1
|
Dieck CL, Tzoneva G, Forouhar F, Carpenter Z, Ambesi-Impiombato A, Sánchez-Martín M, Kirschner-Schwabe R, Lew S, Seetharaman J, Tong L, Ferrando AA. Structure and Mechanisms of NT5C2 Mutations Driving Thiopurine Resistance in Relapsed Lymphoblastic Leukemia. Cancer Cell 2018; 34:136-147.e6. [PMID: 29990496 PMCID: PMC6049837 DOI: 10.1016/j.ccell.2018.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/06/2018] [Accepted: 06/06/2018] [Indexed: 11/25/2022]
Abstract
Activating mutations in the cytosolic 5'-nucleotidase II gene NT5C2 drive resistance to 6-mercaptopurine in acute lymphoblastic leukemia. Here we demonstrate that constitutively active NT5C2 mutations K359Q and L375F reconfigure the catalytic center for substrate access and catalysis in the absence of allosteric activator. In contrast, most relapse-associated mutations, which involve the arm segment and residues along the surface of the inter-monomeric cavity, disrupt a built-in switch-off mechanism responsible for turning off NT5C2. In addition, we show that the C-terminal acidic tail lost in the Q523X mutation functions to restrain NT5C2 activation. These results uncover dynamic mechanisms of enzyme regulation targeted by chemotherapy resistance-driving NT5C2 mutations, with important implications for the development of NT5C2 inhibitor therapies.
Collapse
Affiliation(s)
- Chelsea L Dieck
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Gannie Tzoneva
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Farhad Forouhar
- Hervert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, 1212 Amsterdam Avenue, 701 Fairchild Center, New York, NY 10027, USA
| | - Zachary Carpenter
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | | | | | - Renate Kirschner-Schwabe
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Scott Lew
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, 1212 Amsterdam Avenue, 701 Fairchild Center, New York, NY 10027, USA
| | | | - Liang Tong
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, 1212 Amsterdam Avenue, 701 Fairchild Center, New York, NY 10027, USA.
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University Medical Center, 1130 St. Nicholas Avenue, ICRC 402, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
2
|
Virtanen JJ, Zhang Y. MR-REX: molecular replacement by cooperative conformational search and occupancy optimization on low-accuracy protein models. Acta Crystallogr D Struct Biol 2018; 74:606-620. [PMID: 29968671 PMCID: PMC6038387 DOI: 10.1107/s2059798318005612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/10/2018] [Indexed: 11/10/2022] Open
Abstract
Molecular replacement (MR) has commonly been employed to derive the phase information in protein crystal X-ray diffraction, but its success rate decreases rapidly when the search model is dissimilar to the target. MR-REX has been developed to perform an MR search by replica-exchange Monte Carlo simulations, which enables cooperative rotation and translation searches and simultaneous clash and occupancy optimization. MR-REX was tested on a set of 1303 protein structures of different accuracies and successfully placed 699 structures at positions that have an r.m.s.d. of below 2 Å to the target position, which is 10% higher than was obtained by Phaser. However, cases studies show that many of the models for which Phaser failed and MR-REX succeeded can be solved by Phaser by pruning them and using nondefault parameters. The factors effecting success and the parts of the methodology which lead to success are studied. The results demonstrate a new avenue for molecular replacement which outperforms (and has results that are complementary to) the state-of-the-art MR methods, in particular for distantly homologous proteins.
Collapse
Affiliation(s)
- Jouko J. Virtanen
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Moremen KW, Ramiah A, Stuart M, Steel J, Meng L, Forouhar F, Moniz HA, Gahlay G, Gao Z, Chapla D, Wang S, Yang JY, Prabahkar PK, Johnson R, dela Rosa M, Geisler C, Nairn AV, Wu SC, Tong L, Gilbert HJ, LaBaer J, Jarvis DL. Expression system for structural and functional studies of human glycosylation enzymes. Nat Chem Biol 2018; 14:156-162. [PMID: 29251719 PMCID: PMC5774587 DOI: 10.1038/nchembio.2539] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
Abstract
Vertebrate glycoproteins and glycolipids are synthesized in complex biosynthetic pathways localized predominantly within membrane compartments of the secretory pathway. The enzymes that catalyze these reactions are exquisitely specific, yet few have been extensively characterized because of challenges associated with their recombinant expression as functional products. We used a modular approach to create an expression vector library encoding all known human glycosyltransferases, glycoside hydrolases, and sulfotransferases, as well as other glycan-modifying enzymes. We then expressed the enzymes as secreted catalytic domain fusion proteins in mammalian and insect cell hosts, purified and characterized a subset of the enzymes, and determined the structure of one enzyme, the sialyltransferase ST6GalNAcII. Many enzymes were produced at high yields and at similar levels in both hosts, but individual protein expression levels varied widely. This expression vector library will be a transformative resource for recombinant enzyme production, broadly enabling structure-function studies and expanding applications of these enzymes in glycochemistry and glycobiology.
Collapse
Affiliation(s)
- Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | | | - Melissa Stuart
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Jason Steel
- Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Lu Meng
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Farhad Forouhar
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027
| | - Heather A. Moniz
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Gagandeep Gahlay
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Zhongwei Gao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | | | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | | | - Roy Johnson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Mitche dela Rosa
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Christoph Geisler
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Alison V. Nairn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Sheng-Cheng Wu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Liang Tong
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027
| | - Harry J. Gilbert
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Donald L. Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
4
|
Maderbocus R, Fields BL, Hamilton K, Luo S, Tran TH, Dietrich LEP, Tong L. Crystal structure of a Pseudomonas malonate decarboxylase holoenzyme hetero-tetramer. Nat Commun 2017; 8:160. [PMID: 28757619 PMCID: PMC5534430 DOI: 10.1038/s41467-017-00233-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/12/2017] [Indexed: 11/26/2022] Open
Abstract
Pseudomonas species and other aerobic bacteria have a biotin-independent malonate decarboxylase that is crucial for their utilization of malonate as the sole carbon and energy source. The malonate decarboxylase holoenzyme contains four subunits, having an acyl-carrier protein (MdcC subunit) with a distinct prosthetic group, as well as decarboxylase (MdcD–MdcE) and acyl-carrier protein transferase (MdcA) catalytic activities. Here we report the crystal structure of a Pseudomonas malonate decarboxylase hetero-tetramer, as well as biochemical and functional studies based on the structural information. We observe a malonate molecule in the active site of MdcA and we also determine the structure of malonate decarboxylase with CoA in the active site of MdcD–MdcE. Both structures provide molecular insights into malonate decarboxylase catalysis. Mutations in the hetero-tetramer interface can abolish holoenzyme formation. Mutations in the hetero-tetramer interface and the active sites can abolish Pseudomonas aeruginosa growth in a defined medium with malonate as the sole carbon source. Some aerobic bacteria contain a biotin-independent malonate decarboxylase (MDC), which allows them to use malonate as the sole carbon source. Here, the authors present the crystal structure of a Pseudomonas MDC and give insights into its catalytic mechanism and function.
Collapse
Affiliation(s)
- Riyaz Maderbocus
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Blanche L Fields
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Keith Hamilton
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Shukun Luo
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Timothy H Tran
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
5
|
Abstract
Molecular replacement is a method for solving the crystallographic phase problem using an atomic model for the target structure. State-of-the-art methods have moved the field significantly from when it was first envisaged as a method for solving cases of high homology and completeness between a model and target structure. Improvements brought about by application of maximum likelihood statistics mean that various errors in the model and pathologies in the data can be accounted for, so that cases hitherto thought to be intractable are standardly solvable. As a result, molecular replacement phasing now accounts for the lion's share of structures deposited in the Protein Data Bank. However, there will always be cases at the fringes of solvability. I discuss here the approaches that will help tackle challenging molecular replacement cases.
Collapse
Affiliation(s)
- Airlie J McCoy
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
6
|
Abstract
In recent years a wide variety of RNA molecules regulating fundamental cellular processes has been discovered. Therefore, RNA structure determination is experiencing a boost and many more RNA structures are likely to be determined in the years to come. The broader availability of experimentally determined RNA structures implies that molecular replacement (MR) will be used more and more frequently as a method for phasing future crystallographic structures. In this report we describe various aspects relative to RNA structure determination by MR. First, we describe how to select and create MR search models for nucleic acids. Second, we describe how to perform MR searches on RNA using available crystallographic software. Finally, we describe how to refine and interpret the successful MR solutions. These protocols are applicable to determine novel RNA structures as well as to establish structural-functional relationships on existing RNA structures.
Collapse
|
7
|
The ROQ domain of Roquin recognizes mRNA constitutive-decay element and double-stranded RNA. Nat Struct Mol Biol 2014; 21:679-85. [PMID: 25026078 PMCID: PMC4125485 DOI: 10.1038/nsmb.2857] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/13/2014] [Indexed: 01/03/2023]
Abstract
A conserved stem-loop motif of the constitutive decay element (CDE) in the 3' UTR of mRNAs is recognized by the ROQ domain of Roquin, which mediates mRNA degradation. Here we report two crystal structures of the Homo sapiens ROQ domain in complex with CDE RNA. The ROQ domain has an elongated shape with three subdomains. The 19-nt Hmgxb3 CDE is bound as a stem-loop to domain III. The 23-nt TNF RNA is bound as a duplex to a separate site at the interface between domains I and II. Mutagenesis studies confirm that the ROQ domain has two separate RNA-binding sites, one for stem-loop RNA (A site) and the other for double-stranded RNA (B site). Mutation in either site perturbs the Roquin-mediated degradation of HMGXB3 and IL6 mRNAs in human cells, demonstrating the importance of both sites for mRNA decay.
