymeric films produced by sodium alginate-MaterBi® drying emulsions. Eur J Pharm Biopharm 2018; 130:71-82. [PMID: 29928979 DOI: 10.1016/j.ejpb.2018.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 02/02/2023]
Abstract
Emulsions are known to be effective carriers of hydrophobic drugs, and particularly injectable emulsions have been successfully implemented for in vivo controlled drug release. Recently, high internal phase emulsions have also been used to produce porous polymeric templates for pharmaceutical applications. However, emulsions containing dissolved biopolymers both in the oil and water phases are very scarce. In this study, we demonstrate such an emulsion, in which the oil phase contains a hydrophobic biodegradable polymer, MaterBi®, and the water phase is aqueous sodium alginate dispersion. The two phases were emulsified simply by ultrasonic processing without any surfactants. The emulsions were stable for several days and were dried into composite solid films with varying MaterBi®/alginate fractions. The films were loaded with two model drugs, a hydrophilic eosin-based cutaneous antiseptic and the hydrophobic curcumin. Drug release capacity of the films was investigated in detail, and controlled release of each model drug was achieved either by tuning the polymer fraction in the films during emulsification or by crosslinking sodium alginate fraction of the films by calcium salt solution immersion. The emulsions can be formulated to carry either a single model drug or both drugs depending on the desired application. Films demonstrate excellent cell biocompatibility against human dermal fibroblast, adult cells.
Collapse
Affiliation(s)
- Chiara Setti
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Universita Degli Studi di Genova, Via All'Opera Pia 13, 16145 Genova, Italy
| | - Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
3
|
Bee SL, Hamid ZAA, Mariatti M, Yahaya BH, Lim K, Bee ST, Sin LT. Approaches to Improve Therapeutic Efficacy of Biodegradable PLA/PLGA Microspheres: A Review. POLYM REV 2018. [DOI: 10.1080/15583724.2018.1437547] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Soo-Ling Bee
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Z. A. Abdul Hamid
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - M. Mariatti
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - B. H. Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Keemi Lim
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Soo-Tueen Bee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang, Selangor, Malaysia
| | - Lee Tin Sin
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang, Selangor, Malaysia
| |
Collapse
|
4
|
Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL and PCL-based materials in biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:863-893. [PMID: 29053081 DOI: 10.1080/09205063.2017.1394711] [Citation(s) in RCA: 403] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Biodegradable polymers have met with an increasing demand in medical usage over the last decades. One of such polymers is poly(ε-caprolactone) (PCL), which is a polyester that has been widely used in tissue engineering field for its availability, relatively inexpensive price and suitability for modification. Its chemical and biological properties, physicochemical state, degradability and mechanical strength can be adjusted, and therefore, it can be used under harsh mechanical, physical and chemical conditions without significant loss of its properties. Degradation time of PCL is quite long, thus it is used mainly in the replacement of hard tissues in the body where healing also takes an extended period of time. It is also used at load-bearing tissues of the body by enhancing its stiffness. However, due to its tailorability, use of PCL is not restricted to one type of tissue and it can be extended to engineering of soft tissues by decreasing its molecular weight and degradation time. This review outlines the basic properties of PCL, its composites, blends and copolymers. We report on various techniques for the production of different forms, and provide examples of medical applications such as tissue engineering and drug delivery systems covering the studies performed in the last decades.
