1
|
Lei Z, Niu J, Cai H, Kong Z, Ding X, Dong Y, Zhang D, Li X, Shao J, Lin A, Zhou R, Yang S, Yan Q. NF2 regulates IP3R-mediated Ca 2+ signal and apoptosis in meningiomas. FASEB J 2024; 38:e23737. [PMID: 38953724 DOI: 10.1096/fj.202400436r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
Meningiomas are the most common primary intracranial tumors and account for nearly 30% of all nervous system tumors. Approximately half of meningioma patients exhibit neurofibromin 2 (NF2) gene inactivation. Here, NF2 was shown to interact with the endoplasmic reticulum (ER) calcium (Ca2+) channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in IOMM-Lee, a high-grade malignant meningioma cell line, and the F1 subdomain of NF2 plays a critical role in this interaction. Functional assays indicated that NF2 promotes the phosphorylation of IP3R (Ser 1756) and IP3R-mediated endoplasmic reticulum (ER) Ca2+ release by binding to IP3R1, which results in Ca2+-dependent apoptosis. Knockout of NF2 decreased Ca2+ release and promoted resistance to apoptosis, which was rescued by wild-type NF2 overexpression but not by F1 subdomain deletion truncation overexpression. The effects of NF2 defects on the development of tumors were further studied in mouse models. The decreased expression level of NF2 caused by NF2 gene knockout or mutation affects the activity of the IP3R channel, which reduces Ca2+-dependent apoptosis, thereby promoting the development of tumors. We elucidated the interaction patterns of NF2 and IP3R1, revealed the molecular mechanism through which NF2 regulates IP3R1-mediated Ca2+ release, and elucidated the new pathogenic mechanism of meningioma-related NF2 variants. Our study broadens the current understanding of the biological function of NF2 and provides ideas for drug screening of NF2-associated meningioma.
Collapse
Affiliation(s)
- Zhaoying Lei
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Niu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huajian Cai
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhengyi Kong
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xue Ding
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yufei Dong
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dong Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xu Li
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jianzhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruhong Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuxu Yang
- Department of Neurosurgery Sir Run Run Shaw Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingfeng Yan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Pediatrics, The First Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Moesslacher CS, Auernig E, Woodsmith J, Feichtner A, Jany-Luig E, Jehle S, Worseck JM, Heine CL, Stefan E, Stelzl U. Missense variant interaction scanning reveals a critical role of the FERM domain for tumor suppressor protein NF2 conformation and function. Life Sci Alliance 2023; 6:e202302043. [PMID: 37280085 PMCID: PMC10244618 DOI: 10.26508/lsa.202302043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
NF2 (moesin-ezrin-radixin-like [MERLIN] tumor suppressor) is frequently inactivated in cancer, where its NF2 tumor suppressor functionality is tightly coupled to protein conformation. How NF2 conformation is regulated and how NF2 conformation influences tumor suppressor activity is a largely open question. Here, we systematically characterized three NF2 conformation-dependent protein interactions utilizing deep mutational scanning interaction perturbation analyses. We identified two regions in NF2 with clustered mutations which affected conformation-dependent protein interactions. NF2 variants in the F2-F3 subdomain and the α3H helix region substantially modulated NF2 conformation and homomerization. Mutations in the F2-F3 subdomain altered proliferation in three cell lines and matched patterns of disease mutations in NF2 related-schwannomatosis. This study highlights the power of systematic mutational interaction perturbation analysis to identify missense variants impacting NF2 conformation and provides insight into NF2 tumor suppressor function.