Collapse
|
8
|
Srinivasan B, Forouhar F, Shukla A, Sampangi C, Kulkarni S, Abashidze M, Seetharaman J, Lew S, Mao L, Acton TB, Xiao R, Everett JK, Montelione GT, Tong L, Balaram H. Allosteric regulation and substrate activation in cytosolic nucleotidase II from Legionella pneumophila. FEBS J 2014; 281:1613-1628. [PMID: 24456211 DOI: 10.1111/febs.12727] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/24/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Cytosolic nucleotidase II (cN-II) from Legionella pneumophila (Lp) catalyzes the hydrolysis of GMP and dGMP displaying sigmoidal curves, whereas catalysis of IMP hydrolysis displayed a biphasic curve in the initial rate versus substrate concentration plots. Allosteric modulators of mammalian cN-II did not activate LpcN-II although GTP, GDP and the substrate GMP were specific activators. Crystal structures of the tetrameric LpcN-II revealed an activator-binding site at the dimer interface. A double mutation in this allosteric-binding site abolished activation, confirming the structural observations. The substrate GMP acting as an activator, partitioning between the allosteric and active site, is the basis for the sigmoidicity of the initial velocity versus GMP concentration plot. The LpcN-II tetramer showed differences in subunit organization upon activator binding that are absent in the activator-bound human cN-II structure. This is the first observation of a structural change induced by activator binding in cN-II that may be the molecular mechanism for enzyme activation. DATABASE The coordinates and structure factors reported in this paper have been submitted to the Protein Data Bank under the accession numbers 2BDE and 4G63. The accession number of GMP complexed LpcN-II is 4OHF. STRUCTURED DIGITAL ABSTRACT LpcN-II and LpcN-II bind by molecular sieving (View interaction) LpcN-II and LpcN-II bind by x-ray crystallography (View interaction) [Structured digital abstract was added on 5 March 2014 after original online publication].
Collapse
Affiliation(s)
- Bharath Srinivasan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, Karnataka, India
| | - Farhad Forouhar
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Arpit Shukla
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, Karnataka, India
| | - Chethana Sampangi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, Karnataka, India
| | - Sonia Kulkarni
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, Karnataka, India
| | - Mariam Abashidze
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Jayaraman Seetharaman
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Scott Lew
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Lei Mao
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Department of Biochemistry, Robert Wood Johnson Medical School, Northeast Structural Genomics Consortium, Piscataway, NJ 08854
| | - Thomas B Acton
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Department of Biochemistry, Robert Wood Johnson Medical School, Northeast Structural Genomics Consortium, Piscataway, NJ 08854
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Department of Biochemistry, Robert Wood Johnson Medical School, Northeast Structural Genomics Consortium, Piscataway, NJ 08854
| | - John K Everett
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Department of Biochemistry, Robert Wood Johnson Medical School, Northeast Structural Genomics Consortium, Piscataway, NJ 08854
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Department of Biochemistry, Robert Wood Johnson Medical School, Northeast Structural Genomics Consortium, Piscataway, NJ 08854
| | - Liang Tong
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, Karnataka, India
| |
Collapse
|
9
|
Switching between the Alternative Structures and Functions of a 2-Cys Peroxiredoxin, by Site-Directed Mutagenesis. J Mol Biol 2013; 425:4556-68. [DOI: 10.1016/j.jmb.2013.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 12/28/2022]
|
10
|
Mills JH, Khare SD, Bolduc JM, Forouhar F, Mulligan VK, Lew S, Seetharaman J, Tong L, Stoddard BL, Baker D. Computational design of an unnatural amino acid dependent metalloprotein with atomic level accuracy. J Am Chem Soc 2013; 135:13393-9. [PMID: 23924187 DOI: 10.1021/ja403503m] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically encoded unnatural amino acids could facilitate the design of proteins and enzymes of novel function, but correctly specifying sites of incorporation and the identities and orientations of surrounding residues represents a formidable challenge. Computational design methods have been used to identify optimal locations for functional sites in proteins and design the surrounding residues but have not incorporated unnatural amino acids in this process. We extended the Rosetta design methodology to design metalloproteins in which the amino acid (2,2'-bipyridin-5yl)alanine (Bpy-Ala) is a primary ligand of a bound metal ion. Following initial results that indicated the importance of buttressing the Bpy-Ala amino acid, we designed a buried metal binding site with octahedral coordination geometry consisting of Bpy-Ala, two protein-based metal ligands, and two metal-bound water molecules. Experimental characterization revealed a Bpy-Ala-mediated metalloprotein with the ability to bind divalent cations including Co(2+), Zn(2+), Fe(2+), and Ni(2+), with a Kd for Zn(2+) of ∼40 pM. X-ray crystal structures of the designed protein bound to Co(2+) and Ni(2+) have RMSDs to the design model of 0.9 and 1.0 Å respectively over all atoms in the binding site.
Collapse
Affiliation(s)
- Jeremy H Mills
- Department of Biochemistry and ⊥Biomolecular Structure and Design Program, University of Washington , Seattle, Washington, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tan D, Crabb WM, Whitman WB, Tong L. Crystal structure of DmdD, a crotonase superfamily enzyme that catalyzes the hydration and hydrolysis of methylthioacryloyl-CoA. PLoS One 2013; 8:e63870. [PMID: 23704947 PMCID: PMC3660561 DOI: 10.1371/journal.pone.0063870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/07/2013] [Indexed: 11/18/2022] Open
Abstract
Dimethyl-sulphoniopropionate (DMSP) is produced in abundance by marine phytoplankton, and the catabolism of this compound is an important source of carbon and reduced sulfur for marine bacteria and other organisms. The enzyme DmdD catalyzes the last step in the methanethiol (MeSH) pathway of DMSP catabolism. DmdD is a member of the crotonase superfamily of enzymes, and it catalyzes both the hydration and the hydrolysis of methylthioacryloyl-CoA (MTA-CoA), converting it to acetaldehyde, CO2, MeSH, and CoA. We report here the crystal structure of Ruegeria pomeroyi DmdD free enzyme at 1.5 Å resolution and the structures of the E121A mutant in complex with MTA-CoA and 3-methylmercaptopropionate-CoA (MMPA-CoA) at 1.8 Å resolution. DmdD is a hexamer, composed of a dimer of trimers where the three monomers of each trimer are related by a crystallographic 3-fold axis. The overall structure of this hexamer is similar to those of canonical crotonases. However, the C-terminal loops of DmdD in one of the trimers assume a different conformation and contribute to CoA binding in the active site of a neighboring monomer of the trimer, while these loops in the second trimer are disordered. MTA-CoA is bound deep in the active site in the first trimer, but shows a 1.5 Å shift in its position in the second trimer. MMPA-CoA has a similar binding mode to MTA-CoA in the first trimer. MMPA-CoA cannot be hydrated and is only hydrolyzed slowly by DmdD. Replacement of the sulfur atom in MMPA-CoA with a methylene group abolishes hydrolysis, suggesting that the unique property of the substrate is a major determinant of the hydrolysis activity of DmdD.
Collapse
Affiliation(s)
- Dazhi Tan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Warren M. Crabb
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - William B. Whitman
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Bandeiras TM, Freitas MC, Petrasch D, Kletzin A, Frazão C. SAD phasing towards structure determination of a thermostable Rieske ferredoxin with a novel stabilizing disulfide bridge. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:555-8. [PMID: 23695576 PMCID: PMC3660900 DOI: 10.1107/s1744309113008385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/26/2013] [Indexed: 11/10/2022]
Abstract
Rieske proteins and Rieske ferredoxins are ubiquitous electron-transfer metalloproteins that are characterized by a [2Fe-2S] cluster coordinated by pairs of cysteine and histidine residues. The thermoacidophilic archaeon Acidianus ambivalens contains a Rieske ferredoxin termed RFd2, which has an hitherto unknown additional region of 40-44 residues at the C-terminus with a Cx3C motif that introduces a novel disulfide bond within the Rieske fold. RFd2 was crystallized with the aim of determining its three-dimensional structure in order to understand the contribution of this as yet unique disulfide bridge to the function and stability of RFd2. RFd2 crystals were successively improved, increasing their diffraction to 1.9 Å resolution. Molecular replacement did not solve the RFd2 structure, but a highly multiple in-house diffraction data set collected at the Cu Kα edge led to solution of the phase problem.
Collapse
Affiliation(s)
- Tiago M. Bandeiras
- IBET – Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- ITQB–UNL, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da Republica, 2780-157 Oeiras, Portugal
| | - Micael C. Freitas
- IBET – Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- ITQB–UNL, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da Republica, 2780-157 Oeiras, Portugal
| | - Dennis Petrasch
- Microbiology – Sulfur Biochemistry and Microbial Bioenergetics, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Arnulf Kletzin
- Microbiology – Sulfur Biochemistry and Microbial Bioenergetics, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Carlos Frazão
- ITQB–UNL, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da Republica, 2780-157 Oeiras, Portugal
| |
Collapse
|
13
|
Tan D, Marzluff WF, Dominski Z, Tong L. Structure of histone mRNA stem-loop, human stem-loop binding protein, and 3'hExo ternary complex. Science 2013; 339:318-21. [PMID: 23329046 DOI: 10.1126/science.1228705] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metazoan replication-dependent histone messenger RNAs (mRNAs) have a conserved stem-loop (SL) at their 3'-end. The stem-loop binding protein (SLBP) specifically recognizes the SL to regulate histone mRNA metabolism, and the 3'-5' exonuclease 3'hExo trims its 3'-end after processing. We report the crystal structure of a ternary complex of human SLBP RNA binding domain, human 3'hExo, and a 26-nucleotide SL RNA. Only one base of the SL is recognized specifically by SLBP, and the two proteins primarily recognize the shape of the RNA. SLBP and 3'hExo have no direct contact with each other, and induced structural changes in the loop of the SL mediate their cooperative binding. The 3' flanking sequence is positioned in the 3'hExo active site, but the ternary complex limits the extent of trimming.