Collapse
Affiliation(s)
- Elbay Malikmammadov
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,b Graduate Department of Micro and Nanotechnology, Graduate School of Natural and Applied Sciences , Middle East Technical University , Ankara , Turkey
| | - Tugba Endogan Tanir
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,c Central Laboratory , Middle East Technical University , Ankara , Turkey
| | - Aysel Kiziltay
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,c Central Laboratory , Middle East Technical University , Ankara , Turkey
| | - Vasif Hasirci
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,b Graduate Department of Micro and Nanotechnology, Graduate School of Natural and Applied Sciences , Middle East Technical University , Ankara , Turkey.,d Department of Biological Sciences , Middle East Technical University , Ankara , Turkey
| | - Nesrin Hasirci
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,b Graduate Department of Micro and Nanotechnology, Graduate School of Natural and Applied Sciences , Middle East Technical University , Ankara , Turkey.,e Department of Chemistry , Middle East Technical University , Ankara , Turkey
| |
Collapse
|
5
|
Manufacturing Techniques and Surface Engineering of Polymer Based Nanoparticles for Targeted Drug Delivery to Cancer. NANOMATERIALS 2016; 6:nano6020026. [PMID: 28344283 PMCID: PMC5302480 DOI: 10.3390/nano6020026] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 12/14/2022]
Abstract
The evolution of polymer based nanoparticles as a drug delivery carrier via pharmaceutical nano/microencapsulation has greatly promoted the development of nano- and micro-medicine in the past few decades. Poly(lactide-co-glycolide) (PLGA) and chitosan, which are biodegradable and biocompatible polymers, have been approved by both the Food & Drug Administration (FDA) and European Medicine Agency (EMA), making them ideal biomaterials that can be advanced from laboratory development to clinical oral and parental administrations. PLGA and chitosan encapsulated nanoparticles (NPs) have successfully been developed as new oral drug delivery systems with demonstrated high efficacy. This review aims to provide a comprehensive overview of the fabrication of PLGA and chitosan particulate systems using nano/microencapsulation methods, the current progress and the future outlooks of the nanoparticulate drug delivery systems. Especially, we focus on the formulations and nano/micro-encapsulation techniques using top-down techniques. It also addresses how the different phases including the organic and aqueous ones in the emulsion system interact with each other and subsequently influence the properties of the drug delivery system. Besides, surface modification strategies which can effectively engineer intrinsic physicochemical properties are summarised. Finally, future perspectives and potential directions of PLGA and chitosan nano/microencapsulated drug systems are outlined.
Collapse
|
6
|
Tseng CL, Chen JC, Wu YC, Fang HW, Lin FH, Tang TP. Development of lattice-inserted 5-Fluorouracil-hydroxyapatite nanoparticles as a chemotherapeutic delivery system. J Biomater Appl 2015; 30:388-97. [DOI: 10.1177/0885328215588307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Developing an effective vehicle for cancer treatment, hydroxyapatite nanoparticles were fabricated for drug delivery. When 5-Fluorouracil, a major chemoagent, is combined with hydroxyapatite nanocarriers by interclay insertion, the modified hydroxyapatite nanoparticles have superior lysosomal degradation profiles, which could be leveraged as controlled drug release. The decomposition of the hydroxyapatite nanocarriers facilitates the release of 5-Fluorouracil into the cytoplasm causing cell death. Hydroxyapatite nanoparticles with/without 5-Fluorouracil were synthesized and analyzed in this study. Their crystallization properties and chemical composition were examined by X-ray diffraction and Fourier transforms infrared spectroscopy. The 5-Fluorouracil release rate was determined by UV spectroscopy. The biocompatibility of hydroxyapatite-5-Fluorouracil extraction solution was assessed using 3T3 cells via a WST-8 assay. The effect of hydroxyapatite-5-Fluorouracil particles which directly work on the human lung adenocarcinoma (A549) cells was evaluated by a lactate dehydrogenase assay via contact cultivation. A 5-Fluorouracil-absorbed hydroxyapatite particles were also tested. Overall, hydroxyapatite-5-Fluorouracils were prepared using a co-precipitation method wherein 5-Fluorouracil was intercalated in the hydroxyapatite lattice as determined by X-ray diffraction. Energy dispersive scanning examination showed the 5-Fluorouracil content was higher in hydroxyapatite-5-Fluorouracil than in a prepared absorption formulation. With 5-Fluorouracil insertion in the lattice, the widths of the a and c axial constants of the hydroxyapatite crystal increased. The extraction solution of hydroxyapatite-5-Fluorouracil was nontoxic to 3T3 cells, in which 5-Fluorouracil was not released in a neutral phosphate buffer solution. In contrast, at a lower pH value (2.5), 5-Fluorouracil was released by the acidic decomposition of hydroxyapatite. Finally, the results of the lactate dehydrogenase assay revealed that 5-Fluorouracil-hydroxyapatite was highly toxic to A549 cells through direct culture, this phenomenon may result from lysosomal decomposition of particles causing 5-Fluorouracil releasing. The pH-responsive hydroxyapatite-5-Fluorouracil nanoparticles have the potential to be part of a selective drug-delivery system in chemotherapy for cancer treatment.