Collapse
Affiliation(s)
- Christina S Moesslacher
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Elisabeth Auernig
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Jonathan Woodsmith
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Andreas Feichtner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Evelyne Jany-Luig
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Stefanie Jehle
- Max-Planck Institute for Molecular Genetics (MPIMG), Otto-Warburg-Laboratory, Berlin, Germany
| | - Josephine M Worseck
- Max-Planck Institute for Molecular Genetics (MPIMG), Otto-Warburg-Laboratory, Berlin, Germany
| | - Christian L Heine
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
- Institute of Molecular Biology, Innsbruck, Austria
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- Max-Planck Institute for Molecular Genetics (MPIMG), Otto-Warburg-Laboratory, Berlin, Germany
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| |
Collapse
|
3
|
Primi MC, Rangarajan ES, Patil DN, Izard T. Conformational flexibility determines the Nf2/merlin tumor suppressor functions. Matrix Biol Plus 2021; 12:100074. [PMID: 34337379 PMCID: PMC8318988 DOI: 10.1016/j.mbplus.2021.100074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 10/26/2022] Open
Abstract
The Neurofibromatosis type 2 gene encodes the Nf2/merlin tumor suppressor protein that is responsible for the regulation of cell proliferation. Once activated, Nf2/merlin modulates adhesive signaling pathways and thereby inhibits cell growth. Nf2/merlin controls oncogenic gene expression by modulating the Hippo pathway. By responding to several physical and biochemical stimuli, Hippo signaling determines contact inhibition of proliferation as well as organ size. The large tumor suppressor (LATS) serine/threonine-protein kinase is the key enzyme in the highly conserved kinase cascade that negatively regulates the activity and localization of the transcriptional coactivators Yes-associated protein (YAP) and its paralogue transcriptional coactivator with PDZ-binding motif (TAZ). Nf2/merlin belongs to the band 4.1, ezrin, radixin, moesin (FERM) gene family that links the actin cytoskeleton to adherens junctions, remodels adherens junctions during epithelial morphogenesis and maintains organized apical surfaces on the plasma cell membrane. Nf2/merlin and ERM proteins have a globular N-terminal cloverleaf head domain, the FERM domain, that binds to the plasma membrane, a central α-helical domain, and a tail domain that binds to its head domain. Here we present the high-resolution crystal structure of Nf2/merlin bound to LATS1 which shows that LATS1 binding to Nf2/merlin displaces the Nf2/merlin tail domain and causes an allosteric shift in the Nf2/merlin α-helix that extends from its FERM domain. This is consistent with the fact that full-length Nf2/merlin binds LATS1 ~10-fold weaker compared to LATS1 binding to the Nf2/merlin-PIP2 complex. Our data increase our understanding of Nf2/merlin biology by providing mechanistic insights into the Hippo pathway that are relevant to several diseases in particular oncogenic features that are associated with cancers.
Collapse
Affiliation(s)
- Marina C Primi
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter 33458, FL, United States
| | - Erumbi S Rangarajan
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter 33458, FL, United States
| | - Dipak N Patil
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter 33458, FL, United States
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter 33458, FL, United States
| |
Collapse
|
4
|
Kukkurainen S, Azizi L, Zhang P, Jacquier MC, Baikoghli M, von Essen M, Tuukkanen A, Laitaoja M, Liu X, Rahikainen R, Orłowski A, Jänis J, Määttä JAE, Varjosalo M, Vattulainen I, Róg T, Svergun D, Cheng RH, Wu J, Hytönen VP, Wehrle-Haller B. The F1 loop of the talin head domain acts as a gatekeeper in integrin activation and clustering. J Cell Sci 2020; 133:jcs239202. [PMID: 33046605 PMCID: PMC10679385 DOI: 10.1242/jcs.239202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Integrin activation and clustering by talin are early steps of cell adhesion. Membrane-bound talin head domain and kindlin bind to the β integrin cytoplasmic tail, cooperating to activate the heterodimeric integrin, and the talin head domain induces integrin clustering in the presence of Mn2+ Here we show that kindlin-1 can replace Mn2+ to mediate β3 integrin clustering induced by the talin head, but not that induced by the F2-F3 fragment of talin. Integrin clustering mediated by kindlin-1 and the talin head was lost upon deletion of the flexible loop within the talin head F1 subdomain. Further mutagenesis identified hydrophobic and acidic motifs in the F1 loop responsible for β3 integrin clustering. Modeling, computational and cysteine crosslinking studies showed direct and catalytic interactions of the acidic F1 loop motif with the juxtamembrane domains of α- and β3-integrins, in order to activate the β3 integrin heterodimer, further detailing the mechanism by which the talin-kindlin complex activates and clusters integrins. Moreover, the F1 loop interaction with the β3 integrin tail required the newly identified compact FERM fold of the talin head, which positions the F1 loop next to the inner membrane clasp of the talin-bound integrin heterodimer.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sampo Kukkurainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Pingfeng Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Marie-Claude Jacquier
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Mo Baikoghli
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Magdaléna von Essen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Anne Tuukkanen
- EMBL Hamburg c/o DESY, European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Mikko Laitaoja