Collapse
Affiliation(s)
- Dazhi Tan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
14
|
Yu LPC, Chou CY, Choi PH, Tong L. Characterizing the importance of the biotin carboxylase domain dimer for Staphylococcus aureus pyruvate carboxylase catalysis. Biochemistry 2013; 52:488-96. [PMID: 23286247 DOI: 10.1021/bi301294d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biotin carboxylase (BC) is a conserved component among biotin-dependent carboxylases and catalyzes the MgATP-dependent carboxylation of biotin, using bicarbonate as the CO₂ donor. Studies with Escherichia coli BC have suggested long-range communication between the two active sites of a dimer, although its mechanism is not well understood. In addition, mutations in the dimer interface can produce stable monomers that are still catalytically active. A homologous dimer for the BC domain is observed in the structure of the tetrameric pyruvate carboxylase (PC) holoenzyme. We have introduced site-specific mutations into the BC domain dimer interface of Staphylococcus aureus PC (SaPC), equivalent to those used for E. coli BC, and also made chimeras replacing the SaPC BC domain with the E. coli BC subunit (EcBC chimera) or the yeast ACC BC domain (ScBC chimera). We assessed the catalytic activities of these mutants and characterized their oligomerization states by gel filtration and analytical ultracentrifugation experiments. The K442E mutant and the ScBC chimera disrupted the BC dimer and were catalytically inactive, while the F403A mutant and the EcBC chimera were still tetrameric and retained catalytic activity. The R54E mutant was also tetrameric but was catalytically inactive. Crystal structures of the R54E, F403A, and K442E mutants showed that they were tetrameric in the crystal, with conformational changes near the mutation site as well as in the tetramer organization. We have also produced the isolated BC domain of SaPC. In contrast to E. coli BC, the SaPC BC domain is monomeric in solution and catalytically inactive.
Collapse
Affiliation(s)
- Linda P C Yu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
15
|
Paulson AR, Tong L. Crystal structure of the Rna14-Rna15 complex. RNA (NEW YORK, N.Y.) 2012; 18:1154-62. [PMID: 22513198 PMCID: PMC3358638 DOI: 10.1261/rna.032524.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/26/2012] [Indexed: 05/25/2023]
Abstract
A large protein machinery is required for 3'-end processing of mRNA precursors in eukaryotes. Cleavage factor IA (CF IA), a complex in the 3'-end processing machinery in yeast, contains four subunits, Rna14, Rna15, Clp1, and Pcf11. Rna14 has a HAT (half a TPR) domain at the N terminus and a region at the C terminus that mediates interactions with Rna15. Rna15 contains a RNA recognition module (RRM) at the N terminus, followed by a hinge region. These two proteins are homologs of CstF-77 and CstF-64 in the cleavage stimulation factor (CstF) of the mammalian 3'-end processing machinery. We report the first crystal structure of Rna14 in complex with the hinge region of Rna15, and the structures of the HAT domain of Rna14 alone in two different crystal forms. The complex of the C-terminal region of Rna14 with the hinge region of Rna15 does not have strong interactions with the HAT domain of Rna14, and this complex is likely to function independently of the HAT domain. Like CstF-77, the HAT domain of Rna14 is also a tightly associated dimer with a highly elongated shape. However, there are large variations in the organization of this dimer among the Rna14 structures, and there are also significant structural differences to CstF-77. These observations suggest that the HAT domain and especially its dimer may have some inherent conformational variability.
Collapse
Affiliation(s)
- Ashley R. Paulson
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
16
|
Characterization of the Bacteroides fragilis bfr gene product identifies a bacterial DPS-like protein and suggests evolutionary links in the ferritin superfamily. J Bacteriol 2012; 194:15-27. [PMID: 22020642 PMCID: PMC3256617 DOI: 10.1128/jb.05260-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A factor contributing to the pathogenicity of Bacteroides fragilis, the most common anaerobic species isolated from clinical infections, is the bacterium's extreme aerotolerance, which allows survival in oxygenated tissues prior to anaerobic abscess formation. We investigated the role of the bacterioferritin-related (bfr) gene in the B. fragilis oxidative stress response. The bfr mRNA levels are increased in stationary phase or in response to O(2) or iron. In addition, bfr null mutants exhibit reduced aerotolerance, and the bfr gene product protects DNA from hydroxyl radical cleavage in vitro. Crystallographic studies revealed a protein with a dodecameric structure and greater similarity to an archaeal DNA protection in starved cells (DPS)-like protein than to the 24-subunit bacterioferritins. Similarity to the DPS-like (DPSL) protein extends to the subunit and includes a pair of conserved cysteine residues juxtaposed to a buried dimetal binding site within the four-helix bundle. Compared to archaeal DPSLs, however, this bacterial DPSL protein contains several unique features, including a significantly different conformation in the C-terminal tail that alters the number and location of pores leading to the central cavity and a conserved metal binding site on the interior surface of the dodecamer. Combined, these characteristics confirm this new class of miniferritin in the bacterial domain, delineate the similarities and differences between bacterial DPSL proteins and their archaeal homologs, allow corrected annotations for B. fragilis bfr and other dpsl genes within the bacterial domain, and suggest an evolutionary link within the ferritin superfamily that connects dodecameric DPS to the (bacterio)ferritin 24-mer.
Collapse
|
17
|
Forouhar F, Saadat N, Hussain M, Seetharaman J, Lee I, Janjua H, Xiao R, Shastry R, Acton TB, Montelione GT, Tong L. A large conformational change in the putative ATP pyrophosphatase PF0828 induced by ATP binding. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1323-1327. [PMID: 22102225 PMCID: PMC3212444 DOI: 10.1107/s1744309111031447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/03/2011] [Indexed: 05/31/2023]
Abstract
ATP pyrophosphatases (ATP PPases) are widely distributed in archaea and eukaryotes. They share an HUP domain at the N-terminus with a conserved PP-motif that interacts with the phosphates of ATP. The PF0828 protein from Pyrococcus furiosus is a member of the ATP PPase superfamily and it also has a 100-residue C-terminal extension that contains a strictly conserved EGG(E/D)xE(T/S) motif, which has been named the EGT-motif. Here, crystal structures of PF0828 alone and in complex with ATP or AMP are reported. The HUP domain contains a central five-stranded β-sheet that is surrounded by four helices, as in other related structures. The C-terminal extension forms a separate domain, named the EGT domain, which makes tight interactions with the HUP domain, bringing the EGT-motif near to the PP-motif and defining the putative active site of PF0828. Both motifs interact with the phosphate groups of ATP. A loop in the HUP domain undergoes a large conformational change to recognize the adenine base of ATP. In solution and in the crystal PF0828 is a dimer formed by the side-by-side arrangement of the HUP domains of the two monomers. The putative active site is located far from the dimer interface.
Collapse
Affiliation(s)
- Farhad Forouhar
- Northeast Structural Genomics Consortium, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Nabila Saadat
- Northeast Structural Genomics Consortium, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Munif Hussain
- Northeast Structural Genomics Consortium, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jayaraman Seetharaman
- Northeast Structural Genomics Consortium, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Insun Lee
- Northeast Structural Genomics Consortium, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Haleema Janjua
- Northeast Structural Genomics Consortium, USA
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Rong Xiao
- Northeast Structural Genomics Consortium, USA
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Ritu Shastry
- Northeast Structural Genomics Consortium, USA
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Thomas B. Acton
- Northeast Structural Genomics Consortium, USA
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Gaetano T. Montelione
- Northeast Structural Genomics Consortium, USA
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Liang Tong
- Northeast Structural Genomics Consortium, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
18
|
Mao B, Guan R, Montelione GT. Improved technologies now routinely provide protein NMR structures useful for molecular replacement. Structure 2011; 19:757-66. [PMID: 21645849 DOI: 10.1016/j.str.2011.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/07/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Molecular replacement (MR) is widely used for addressing the phase problem in X-ray crystallography. Historically, crystallographers have had limited success using NMR structures as MR search models. Here, we report a comprehensive investigation of the utility of protein NMR ensembles as MR search models, using data for 25 pairs of X-ray and NMR structures solved and refined using modern NMR methods. Starting from NMR ensembles prepared by an improved protocol, FindCore, correct MR solutions were obtained for 22 targets. Based on these solutions, automatic model rebuilding could be done successfully. Rosetta refinement of NMR structures provided MR solutions for another two proteins. We also demonstrate that such properly prepared NMR ensembles and X-ray crystal structures have similar performance when used as MR search models for homologous structures, particularly for targets with sequence identity >40%.
Collapse
Affiliation(s)
- Binchen Mao
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, and Robert Wood Johnson Medical School, UMDNJ, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
19
|
Chirikjian GS. Mathematical aspects of molecular replacement. I. Algebraic properties of motion spaces. Acta Crystallogr A 2011; 67:435-46. [PMID: 21844648 PMCID: PMC3171898 DOI: 10.1107/s0108767311021003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 06/09/2011] [Indexed: 11/10/2022] Open
Abstract
Molecular replacement (MR) is a well established method for phasing of X-ray diffraction patterns for crystals composed of biological macromolecules of known chemical structure but unknown conformation. In MR, the starting point is known structural domains that are presumed to be similar in shape to those in the macromolecular structure which is to be determined. A search is then performed over positions and orientations of the known domains within a model of the crystallographic asymmetric unit so as to best match a computed diffraction pattern with experimental data. Unlike continuous rigid-body motions in Euclidean space and the discrete crystallographic space groups, the set of motions over which molecular replacement searches are performed does not form a group under the operation of composition, which is shown here to lack the associative property. However, the set of rigid-body motions in the asymmetric unit forms another mathematical structure called a quasigroup, which can be identified with right-coset spaces of the full group of rigid-body motions with respect to the chiral space group of the macromolecular crystal. The algebraic properties of this space of motions are articulated here.