Collapse
Affiliation(s)
- Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Jung-Chih Chen
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu City, Taiwan
| | - Yu-Chun Wu
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei City, Taiwan
| | - Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
- Institute of Biomedical Engineering, National Taiwan University, Taipei City, Taiwan
| | - Tzu-Piao Tang
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei City, Taiwan
| |
Collapse
|
7
|
Wang Y, Li P, Kong L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS PharmSciTech 2013; 14:585-92. [PMID: 23463262 DOI: 10.1208/s12249-013-9943-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/22/2013] [Indexed: 02/06/2023] Open
Abstract
Shortage of functional groups on surface of poly(lactide-co-glycolide) (PLGA)-based drug delivery carriers always hampers its wide applications such as passive targeting and conjugation with targeting molecules. In this research, PLGA nanoparticles were modified with chitosan through physical adsorption and chemical binding methods. The surface charges were regulated by altering pH value in chitosan solutions. After the introduction of chitosan, zeta potential of the PLGA nanoparticle surface changed from negative charge to positive one, making the drug carriers more affinity to cancer cells. Functional groups were compared between PLGA nanoparticles and chitosan-modified PLGA nanoparticles. Amine groups were exhibited on PLGA nanoparticle surface after the chitosan modification as confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The modified nanoparticles showed an initial burst release followed by a moderate and sustained release profile. Higher percentage of drugs from cumulative release can be achieved in the same prolonged time range. Therefore, PLGA nanoparticles modified by chitosan showed versatility of surface and a possible improvement in the efficacy of current PLGA-based drug delivery system.
Collapse
|
8
|
Ni L, Acharya K, Ren G, Li S, Li Y, Li Y. Preparation and characterization of anti-algal sustained-release granules and their inhibitory effects on algae. CHEMOSPHERE 2013; 91:608-615. [PMID: 23352147 DOI: 10.1016/j.chemosphere.2012.12.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 06/01/2023]
Abstract
The objectives of this work were to prepare and characterize an anti-algal sustained-release granule, then study its mode of action on Microcystis aeruginosa. The anti-algal sustained-release granule was prepared with artemisinin using alginate-chitosan microcapsule technology and characterized by a high performance liquid chromatography with an evaporative light-scattering detector, Fourier transform infrared spectral analysis, and a scanning electron microscope. The optimum preparation (in %, w/v) using the orthogonal method was: 2.5 sodium alginate; 0.25 chloride; 0.6 artemisinin; 2 calcium chloride; and 1.5 mL of the cross-linking agent, glutaraldehyde. These artemisinin sustained-release granules had a high encapsulation efficiency (up to 68%) and good release properties (release time of more than 40 d). Artemisinin sustained-release granules released cumulatively in a solution containing M. aeruginosa, and the stress on algae increased gradually within 30 d. Artemisinin sustained-release granules decreased the content of the soluble protein, Chlorophyll a in 30 d, increased the superoxide dismutase activity of M. aeruginosa, but exerted no effect on the soluble sugar content. Compared to direct dosing of artemisinin, algae can be inhibited longer and more effectively by the artemisinin sustained-release granules. The results of our research can aid in the development of new anti-algal sustained-release granules and lead to further study of their application in the field.
Collapse
Affiliation(s)
- Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, Nanjing, China.
| | | | | | | | | | | |
Collapse
|
9
|
LeBlon CE, Pai R, Fodor CR, Golding AS, Coulter JP, Jedlicka SS. In vitrocomparative biodegradation analysis of salt-leached porous polymer scaffolds. J Appl Polym Sci 2012. [DOI: 10.1002/app.38321] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Fang JY, Hsu SH, Leu YL, Hu JW. Delivery of Cisplatin from Pluronic Co-polymer Systems: Liposome Inclusion and Alginate Coupling. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:1031-47. [DOI: 10.1163/156856209x444493] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jia-You Fang
- a Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, Taiwan
| | - Shu-Hui Hsu
- b Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan County, Taiwan
| | - Yann-Lii Leu
- c Natural Products Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jiuan-Wen Hu
- d Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
11
|
Functionalization of microspheres with malonates using Michael Addition as a pathway to create a drug delivery system for platinum drugs for the treatment of liver cancer. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.10.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Ray S, Banerjee S, Maiti S, Laha B, Barik S, Sa B, Bhattacharyya UK. Novel interpenetrating network microspheres of xanthan gum–poly(vinyl alcohol) for the delivery of diclofenac sodium to the intestine—in vitro and in vivo evaluation. Drug Deliv 2010; 17:508-19. [DOI: 10.3109/10717544.2010.483256] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Haxton KJ, Burt HM. Polymeric drug delivery of platinum-based anticancer agents. J Pharm Sci 2009; 98:2299-316. [PMID: 19009590 DOI: 10.1002/jps.21611] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Platinum-based anticancer agents such as cisplatin and carboplatin are in widespread clinical use but associated with many side effects. Improving the delivery of cytotoxic platinum compounds may lead to reduced side effects and achieve greater efficacy at lower doses. Polymer-based therapeutics have been investigated as potential drug delivery vehicles for platinum-based drugs. Against a background of the chemistry and pharmacology of cytotoxic platinum compounds, this review discusses the formation and properties of platinum-polymer complexes, dendrimers, micelles, and microparticulates.