Collapse
Affiliation(s)
- Gregory S Chirikjian
- Department of Mechanical Engineering, Johns Hopkins University, 223 Latrobe Hall, 3400 N. Charles Street, Baltimore, Maryland, MD 21218, USA.
| |
Collapse
|
20
|
Huang KY, Amodeo GA, Tong L, McDermott A. The structure of human ubiquitin in 2-methyl-2,4-pentanediol: a new conformational switch. Protein Sci 2011; 20:630-9. [PMID: 21432937 PMCID: PMC3064841 DOI: 10.1002/pro.584] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A new crystal structure of human ubiquitin is reported at 1.8 Å resolution. Compared with the other known crystal structure or the solution NMR structure of monomeric human ubiquitin, this new structure is similar in its overall fold but differs with respect to the conformation of the backbone in a surface-exposed region. The conformation reported here resembles conformations previously seen in complex with deubiquinating enzymes, wherein the Asp52/Gly53 main chain and Glu24 side chain move. This movement exposes the backbone carbonyl of Asp52 to the exterior of the molecule, making it possible to engage in hydrogen-bond contacts with neighboring molecules, rather than in an internal hydrogen bond with the backbone of Glu24. This particular crystal form of ubiquitin has been used in a large number of solid state NMR studies. The structure described here elucidates the origin of many of the chemical shift differences comparing solution and solid state studies.
Collapse
Affiliation(s)
- Kuo Ying Huang
- Department of Chemistry, Columbia UniversityNew York, New York 10027
| | - Gabriele A Amodeo
- Department of Biological Science, Columbia UniversityNew York, New York 10027
| | - Liang Tong
- Department of Biological Science, Columbia UniversityNew York, New York 10027
| | - Ann McDermott
- Department of Chemistry, Columbia UniversityNew York, New York 10027,*Correspondence to: Ann McDermott, Columbia University, Department of Chemistry, MC3113, New York, NY 10027. E-mail:
| |
Collapse
|
21
|
Bai Y, Srivastava SK, Chang JH, Manley JL, Tong L. Structural basis for dimerization and activity of human PAPD1, a noncanonical poly(A) polymerase. Mol Cell 2011; 41:311-20. [PMID: 21292163 PMCID: PMC3057501 DOI: 10.1016/j.molcel.2011.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 10/04/2010] [Accepted: 12/18/2010] [Indexed: 02/06/2023]
Abstract
Poly(A) polymerases (PAPs) are found in most living organisms and have important roles in RNA function and metabolism. Here, we report the crystal structure of human PAPD1, a noncanonical PAP that can polyadenylate RNAs in the mitochondria (also known as mtPAP) and oligouridylate histone mRNAs (TUTase1). The overall structure of the palm and fingers domains is similar to that in the canonical PAPs. The active site is located at the interface between the two domains, with a large pocket that can accommodate the substrates. The structure reveals the presence of a previously unrecognized domain in the N-terminal region of PAPD1, with a backbone fold that is similar to that of RNP-type RNA binding domains. This domain (named the RL domain), together with a β-arm insertion in the palm domain, contributes to dimerization of PAPD1. Surprisingly, our mutagenesis and biochemical studies show that dimerization is required for the catalytic activity of PAPD1.
Collapse
Affiliation(s)
- Yun Bai
- Department of Biological Sciences Columbia University New York, NY10027, USA
| | | | - Jeong Ho Chang
- Department of Biological Sciences Columbia University New York, NY10027, USA
| | - James L. Manley
- Department of Biological Sciences Columbia University New York, NY10027, USA
| | - Liang Tong
- Department of Biological Sciences Columbia University New York, NY10027, USA
| |
Collapse
|
22
|
Arbing MA, Handelman SK, Kuzin AP, Verdon G, Wang C, Su M, Rothenbacher FP, Abashidze M, Liu M, Hurley JM, Xiao R, Acton T, Inouye M, Montelione GT, Woychik NA, Hunt JF. Crystal structures of Phd-Doc, HigA, and YeeU establish multiple evolutionary links between microbial growth-regulating toxin-antitoxin systems. Structure 2010; 18:996-1010. [PMID: 20696400 DOI: 10.1016/j.str.2010.04.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 03/22/2010] [Accepted: 04/21/2010] [Indexed: 10/19/2022]
Abstract
Bacterial toxin-antitoxin (TA) systems serve a variety of physiological functions including regulation of cell growth and maintenance of foreign genetic elements. Sequence analyses suggest that TA families are linked by complex evolutionary relationships reflecting likely swapping of functional domains between different TA families. Our crystal structures of Phd-Doc from bacteriophage P1, the HigA antitoxin from Escherichia coli CFT073, and YeeU of the YeeUWV systems from E. coli K12 and Shigella flexneri confirm this inference and reveal additional, unanticipated structural relationships. The growth-regulating Doc toxin exhibits structural similarity to secreted virulence factors that are toxic for eukaryotic target cells. The Phd antitoxin possesses the same fold as both the YefM and NE2111 antitoxins that inhibit structurally unrelated toxins. YeeU, which has an antitoxin-like activity that represses toxin expression, is structurally similar to the ribosome-interacting toxins YoeB and RelE. These observations suggest extensive functional exchanges have occurred between TA systems during bacterial evolution.
Collapse
Affiliation(s)
- Mark A Arbing
- Department of Biological Sciences, Columbia University, 702 Fairchild Center, MC2434, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Crystal structure of the alpha(6)beta(6) holoenzyme of propionyl-coenzyme A carboxylase. Nature 2010; 466:1001-5. [PMID: 20725044 PMCID: PMC2925307 DOI: 10.1038/nature09302] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 06/11/2010] [Indexed: 02/08/2023]
Abstract
Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an alpha(6)beta(6) dodecamer, with a molecular mass of 750 kDa. The alpha-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the beta-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-A resolution of a bacterial PCC alpha(6)beta(6) holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-A resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the alpha-subunits are arranged as monomers in the holoenzyme, decorating a central beta(6) hexamer. A hitherto unrecognized domain in the alpha-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the beta-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 A, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the beta-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).
Collapse
|
24
|
Xiang K, Nagaike T, Xiang S, Kilic T, Beh MM, Manley JL, Tong L. Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex. Nature 2010; 467:729-33. [PMID: 20861839 PMCID: PMC3038789 DOI: 10.1038/nature09391] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 08/03/2010] [Indexed: 12/19/2022]
Abstract
Symplekin (Pta1 in yeast) is a scaffold in the large protein complex that is required for 3′-end cleavage and polyadenylation of eukaryotic messenger RNA precursors (pre-mRNAs) 1–4, and also participates in transcription initiation and termination by RNA polymerase II (Pol II) 5,6. Symplekin mediates interactions among many different proteins in this machinery 1,2,7–9, although the molecular basis for its function is not known. Here we report the crystal structure at 2.4 Å resolution of the N-terminal domain (residues 30–340) of human symplekin (Symp-N) in a ternary complex with the Pol II C-terminal domain (CTD) Ser5 phosphatase Ssu72 7,10–17 and a CTD Ser5 phosphopeptide. The N-terminal domain of symplekin has the ARM or HEAT fold, with seven pairs of anti-parallel α-helices arranged in the shape of an arc. The structure of Ssu72 has some similarity to that of low-molecular-weight phosphotyrosine protein phosphatase 18,19, although Ssu72 has a unique active site landscape as well as extra structural features at the C-terminus that is important for interaction with symplekin. Ssu72 is bound to the concave face of symplekin, and engineered mutations in this interface can abolish interactions between the two proteins. The CTD peptide is bound in the active site of Ssu72, unexpectedly with the pSer5-Pro6 peptide bond in the cis configuration, which contrasts with all other known CTD peptide conformations 20,21. While the active site of Ssu72 is about 25 Å away from the interface with symplekin, we found that the symplekin N-terminal domain stimulates Ssu72 CTD phosphatase activity in vitro. Furthermore, the N-terminal domain of symplekin inhibits polyadenylation in vitro, but importantly only when coupled to transcription. As catalytically active Ssu72 overcomes this inhibition, our results demonstrate a role for mammalian Ssu72 in transcription-coupled pre-mRNA 3′-end processing.
Collapse
Affiliation(s)
- Kehui Xiang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Rudolph MJ, Amodeo GA, Tong L. An inhibited conformation for the protein kinase domain of the Saccharomyces cerevisiae AMPK homolog Snf1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:999-1002. [PMID: 20823513 DOI: 10.1107/s1744309110028265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 07/14/2010] [Indexed: 11/10/2022]
Abstract
AMP-activated protein kinase (AMPK) is a master metabolic regulator for controlling cellular energy homeostasis. Its homolog in yeast, SNF1, is activated in response to glucose depletion and other stresses. The catalytic (alpha) subunit of AMPK/SNF1 in yeast (Snf1) contains a protein Ser/Thr kinase domain (KD), an auto-inhibitory domain (AID) and a region that mediates interactions with the two regulatory (beta and gamma) subunits. Here, the crystal structure of residues 41-440 of Snf1, which include the KD and AID, is reported at 2.4 A resolution. The AID is completely disordered in the crystal. A new inhibited conformation of the KD is observed in a DFG-out conformation and with the glycine-rich loop adopting a structure that blocks ATP binding to the active site.
Collapse
Affiliation(s)
- Michael J Rudolph
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
26
|
Basi GS, Feinberg H, Oshidari F, Anderson J, Barbour R, Baker J, Comery TA, Diep L, Gill D, Johnson-Wood K, Goel A, Grantcharova K, Lee M, Li J, Partridge A, Griswold-Prenner I, Piot N, Walker D, Widom A, Pangalos MN, Seubert P, Jacobsen JS, Schenk D, Weis WI. Structural correlates of antibodies associated with acute reversal of amyloid beta-related behavioral deficits in a mouse model of Alzheimer disease. J Biol Chem 2010; 285:3417-27. [PMID: 19923222 PMCID: PMC2823416 DOI: 10.1074/jbc.m109.045187] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/02/2009] [Indexed: 01/08/2023] Open
Abstract
Immunotherapy targeting of amyloid beta (Abeta) peptide in transgenic mouse models of Alzheimer disease (AD) has been widely demonstrated to resolve amyloid deposition as well as associated neuronal, glial, and inflammatory pathologies. These successes have provided the basis for ongoing clinical trials of immunotherapy for treatment of AD in humans. Acute as well as chronic Abeta-targeted immunotherapy has also been demonstrated to reverse Abeta-related behavioral deficits assessing memory in AD transgenic mouse models. We observe that three antibodies targeting the same linear epitope of Abeta, Abeta(3-7), differ in their ability to reverse contextual fear deficits in Tg2576 mice in an acute testing paradigm. Reversal of contextual fear deficit by the antibodies does not correlate with in vitro recognition of Abeta in a consistent or correlative manner. To better define differences in antigen recognition at the atomic level, we determined crystal structures of Fab fragments in complex with Abeta. The conformation of the Abeta peptide recognized by all three antibodies was highly related and is also remarkably similar to that observed in independently reported Abeta:antibody crystal structures. Sequence and structural differences between the antibodies, particularly in CDR3 of the heavy chain variable region, are proposed to account for differing in vivo properties of the antibodies under study. These findings provide a structural basis for immunotherapeutic strategies targeting Abeta species postulated to underlie cognitive deficits in AD.
Collapse
Affiliation(s)
- Guriqbal S Basi
- Elan Pharmaceuticals, Incorporated, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yu LPC, Xiang S, Lasso G, Gil D, Valle M, Tong L. A symmetrical tetramer for S. aureus pyruvate carboxylase in complex with coenzyme A. Structure 2009; 17:823-32. [PMID: 19523900 DOI: 10.1016/j.str.2009.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/31/2009] [Accepted: 04/07/2009] [Indexed: 01/15/2023]
Abstract
Pyruvate carboxylase (PC) is a conserved metabolic enzyme with important cellular functions. We report crystallographic and cryo-electron microscopy (EM) studies of Staphylococcus aureus PC (SaPC) in complex with acetyl-CoA, an allosteric activator, and mutagenesis, biochemical, and structural studies of the biotin binding site of its carboxyltransferase (CT) domain. The disease-causing A610T mutation abolishes catalytic activity by blocking biotin binding to the CT active site, and Thr908 might play a catalytic role in the CT reaction. The crystal structure of SaPC in complex with CoA reveals a symmetrical tetramer, with one CoA molecule bound to each monomer, and cryo-EM studies confirm the symmetrical nature of the tetramer. These observations are in sharp contrast to the highly asymmetrical tetramer of Rhizobium etli PC in complex with ethyl-CoA. Our structural information suggests that acetyl-CoA promotes a conformation for the dimer of the biotin carboxylase domain of PC that might be catalytically more competent.
Collapse
Affiliation(s)
- Linda P C Yu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
28
|
Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB. Proc Natl Acad Sci U S A 2009; 106:14315-20. [PMID: 19706517 DOI: 10.1073/pnas.0812938106] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis-Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N(6)-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher k(cat) and K(m) for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this "k(cat)/K(m) compensation," which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O(2) substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O(2) binding before nucleotide substrate binding.
Collapse
|
29
|
Heinrich D, Diederichsen U, Rudolph MG. Lys314 is a nucleophile in non-classical reactions of orotidine-5'-monophosphate decarboxylase. Chemistry 2009; 15:6619-25. [PMID: 19472232 DOI: 10.1002/chem.200900397] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Orotidine-5'-monophosphate decarboxylase (OMPD) catalyzes the decarboxylation of orotidine-5'-monophosphate (OMP) to uridine-5'-monophosphate (UMP) in an extremely proficient manner. The reaction does not require any cofactors and proceeds by an unknown mechanism. In addition to decarboxylation, OMPD is able to catalyze other reactions. We show that several C6-substituted UMP derivatives undergo hydrolysis or substitution reactions that depend on a lysine residue (Lys314) in the OMPD active site. 6-Cyano-UMP is converted to UMP, and UMP derivatives with good leaving groups inhibit OMPD by a suicide mechanism in which Lys314 covalently binds to the substrate. These non-classical reactivities of human OMPD were characterized by cocrystallization and freeze-trapping experiments with wild-type OMPD and two active-site mutants by using substrate and inhibitor nucleotides. The structures show that the C6-substituents are not coplanar with the pyrimidine ring. The extent of this substrate distortion is a function of the substituent geometry. Structure-based mechanisms for the reaction of 6-substituted UMP derivatives are extracted in accordance with results from mutagenesis, mass spectrometry, and OMPD enzyme activity. The Lys314-based mechanisms explain the chemodiversity of OMPD, and offer a strategy to design mechanism-based inhibitors that could be used for antineoplastic purposes for example.
Collapse
Affiliation(s)
- Daniel Heinrich
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | | | | |
Collapse
|
30
|
Structure of the vesicular stomatitis virus nucleocapsid in complex with the nucleocapsid-binding domain of the small polymerase cofactor, P. Proc Natl Acad Sci U S A 2009; 106:11713-8. [PMID: 19571006 PMCID: PMC2710649 DOI: 10.1073/pnas.0903228106] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The negative-strand RNA viruses (NSRVs) are unique because their nucleocapsid, not the naked RNA, is the active template for transcription and replication. The viral polymerase of nonsegmented NSRVs contains a large polymerase catalytic subunit (L) and a nonenzymatic cofactor, the phosphoprotein (P). Insight into how P delivers the polymerase complex to the nucleocapsid has long been pursued by reverse genetics and biochemical approaches. Here, we present the X-ray crystal structure of the C-terminal domain of P of vesicular stomatitis virus, a prototypic nonsegmented NSRV, bound to nucleocapsid-like particles. P binds primarily to the C-terminal lobe of 2 adjacent N proteins within the nucleocapsid. This binding mode is exclusive to the nucleocapsid, not the nucleocapsid (N) protein in other existing forms. Localization of phosphorylation sites within P and their proximity to the RNA cavity give insight into how the L protein might be oriented to access the RNA template.
Collapse
|
31
|
Structural rearrangements in the active site of the Thermus thermophilus 16S rRNA methyltransferase KsgA in a binary complex with 5'-methylthioadenosine. J Mol Biol 2009; 388:271-82. [PMID: 19285505 DOI: 10.1016/j.jmb.2009.02.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/16/2009] [Accepted: 02/28/2009] [Indexed: 11/21/2022]
Abstract
Posttranscriptional modification of ribosomal RNA (rRNA) occurs in all kingdoms of life. The S-adenosyl-L-methionine-dependent methyltransferase KsgA introduces the most highly conserved rRNA modification, the dimethylation of A1518 and A1519 of 16S rRNA. Loss of this dimethylation confers resistance to the antibiotic kasugamycin. Here, we report biochemical studies and high-resolution crystal structures of KsgA from Thermus thermophilus. Methylation of 30S ribosomal subunits by T. thermophilus KsgA is more efficient at low concentrations of magnesium ions, suggesting that partially unfolded RNA is the preferred substrate. The overall structure is similar to that of other methyltransferases but contains an additional alpha-helix in a novel N-terminal extension. Comparison of the apoenzyme with complex structures with 5'-methylthioadenosine or adenosine bound in the cofactor-binding site reveals novel features when compared with related enzymes. Several mobile loop regions that restrict access to the cofactor-binding site are observed. In addition, the orientation of residues in the substrate-binding site indicates that conformational changes are required for binding two adjacent residues of the substrate rRNA.
Collapse
|
32
|
Chou CY, Yu LPC, Tong L. Crystal structure of biotin carboxylase in complex with substrates and implications for its catalytic mechanism. J Biol Chem 2009; 284:11690-7. [PMID: 19213731 DOI: 10.1074/jbc.m805783200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biotin-dependent carboxylases are widely distributed in nature and have important functions in many cellular processes. These enzymes share a conserved biotin carboxylase (BC) component, which catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the donor. Despite the availability of a large amount of biochemical and structural information on BC, the molecular basis for its catalysis is currently still poorly understood. We report here the crystal structure at 2.0 A resolution of wild-type Escherichia coli BC in complex with its substrates biotin, bicarbonate, and Mg-ADP. The structure suggests that Glu(296) is the general base that extracts the proton from bicarbonate, and Arg(338) is the residue that stabilizes the enolate biotin intermediate in the carboxylation reaction. The B domain of BC is positioned closer to the active site, leading to a 2-A shift in the bound position of the adenine nucleotide and bringing it near the bicarbonate for catalysis. One of the oxygen atoms of bicarbonate is located in the correct position to initiate the nucleophilic attack on ATP to form the carboxyphosphate intermediate. This oxygen is also located close to the N1' atom of biotin, providing strong evidence that the phosphate group, derived from decomposition of carboxyphosphate, is the general base that extracts the proton on this N1' atom. The structural observations are supported by mutagenesis and kinetic studies. Overall, this first structure of BC in complex with substrates offers unprecedented insights into the molecular mechanism for the catalysis by this family of enzymes.