Collapse
Affiliation(s)
- Katherine J Haxton
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
14
|
Analytical characterization of chitosan nanoparticles for peptide drug delivery applications. Anal Bioanal Chem 2008; 393:207-15. [PMID: 18958447 DOI: 10.1007/s00216-008-2463-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/01/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
Abstract
Chitosan-cyclodextrin hybrid nanoparticles (NPs) were obtained by the ionic gelation process in the presence of glutathione (GSH), chosen as a model drug. NPs were characterized by means of transmission electron microscopy and zeta-potential measurements. Furthermore, a detailed X-ray photoelectron spectroscopy study was carried out in both conventional and depth-profile modes. The combination of controlled ion-erosion experiments and a scrupulous curve-fitting approach allowed for the first time the quantitative study of the GSH in-depth distribution in the NPs. NPs were proven to efficiently encapsulate GSH in their inner cores, thus showing promising perspectives as drug carriers.
Collapse
|
15
|
Sinha VR, Trehan A. Development, Characterization, and Evaluation of Ketorolac Tromethamine-Loaded Biodegradable Microspheres as a Depot System for Parenteral Delivery. Drug Deliv 2008; 15:365-72. [DOI: 10.1080/10717540500398092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
16
|
Mundargi RC, Patil SA, Kulkarni PV, Mallikarjuna NN, Aminabhavi TM. Sequential interpenetrating polymer network hydrogel microspheres of poly(methacrylic acid) and poly(vinyl alcohol) for oral controlled drug delivery to intestine. J Microencapsul 2008; 25:228-40. [DOI: 10.1080/02652040801896435] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Raffin RP, Colomé LM, Guterres SS, Pohlmann AR. Enteric Controlled-Release Pantoprazole-Loaded Microparticles Prepared by Using Eudragit S100 and Poly(ε-caprolactone) Blend. Pharm Dev Technol 2008; 12:463-71. [DOI: 10.1080/10837450701556933] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Agnihotri SA, Aminabhavi TM. Development of Novel Interpenetrating Network Gellan Gum-Poly(vinyl alcohol) Hydrogel Microspheres for the Controlled Release of Carvedilol. Drug Dev Ind Pharm 2008; 31:491-503. [PMID: 16109622 DOI: 10.1080/03639040500215875] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Novel interpenetrating polymeric network microspheres of gellan gum and poly(vinyl alcohol) were prepared by the emulsion cross-linking method. Carvedilol, an antihypertensive drug, was successfully loaded into these microspheres prepared by changing the experimental variables such as ratio of gellan gum:poly(vinyl alcohol) and extent of cross-linking in order to optimize the process variables on drug encapsulation efficiency, release rates, size, and morphology of the microspheres. Formation of interpenetrating network and the chemical stability of carvedilol after preparing the microspheres was confirmed by Fourier transform infrared spectroscopy. Differential scanning calorimetry and x-ray diffraction studies were made on the drug-loaded microspheres to investigate the crystalline nature of the drug after encapsulation. Results indicated a crystalline dispersion of carvedilol in the polymer matrix. Scanning electron microscopy confirmed the spherical nature and smooth surface morphology of the microspheres produced. Mean particle size of the microspheres as measured by laser light scattering technique ranged between 230 and 346 microm. Carvedilol was successfully encapsulated up to 87% in the polymeric matrices. In vitro release studies were performed in the simulated gastric fluid or simulated intestinal fluid. The release of carvedilol was continued up to 12 h. Dynamic swelling studies were performed in the simulated gastric fluid or simulated intestinal fluid, and diffusion coefficients were calculated by considering the spherical geometry of the matrices. The release data were fitted to an empirical relation to estimate the transport parameters. The mechanical properties of interpenetrating polymeric networks prepared were investigated. Network parameters such as molar mass between cross-links and cross-linking density for interpenetrating polymeric networks were calculated.