Collapse
Affiliation(s)
- Chi-Yuan Chou
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
33
|
Swanson KD, Tang Y, Ceccarelli DF, Poy F, Sliwa JP, Neel BG, Eck MJ. The Skap-hom dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch. Mol Cell 2009; 32:564-75. [PMID: 19026786 DOI: 10.1016/j.molcel.2008.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 08/12/2008] [Accepted: 09/29/2008] [Indexed: 12/20/2022]
Abstract
PH domains, by binding to phosphoinositides, often serve as membrane-targeting modules. Using crystallographic, biochemical, and cell biological approaches, we have uncovered a mechanism that the integrin-signaling adaptor Skap-hom uses to mediate cytoskeletal interactions. Skap-hom is a homodimer containing an N-terminal four-helix bundle dimerization domain, against which its two PH domains pack in a conformation incompatible with phosphoinositide binding. The isolated PH domains bind PI[3,4,5]P(3), and mutations targeting the dimerization domain or the PH domain's PI[3,4,5]P(3)-binding pocket prevent Skap-hom localization to ruffles. Targeting is retained when the PH domain is deleted or by combined mutation of the PI[3,4,5]P(3)-binding pocket and the PH/dimerization domain interface. Thus, the dimerization and PH domain form a PI[3,4,5]P(3)-responsive molecular switch that controls Skap-hom function.
Collapse
Affiliation(s)
- Kenneth D Swanson
- Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Li H, Jogl G. Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator). J Biol Chem 2008; 284:1748-54. [PMID: 19015259 DOI: 10.1074/jbc.m807821200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Activation of the p53 tumor suppressor by cellular stress leads to variable responses ranging from growth inhibition to apoptosis. TIGAR is a novel p53-inducible gene that inhibits glycolysis by reducing cellular levels of fructose-2,6-bisphosphate, an activator of glycolysis and inhibitor of gluconeogenesis. Here we describe structural and biochemical studies of TIGAR from Danio rerio. The overall structure forms a histidine phosphatase fold with a phosphate molecule coordinated to the catalytic histidine residue and a second phosphate molecule in a position not observed in other phosphatases. The recombinant human and zebra fish enzymes hydrolyze fructose-2,6-bisphosphate as well as fructose-1,6-bisphosphate but not fructose 6-phosphate in vitro. The TIGAR active site is open and positively charged, consistent with its enzymatic function as bisphosphatase. The closest related structures are the bacterial broad specificity phosphatase PhoE and the fructose-2,6-bisphosphatase domain of the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The structural comparison shows that TIGAR combines an accessible active site as observed in PhoE with a charged substrate-binding pocket as seen in the fructose-2,6-bisphosphatase domain of the bifunctional enzyme.
Collapse
Affiliation(s)
- Hua Li
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
35
|
Demirci H, Gregory ST, Dahlberg AE, Jogl G. Multiple-site trimethylation of ribosomal protein L11 by the PrmA methyltransferase. Structure 2008; 16:1059-66. [PMID: 18611379 DOI: 10.1016/j.str.2008.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/24/2008] [Accepted: 03/28/2008] [Indexed: 10/21/2022]
Abstract
Ribosomal protein L11 is a universally conserved component of the large subunit, and plays a significant role during initiation, elongation, and termination of protein synthesis. In Escherichia coli, the lysine methyltransferase PrmA trimethylates the N-terminal alpha-amino group and the epsilon-amino groups of Lys3 and Lys39. Here, we report four PrmA-L11 complex structures in different orientations with respect to the PrmA active site. Two structures capture the L11 N-terminal alpha-amino group in the active site in a trimethylated post-catalytic state and in a dimethylated state with bound S-adenosyl-L-homocysteine. Two other structures show L11 in a catalytic orientation to modify Lys39 and in a noncatalytic orientation. The comparison of complex structures in different orientations with a minimal substrate recognition complex shows that the binding mode remains conserved in all L11 orientations, and that substrate orientation is brought about by the unusual interdomain flexibility of PrmA.
Collapse
Affiliation(s)
- Hasan Demirci
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
36
|
Green T, Grigorian A, Klyuyeva A, Tuganova A, Luo M, Popov KM. Structural and functional insights into the molecular mechanisms responsible for the regulation of pyruvate dehydrogenase kinase 2. J Biol Chem 2008; 283:15789-98. [PMID: 18387944 PMCID: PMC2414299 DOI: 10.1074/jbc.m800311200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/14/2008] [Indexed: 11/06/2022] Open
Abstract
PDHK2 is a mitochondrial protein kinase that phosphorylates pyruvate dehydrogenase complex, thereby down-regulating the oxidation of pyruvate. Here, we present the crystal structure of PDHK2 bound to the inner lipoyl-bearing domain of dihydrolipoamide transacetylase (L2) determined with or without bound adenylyl imidodiphosphate. Both structures reveal a PDHK2 dimer complexed with two L2 domains. Comparison with apo-PDHK2 shows that L2 binding causes rearrangements in PDHK2 structure that affect the L2- and E1-binding sites. Significant differences are found between PDHK2 and PDHK3 with respect to the structure of their lipoyllysine-binding cavities, providing the first structural support to a number of studies showing that these isozymes are markedly different with respect to their affinity for the L2 domain. Both structures display a novel type II potassium-binding site located on the PDHK2 interface with the L2 domain. Binding of potassium ion at this site rigidifies the interface and appears to be critical in determining the strength of L2 binding. Evidence is also presented that potassium ions are indispensable for the cross-talk between the nucleotide- and L2-binding sites of PDHK2. The latter is believed to be essential for the movement of PDHK2 along the surface of the transacetylase scaffold.
Collapse
Affiliation(s)
- Todd Green
- Departments of Microbiology and
Biochemistry and Molecular Genetics, Schools of
Medicine and Dentistry, University of Alabama at Birmingham, Birmingham,
Alabama 35294
| | - Alexei Grigorian
- Departments of Microbiology and
Biochemistry and Molecular Genetics, Schools of
Medicine and Dentistry, University of Alabama at Birmingham, Birmingham,
Alabama 35294
| | - Alla Klyuyeva
- Departments of Microbiology and
Biochemistry and Molecular Genetics, Schools of
Medicine and Dentistry, University of Alabama at Birmingham, Birmingham,
Alabama 35294
| | - Alina Tuganova
- Departments of Microbiology and
Biochemistry and Molecular Genetics, Schools of
Medicine and Dentistry, University of Alabama at Birmingham, Birmingham,
Alabama 35294
| | - Ming Luo
- Departments of Microbiology and
Biochemistry and Molecular Genetics, Schools of
Medicine and Dentistry, University of Alabama at Birmingham, Birmingham,
Alabama 35294
| | - Kirill M. Popov
- Departments of Microbiology and
Biochemistry and Molecular Genetics, Schools of
Medicine and Dentistry, University of Alabama at Birmingham, Birmingham,
Alabama 35294
| |
Collapse
|
37
|
Forouhar F, Abashidze M, Xu H, Grochowski LL, Seetharaman J, Hussain M, Kuzin A, Chen Y, Zhou W, Xiao R, Acton TB, Montelione GT, Galinier A, White RH, Tong L. Molecular insights into the biosynthesis of the F420 coenzyme. J Biol Chem 2008; 283:11832-40. [PMID: 18252724 PMCID: PMC2431047 DOI: 10.1074/jbc.m710352200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/28/2008] [Indexed: 11/06/2022] Open
Abstract
Coenzyme F(420), a hydride carrier, is found in Archaea and some bacteria and has crucial roles in methanogenesis, antibiotic biosynthesis, DNA repair, and activation of antitubercular compounds. CofD, 2-phospho-l-lactate transferase, catalyzes the last step in the biosynthesis of F(420)-0 (F(420) without polyglutamate), by transferring the lactyl phosphate moiety of lactyl(2)diphospho-(5')guanosine to 7,8-didemethyl-8-hydroxy-5-deazariboflavin ribitol (Fo). CofD is highly conserved among F(420)-producing organisms, and weak sequence homologs are also found in non-F(420)-producing organisms. This superfamily does not share any recognizable sequence conservation with other proteins. Here we report the first crystal structures of CofD, the free enzyme and two ternary complexes, with Fo and P(i) or with Fo and GDP, from Methanosarcina mazei. The active site is located at the C-terminal end of a Rossmann fold core, and three large insertions make significant contributions to the active site and dimer formation. The observed binding modes of Fo and GDP can explain known biochemical properties of CofD and are also supported by our binding assays. The structures provide significant molecular insights into the biosynthesis of the F(420) coenzyme. Large structural differences in the active site region of the non-F(420)-producing CofD homologs suggest that they catalyze a different biochemical reaction.
Collapse
Affiliation(s)
- Farhad Forouhar
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xiang S, Tong L. Crystal structures of human and Staphylococcus aureus pyruvate carboxylase and molecular insights into the carboxyltransfer reaction. Nat Struct Mol Biol 2008; 15:295-302. [PMID: 18297087 DOI: 10.1038/nsmb.1393] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/23/2008] [Indexed: 12/12/2022]
Abstract
Pyruvate carboxylase (PC) catalyzes the biotin-dependent production of oxaloacetate and has important roles in gluconeogenesis, lipogenesis, insulin secretion and other cellular processes. PC contains the biotin carboxylase (BC), carboxyltransferase (CT) and biotin-carboxyl carrier protein (BCCP) domains. We report here the crystal structures at 2.8-A resolution of full-length PC from Staphylococcus aureus and the C-terminal region (missing only the BC domain) of human PC. A conserved tetrameric association is observed for both enzymes, and our structural and mutagenesis studies reveal a previously uncharacterized domain, the PC tetramerization (PT) domain, which is important for oligomerization. A BCCP domain is located in the active site of the CT domain, providing the first molecular insights into how biotin participates in the carboxyltransfer reaction. There are dramatic differences in domain positions in the monomer and the organization of the tetramer between these enzymes and the PC from Rhizobium etli.
Collapse
Affiliation(s)
- Song Xiang
- Department of Biological Sciences, 212 Amsterdam Avenue, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
39
|
You Z, Omura S, Ikeda H, Cane DE, Jogl G. Crystal structure of the non-heme iron dioxygenase PtlH in pentalenolactone biosynthesis. J Biol Chem 2007; 282:36552-60. [PMID: 17942405 PMCID: PMC3010413 DOI: 10.1074/jbc.m706358200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The non-heme iron dioxygenase PtlH from the soil organism Streptomyces avermitilis is a member of the iron(II)/alpha-ketoglutarate-dependent dioxygenase superfamily and catalyzes an essential reaction in the biosynthesis of the sesquiterpenoid antibiotic pentalenolactone. To investigate the structural basis for substrate recognition and catalysis, we have determined the x-ray crystal structure of PtlH in several complexes with the cofactors iron, alpha-ketoglutarate, and the non-reactive enantiomer of the substrate, ent-1-deoxypentalenic acid, in four different crystal forms to up to 1.31 A resolution. The overall structure of PtlH forms a double-stranded barrel helix fold, and the cofactor-binding site for iron and alpha-ketoglutarate is similar to other double-stranded barrel helix fold enzymes. Additional secondary structure elements that contribute to the substrate-binding site in PtlH are not conserved in other double-stranded barrel helix fold enzymes. Binding of the substrate enantiomer induces a reorganization of the monoclinic crystal lattice leading to a disorder-order transition of a C-terminal alpha-helix. The newly formed helix blocks the major access to the active site and effectively traps the bound substrate. Kinetic analysis of wild type and site-directed mutant proteins confirms a critical function of two arginine residues in substrate binding, while simulated docking of the enzymatic reaction product reveals the likely orientation of bound substrate.
Collapse
Affiliation(s)
- Zheng You
- Department of Chemistry, Brown University, Box H, Providence, RI 02912-9108, USA
| | - Satoshi Omura
- The Kitasato Institute, 9-1, Shirokane 5-chome, Minato-ku, Tokyo 108-8642, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | - David E. Cane
- Department of Chemistry, Brown University, Box H, Providence, RI 02912-9108, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G, Providence, RI 02912, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G, Providence, RI 02912, USA
| |
Collapse
|
40
|
Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta-Stogniew E, Ramos JE, Forouhar F, Neely H, Seetharaman J, Camilli A, Hunt JF. The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 2007; 26:5153-66. [PMID: 18034161 DOI: 10.1038/sj.emboj.7601918] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 10/18/2007] [Indexed: 01/18/2023] Open
Abstract
The second messenger cyclic diguanylate (c-di-GMP) controls the transition between motile and sessile growth in eubacteria, but little is known about the proteins that sense its concentration. Bioinformatics analyses suggested that PilZ domains bind c-di-GMP and allosterically modulate effector pathways. We have determined a 1.9 A crystal structure of c-di-GMP bound to VCA0042/PlzD, a PilZ domain-containing protein from Vibrio cholerae. Either this protein or another specific PilZ domain-containing protein is required for V. cholerae to efficiently infect mice. VCA0042/PlzD comprises a C-terminal PilZ domain plus an N-terminal domain with a similar beta-barrel fold. C-di-GMP contacts seven of the nine strongly conserved residues in the PilZ domain, including three in a seven-residue long N-terminal loop that undergoes a conformational switch as it wraps around c-di-GMP. This switch brings the PilZ domain into close apposition with the N-terminal domain, forming a new allosteric interaction surface that spans these domains and the c-di-GMP at their interface. The very small size of the N-terminal conformational switch is likely to explain the facile evolutionary diversification of the PilZ domain.
Collapse
Affiliation(s)
- Jordi Benach
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Benach J, Wang L, Chen Y, Ho CK, Lee S, Seetharaman J, Xiao R, Acton TB, Montelione GT, Deng H, Sun R, Tong L. Structural and Functional Studies of the Abundant Tegument Protein ORF52 from Murine Gammaherpesvirus 68. J Biol Chem 2007; 282:31534-41. [PMID: 17699518 DOI: 10.1074/jbc.m705637200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tegument is a layer of proteins between the nucleocapsid and the envelope of herpesviruses. The functions of most tegument proteins are still poorly understood. In murine gammaherpesvirus 68, ORF52 is an abundant tegument protein of 135 residues that is required for the assembly and release of infectious virus particles. To help understand the molecular basis for the function of this protein, we have determined its crystal structure at 2.1 A resolution. The structure reveals a dimeric association of this protein. Interestingly, an N-terminal alpha-helix that assumes different conformation in the two monomers of the dimer mediates the formation of an asymmetrical tetramer and contains many highly conserved residues. Structural and sequence analyses suggest that this helix is more likely involved in interactions with other components of the tegument or nucleocapsid of the virus and that ORF52 functions as a symmetrical dimer. The asymmetrical tetramer of ORF52 may be a "latent" form of the protein, when it is not involved in virion assembly. The self-association of ORF52 has been confirmed by co-immunoprecipitation and fluorescence resonance energy transfer experiments. Deletion of the N-terminal alpha-helix, as well as mutation of the conserved Arg(95) residue, abolished the function of ORF52. The results of the functional studies are fully consistent with the structural observations and indicate that the N-terminal alpha-helix is a crucial site of interaction for ORF52.
Collapse
Affiliation(s)
- Jordi Benach
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chirifu M, Hayashi C, Nakamura T, Toma S, Shuto T, Kai H, Yamagata Y, Davis SJ, Ikemizu S. Crystal structure of the IL-15-IL-15Ralpha complex, a cytokine-receptor unit presented in trans. Nat Immunol 2007; 8:1001-7. [PMID: 17643103 DOI: 10.1038/ni1492] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 06/20/2007] [Indexed: 12/11/2022]
Abstract
Interleukin 15 (IL-15) and IL-2, which promote the survival of memory CD8(+) T cells and regulatory T cells, respectively, bind receptor complexes that share beta- and gamma-signaling subunits. Receptor specificity is provided by unique, nonsignaling alpha-subunits. Whereas IL-2 receptor-alpha (IL-2Ralpha) is expressed together in cis with the beta- and gamma-subunits on T cells and B cells, IL-15Ralpha is expressed in trans on antigen-presenting cells. Here we present a 1.85-A crystal structure of the human IL-15-IL-15Ralpha complex. The structure provides insight into the molecular basis of the specificity of cytokine recognition and emphasizes the importance of water in generating this very high-affinity complex. Despite very low IL-15-IL-2 sequence homology and distinct receptor architecture, the topologies of the IL-15-IL-15Ralpha and IL-2-IL-2Ralpha complexes are very similar. Our data raise the possibility that IL-2, like IL-15, might be capable of being presented in trans in the context of its unique receptor alpha-chain.
Collapse
Affiliation(s)
- Mami Chirifu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Forouhar F, Kuzin A, Seetharaman J, Lee I, Zhou W, Abashidze M, Chen Y, Yong W, Janjua H, Fang Y, Wang D, Cunningham K, Xiao R, Acton TB, Pichersky E, Klessig DF, Porter CW, Montelione GT, Tong L. Functional insights from structural genomics. ACTA ACUST UNITED AC 2007; 8:37-44. [PMID: 17588214 DOI: 10.1007/s10969-007-9018-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 05/28/2007] [Indexed: 10/23/2022]
Abstract
Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF_0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP_1951), and a 12-stranded beta-barrel with a novel fold (V. parahaemolyticus VPA1032).
Collapse
Affiliation(s)
- Farhad Forouhar
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bai Y, Auperin TC, Chou CY, Chang GG, Manley JL, Tong L. Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors. Mol Cell 2007; 25:863-75. [PMID: 17386263 DOI: 10.1016/j.molcel.2007.01.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 12/20/2006] [Accepted: 01/22/2007] [Indexed: 01/25/2023]
Abstract
Cleavage stimulation factor (CstF) is a heterotrimeric protein complex essential for polyadenylation of mRNA precursors. The 77 kDa subunit, CstF-77, is known to mediate interactions with the other two subunits of CstF as well as with other components of the polyadenylation machinery. We report here the crystal structure of the HAT (half a TPR) domain of murine CstF-77, as well as its C-terminal subdomain. Structural and biochemical studies show that the HAT domain consists of two subdomains, HAT-N and HAT-C domains, with drastically different orientations of their helical motifs. The structures reveal a highly elongated dimer, spanning 165 A, with the dimerization mediated by the HAT-C domain. Light-scattering studies, yeast two-hybrid assays, and analytical ultracentrifugation measurements confirm this self-association. The mode of dimerization and the relative arrangement of the HAT-N and HAT-C domains are unique to CstF-77. Our data support a role for CstF dimerization in pre-mRNA 3' end processing.