Collapse
Affiliation(s)
- Sunil A Agnihotri
- Drug Delivery Division, Center of Excellence in Polymer Science, Karnatak University, Dharwad, India
| | | |
Collapse
|
19
|
Preparation and characterization of galactosylated chitosan coated BSA microspheres containing 5-fluorouracil. Carbohydr Polym 2008. [DOI: 10.1016/j.carbpol.2007.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Thompson CJ, Hansford D, Higgins S, Hutcheon GA, Rostron C, Munday DL. Enzymatic synthesis and evaluation of new novel omega-pentadecalactone polymers for the production of biodegradable microspheres. J Microencapsul 2007; 23:213-26. [PMID: 16754377 DOI: 10.1080/02652040500444123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Two novel co-polymers based on omega-pentadecalactone were enzymatically synthesized by a combination of ring-opening polymerization and polycondensation. Modified literature procedures enabled the production of the semi-crystalline materials with suitable molecular weights and melting characteristics. Microspheres were produced using an emulsion solvent evaporation method over a range of variables including manufacturing temperature, stirring speed and duration, surfactant concentration, continuous and disperse phase volume and polymer amount to establish how each variable affected the morphological characteristics of the microspheres. Results demonstrated that changes in emulsion viscosity influenced microsphere size. For polymer SH-L333, the microsphere surface was either smooth or porous depending on the manufacturing temperature used. For polymer SH-L334 the microsphere surface was rough or porous regardless of manufacturing temperature. This was possibly due to several combined factors including molecular weight and the greater hydrophilic nature of SH-L334. These new polymers have the potential for the manufacture of drug-loaded biodegradable microspheres for modified release drug delivery.
Collapse
Affiliation(s)
- Colin J Thompson
- School of Pharmacy, The Robert Gordon University, Aberdeen, Scotland, UK
| | | | | | | | | | | |
Collapse
|
21
|
Ha CS, Gardella JA. Surface Chemistry of Biodegradable Polymers for Drug Delivery Systems. Chem Rev 2005; 105:4205-32. [PMID: 16277374 DOI: 10.1021/cr040419y] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chang-Sik Ha
- Department of Polymer Science and Engineering, Pusan National University, Pusan 609-735, Korea
| | | |
Collapse
|
22
|
Kovalchuk A, Fischer W, Epple M. Controlled Release of Goserelin from Microporous Polyglycolide and Polylactide. Macromol Biosci 2005; 5:289-98. [PMID: 15818581 DOI: 10.1002/mabi.200500033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two microporous biodegradable polyesters, i.e., PGA and PDLLA, were obtained by solid-state polymerization reaction from the sodium salts of the corresponding alpha-hydroxycarboxylic acids after washing out the by-product sodium chloride. The polymers were shaped by cold uniaxial pressing, by hot uniaxial pressing, and by extrusion at elevated temperature. Due to the special microporosity of the polymers, the introduction of drugs is possible at moderate temperature. The release kinetics of the model drug Phe and of the anti-tumor drug goserelin (an LH-RH agonist) from compacted polymer samples were fast (approx. 2 d). The release kinetics of goserelin were corrected for the decomposition of the drug. External coatings with PDLLA or PLLA obtained by immersion in polymer solution strongly slowed down the release kinetics in the case of the PDLLA coating, giving an almost linear release during 100 d. A coating with PLLA was unsuitable to slow down the release kinetics.
Collapse
Affiliation(s)
- Andrey Kovalchuk
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45111 Essen, Germany
| | | | | |
Collapse
|
23
|
Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 2005; 100:5-28. [PMID: 15491807 DOI: 10.1016/j.jconrel.2004.08.010] [Citation(s) in RCA: 1503] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 08/12/2004] [Indexed: 10/26/2022]
Abstract
Considerable research efforts have been directed towards developing safe and efficient chitosan-based particulate drug delivery systems. The present review outlines the major new findings on the pharmaceutical applications of chitosan-based micro/nanoparticulate drug delivery systems published over the past decade. Methods of their preparation, drug loading, release characteristics, and applications are covered. Chemically modified chitosan or its derivatives used in drug delivery research are discussed critically to evaluate the usefulness of these systems in delivering the bioactive molecules. From a literature survey, it is realized that research activities on chitosan micro/nanoparticulate systems containing various drugs for different therapeutic applications have increased at the rapid rate. Hence, the present review is timely.