Collapse
Affiliation(s)
- Yun Bai
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
45
|
Demirci H, Gregory ST, Dahlberg AE, Jogl G. Recognition of ribosomal protein L11 by the protein trimethyltransferase PrmA. EMBO J 2007; 26:567-77. [PMID: 17215866 PMCID: PMC1783454 DOI: 10.1038/sj.emboj.7601508] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 11/27/2006] [Indexed: 11/09/2022] Open
Abstract
Bacterial ribosomal protein L11 is post-translationally trimethylated at multiple residues by a single methyltransferase, PrmA. Here, we describe four structures of PrmA from the extreme thermophile Thermus thermophilus. Two apo-PrmA structures at 1.59 and 2.3 A resolution and a third with bound cofactor S-adenosyl-L-methionine at 1.75 A each exhibit distinct relative positions of the substrate recognition and catalytic domains, revealing how PrmA can position the L11 substrate for multiple, consecutive side-chain methylation reactions. The fourth structure, the PrmA-L11 enzyme-substrate complex at 2.4 A resolution, illustrates the highly specific interaction of the N-terminal domain with its substrate and places Lys39 in the PrmA active site. The presence of a unique flexible loop in the cofactor-binding site suggests how exchange of AdoMet with the reaction product S-adenosyl-L-homocysteine can occur without necessitating the dissociation of PrmA from L11. Finally, the mode of interaction of PrmA with L11 explains its observed preference for L11 as substrate before its assembly into the 50S ribosomal subunit.
Collapse
Affiliation(s)
- Hasan Demirci
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Steven T Gregory
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Albert E Dahlberg
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G-E129, Providence, RI 2912, USA. Tel.: +1 401 863 6123; Fax: +1 401 863 6114; E-mail:
| |
Collapse
|
46
|
Forouhar F, Anderson JLR, Mowat CG, Vorobiev SM, Hussain A, Abashidze M, Bruckmann C, Thackray SJ, Seetharaman J, Tucker T, Xiao R, Ma LC, Zhao L, Acton TB, Montelione GT, Chapman SK, Tong L. Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A 2006; 104:473-8. [PMID: 17197414 PMCID: PMC1766409 DOI: 10.1073/pnas.0610007104] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) constitute an important, yet relatively poorly understood, family of heme-containing enzymes. Here, we report extensive structural and biochemical studies of the Xanthomonas campestris TDO and a related protein SO4414 from Shewanella oneidensis, including the structure at 1.6-A resolution of the catalytically active, ferrous form of TDO in a binary complex with the substrate L-Trp. The carboxylate and ammonium moieties of tryptophan are recognized by electrostatic and hydrogen-bonding interactions with the enzyme and a propionate group of the heme, thus defining the L-stereospecificity. A second, possibly allosteric, L-Trp-binding site is present at the tetramer interface. The sixth coordination site of the heme-iron is vacant, providing a dioxygen-binding site that would also involve interactions with the ammonium moiety of L-Trp and the amide nitrogen of a glycine residue. The indole ring is positioned correctly for oxygenation at the C2 and C3 atoms. The active site is fully formed only in the binary complex, and biochemical experiments confirm this induced-fit behavior of the enzyme. The active site is completely devoid of water during catalysis, which is supported by our electrochemical studies showing significant stabilization of the enzyme upon substrate binding.
Collapse
MESH Headings
- Allosteric Site
- Amino Acid Sequence
- Catalysis
- Crystallography, X-Ray
- Humans
- Hydrogen Bonding
- In Vitro Techniques
- Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Protein Conformation
- Protein Structure, Quaternary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Shewanella/enzymology
- Shewanella/genetics
- Static Electricity
- Substrate Specificity
- Tryptophan Oxygenase/chemistry
- Tryptophan Oxygenase/genetics
- Tryptophan Oxygenase/metabolism
- Xanthomonas campestris/enzymology
- Xanthomonas campestris/genetics
Collapse
Affiliation(s)
- Farhad Forouhar
- *Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - J. L. Ross Anderson
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom; and
| | - Christopher G. Mowat
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom; and
| | - Sergey M. Vorobiev
- *Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Arif Hussain
- *Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Mariam Abashidze
- *Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Chiara Bruckmann
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom; and
| | - Sarah J. Thackray
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom; and
| | - Jayaraman Seetharaman
- *Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Todd Tucker
- *Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854
| | - Li-Chung Ma
- Center for Advanced Biotechnology and Medicine and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854
| | - Li Zhao
- Center for Advanced Biotechnology and Medicine and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854
| | - Thomas B. Acton
- Center for Advanced Biotechnology and Medicine and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854
| | - Stephen K. Chapman
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom; and
| | - Liang Tong
- *Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Mandel CR, Gebauer D, Zhang H, Tong L. A serendipitous discovery that in situ proteolysis is essential for the crystallization of yeast CPSF-100 (Ydh1p). Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:1041-5. [PMID: 17012808 PMCID: PMC2225192 DOI: 10.1107/s1744309106038152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 09/18/2006] [Indexed: 11/11/2022]
Abstract
The cleavage and polyadenylation specificity factor (CPSF) complex is required for the cleavage and polyadenylation of the 3'-end of messenger RNA precursors in eukaryotes. During structural studies of the 100 kDa subunit (CPSF-100, Ydh1p) of the yeast CPSF complex, it was serendipitously discovered that a solution that is infected by a fungus (subsequently identified as Penicillium) is crucial for the crystallization of this protein. Further analyses suggest that the protein has undergone partial proteolysis during crystallization, resulting in the deletion of an internal segment of about 200 highly charged and hydrophilic residues, very likely catalyzed by a protease secreted by the fungus. With the removal of this segment, yeast CPSF-100 (Ydh1p) has greatly reduced solubility and can be crystallized in the presence of a minute amount of precipitant.
Collapse
Affiliation(s)
- Corey R. Mandel
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Damara Gebauer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Hailong Zhang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Correspondence e-mail:
| |
Collapse
|
48
|
Hsiao YS, Jogl G, Tong L. Crystal structures of murine carnitine acetyltransferase in ternary complexes with its substrates. J Biol Chem 2006; 281:28480-7. [PMID: 16870616 PMCID: PMC2940834 DOI: 10.1074/jbc.m602622200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carnitine acyltransferases catalyze the reversible exchange of acyl groups between coenzyme A (CoA) and carnitine. They have important roles in many cellular processes, especially the oxidation of long-chain fatty acids in the mitochondria for energy production, and are attractive targets for drug discovery against diabetes and obesity. To help define in molecular detail the catalytic mechanism of these enzymes, we report here the high resolution crystal structure of wild-type murine carnitine acetyltransferase (CrAT) in a ternary complex with its substrates acetyl-CoA and carnitine, and the structure of the S554A/M564G double mutant in a ternary complex with the substrates CoA and hexanoylcarnitine. Detailed analyses suggest that these structures may be good mimics for the Michaelis complexes for the forward and reverse reactions of the enzyme, representing the first time that such complexes of CrAT have been studied in molecular detail. The structural information provides significant new insights into the catalytic mechanism of CrAT and possibly carnitine acyltransferases in general.
Collapse
Affiliation(s)
- Yu-Shan Hsiao
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
49
|
Khan JA, Tao X, Tong L. Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents. Nat Struct Mol Biol 2006; 13:582-8. [PMID: 16783377 DOI: 10.1038/nsmb1105] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 05/09/2006] [Indexed: 01/07/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NMPRTase) has a crucial role in the salvage pathway of NAD+ biosynthesis, and a potent inhibitor of NMPRTase, FK866, can reduce cellular NAD+ levels and induce apoptosis in tumors. We have determined the crystal structures at up to 2.1-A resolution of human and murine NMPRTase, alone and in complex with the reaction product nicotinamide mononucleotide or the inhibitor FK866. The structures suggest that Asp219 is a determinant of substrate specificity of NMPRTase, which is confirmed by our mutagenesis studies. FK866 is bound in a tunnel at the interface of the NMPRTase dimer, and mutations in this binding site can abolish the inhibition by FK866. Contrary to current knowledge, the structures show that FK866 should compete directly with the nicotinamide substrate. Our structural and biochemical studies provide a starting point for the development of new anticancer agents.
Collapse
Affiliation(s)
- Javed A Khan
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
50
|
Hsiao YS, Jogl G, Esser V, Tong L. Crystal structure of rat carnitine palmitoyltransferase II (CPT-II). Biochem Biophys Res Commun 2006; 346:974-80. [PMID: 16781677 PMCID: PMC2937350 DOI: 10.1016/j.bbrc.2006.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 06/01/2006] [Indexed: 11/25/2022]
Abstract
Carnitine palmitoyltransferase II (CPT-II) has a crucial role in the beta-oxidation of long-chain fatty acids in mitochondria. We report here the crystal structure of rat CPT-II at 1.9A resolution. The overall structure shares strong similarity to those of short- and medium-chain carnitine acyltransferases, although detailed structural differences in the active site region have a significant impact on the substrate selectivity of CPT-II. Three aliphatic chains, possibly from a detergent that is used for the crystallization, were found in the structure. Two of them are located in the carnitine and CoA binding sites, respectively. The third aliphatic chain may mimic the long-chain acyl group in the substrate of CPT-II. The binding site for this aliphatic chain does not exist in the short- and medium-chain carnitine acyltransferases, due to conformational differences among the enzymes. A unique insert in CPT-II is positioned on the surface of the enzyme, with a highly hydrophobic surface. It is likely that this surface patch mediates the association of CPT-II with the inner membrane of the mitochondria.
Collapse
Affiliation(s)
- Yu-Shan Hsiao
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Gerwald Jogl
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Victoria Esser
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027
- Corresponding author. Phone: (212) 854-5203; FAX: (212) 865-8246,
| |
Collapse
|