Collapse
Affiliation(s)
- Sunil A Agnihotri
- Drug Delivery Division, Center of Excellence in Polymer Science, Karnatak University, Dharwad 580 003, India
| | | | | |
Collapse
|
24
|
Moschos SA, Bramwell VW, Somavarapu S, Alpar HO. Adjuvant synergy: The effects of nasal coadministration of adjuvants. Immunol Cell Biol 2004; 82:628-37. [PMID: 15550121 DOI: 10.1111/j.0818-9641.2004.01280.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Modern peptide and protein subunit vaccines suffer from poor immunogenicity and require the use of adjuvants. However, none of the currently licensed adjuvants can elicit cell-mediated immunity or are suitable for mucosal immunization. In this study we explored the immunological effect of nasal co-administration of adjuvants with distinct functions: cholera toxin subunit B, a potent mucosal adjuvant that induces strong humoral responses, muramy di-peptide (MDP), an adjuvant known to elicit cell mediated immunity but rarely used nasally, and chitosan, an adjuvant that achieves specific physiological effects on mucosal membranes that improve antigen uptake. Groups of five female BALB/c mice received on days 1 and 56 nasal instillations of the recombinant Helicobacter pylori antigen urease admixed to single or multiple adjuvant combinations. Serum IgG kinetics were followed over 24 weeks. At the conclusion of the experiment, local antibody responses were determined and antigen-specific recall responses in splenocyte cultures were assayed for proliferation and cytokine production. The combination of adjuvants was shown to further contribute to the increased antigenicity of recombinant H. pylori urease. The data presented here outline and support facilitation of increased immunomodulation by an adjuvant previously defined as an effective mucosal adjuvant (chitosan) for another adjuvant (MDP) that is not normally effective via this route.
Collapse
Affiliation(s)
- S A Moschos
- Centre for Drug Delivery Research, Department of Pharmaceutics, The School of Pharmacy, University of London, London, UK
| | | | | | | |
Collapse
|
25
|
Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm 2004; 278:1-23. [PMID: 15158945 DOI: 10.1016/j.ijpharm.2004.01.044] [Citation(s) in RCA: 681] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2002] [Revised: 01/19/2004] [Accepted: 01/27/2004] [Indexed: 11/29/2022]
Abstract
Poly-epsilon-caprolactone (PCL) is a biodegradable, biocompatible and semicrystalline polymer having a very low glass transition temperature. Due to its slow degradation, PCL is ideally suitable for long-term delivery extending over a period of more than one year. This has led to its application in the preparation of different delivery systems in the form of microspheres, nanospheres and implants. Various categories of drugs have been encapsulated in PCL for targeted drug delivery and for controlled drug release. Microspheres of PCL either alone or of PCL copolymers have been prepared to obtain the drug release characteristics. This article reviews the advancements made in PCL-based microspheres and nanospheres with special reference to the method of preparation of these and their suitability in developing effective delivery systems.
Collapse
Affiliation(s)
- V R Sinha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | | | | | | | | |
Collapse
|
26
|
Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int J Pharm 2004; 274:1-33. [PMID: 15072779 DOI: 10.1016/j.ijpharm.2003.12.026] [Citation(s) in RCA: 573] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Revised: 12/02/2003] [Accepted: 12/12/2003] [Indexed: 11/30/2022]
Abstract
Chitosan is a biodegradable natural polymer with great potential for pharmaceutical applications due to its biocompatibility, high charge density, non-toxicity and mucoadhesion. It has been shown that it not only improves the dissolution of poorly soluble drugs but also exerts a significant effect on fat metabolism in the body. Gel formation can be obtained by interactions of chitosans with low molecular counterions such as polyphosphates, sulphates and crosslinking with glutaraldehyde. This gelling property of chitosan allows a wide range of applications such as coating of pharmaceuticals and food products, gel entrapment of biochemicals, plant embryo, whole cells, microorganism and algae. This review is an insight into the exploitation of the various properties of chitosan to microencapsulate drugs. Various techniques used for preparing chitosan microspheres and evaluation of these microspheres have also been reviewed. This review also includes the factors that affect the entrapment efficiency and release kinetics of drugs from chitosan microspheres.
Collapse
Affiliation(s)
- V R Sinha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | | | | | | | | | | | | |
Collapse
|
27
|
Ben-Shabat S, Abuganima E, Raziel A, Domb AJ. Biodegradable polycaprolactone-polyanhydrides blends. ACTA ACUST UNITED AC 2003. [DOI: 10.1002/pola.10958] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Yao F, Chen W, Wang H, Liu H, Yao K, Sun P, Lin H. A study on cytocompatible poly(chitosan-g-l-lactic acid). POLYMER 2003. [DOI: 10.1016/s0032-3861(03)00676-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Literature Alerts. J Microencapsul 2003. [DOI: 10.3109/02652040309178054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|