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Xiaonan Liu
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Rolle Rahikainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Adam Orłowski
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Juha A E Määttä
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Markku Varjosalo
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ilpo Vattulainen
- Computational Physics Laboratory, Tampere University, FI-33520 Tampere, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Computational Physics Laboratory, Tampere University, FI-33520 Tampere, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Dmitri Svergun
- EMBL Hamburg c/o DESY, European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Jinhua Wu
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
5
|
Havranek B, Islam SM. Prediction and evaluation of deleterious and disease causing non-synonymous SNPs (nsSNPs) in human NF2 gene responsible for neurofibromatosis type 2 (NF2). J Biomol Struct Dyn 2020; 39:7044-7055. [PMID: 32787631 DOI: 10.1080/07391102.2020.1805018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The majority of genetic variations in the human genome that lead to variety of different diseases are caused by non-synonymous single nucleotide polymorphisms (nsSNPs). Neurofibromatosis type 2 (NF2) is a deadly disease caused by nsSNPs in the NF2 gene that encodes for a protein called merlin. This study used various in silico methods, SIFT, Polyphen-2, PhD-SNP and MutPred, to investigate the pathogenic effect of 14 nsSNPs in the merlin FERM domain. The G197C and L234R mutations were found to be two deleterious and disease mutations associated with the mild and severe forms of NF2, respectively. Molecular dynamics (MD) simulations were conducted to understand the stability, structure and dynamics of these mutations. Both mutant structures experienced larger flexibility compared to the wildtype. The L234R mutant suffered from more prominent structural instability, which may help to explain why it is associated with the more severe form of NF2. The intramolecular hydrogen bonding in L234R mutation decreased from the wildtype, while intermolecular hydrogen bonding of L234R mutation with solvent greatly increased. The native contacts were also found to be important. Protein-protein docking revealed that L234R mutation decreased the binding complementarity and binding affinity of LATS2 to merlin, which may have an impact on merlin's ability to regulate the Hippo signaling pathway. The calculated binding affinity of the LATS2 to L234R mutant and wildtype merlin protein is found to be 21.73 and -11 kcal/mol, respectively. The binding affinity of the wildtype merlin agreed very well with the experimental value, -8 kcal/mol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Brandon Havranek
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Shahidul M Islam
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
The NF2 tumor suppressor merlin interacts with Ras and RasGAP, which may modulate Ras signaling. Oncogene 2019; 38:6370-6381. [PMID: 31312020 PMCID: PMC6756068 DOI: 10.1038/s41388-019-0883-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/31/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
Inactivation of the tumor suppressor NF2/merlin underlies neurofibromatosis type 2 (NF2) and some sporadic tumors. Previous studies have established that merlin mediates contact inhibition of proliferation; however, the exact mechanisms remain obscure and multiple pathways have been implicated. We have previously reported that merlin inhibits Ras and Rac activity during contact inhibition, but how merlin regulates Ras activity has remained elusive. Here we demonstrate that merlin can directly interact with both Ras and p120RasGAP (also named RasGAP). While merlin does not increase the catalytic activity of RasGAP, the interactions with Ras and RasGAP may fine-tune Ras signaling. In vivo, loss of RasGAP in Schwann cells, unlike the loss of merlin, failed to promote tumorigenic growth in an orthotopic model. Therefore, modulation of Ras signaling through RasGAP likely contributes to, but is not sufficient to account for, merlin’s tumor suppressor activity. Our study provides new insight into the mechanisms of merlin-dependent Ras regulation and may have additional implications for merlin-dependent regulation of other small GTPases.
Collapse
|
7
|
Biri-Kovács B, Kiss B, Vadászi H, Gógl G, Pálfy G, Török G, Homolya L, Bodor A, Nyitray L. Ezrin interacts with S100A4 via both its N- and C-terminal domains. PLoS One 2017; 12:e0177489. [PMID: 28493957 PMCID: PMC5426754 DOI: 10.1371/journal.pone.0177489] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/27/2017] [Indexed: 11/19/2022] Open
Abstract
Ezrin belongs to the ERM (ezrin, radixin, moesin) protein family that has a role in cell morphology changes, adhesion and migration as an organizer of the cortical cytoskeleton by linking actin filaments to the apical membrane of epithelial cells. It is highly expressed in a variety of human cancers and promotes metastasis. Members of the Ca2+-binding EF-hand containing S100 proteins have similar pathological properties; they are overexpressed in cancer cells and involved in metastatic processes. In this study, using tryptophan fluorescence and stopped-flow kinetics, we show that S100A4 binds to the N-terminal ERM domain (N-ERMAD) of ezrin with a micromolar affinity. The binding involves the F2 lobe of the N-ERMAD and follows an induced fit kinetic mechanism. Interestingly, S100A4 binds also to the unstructured C-terminal actin binding domain (C-ERMAD) with similar affinity. Using NMR spectroscopy, we characterized the complex of S100A4 with the C-ERMAD and demonstrate that no ternary complex is simultaneously formed with the two ezrin domains. Furthermore, we show that S100A4 co-localizes with ezrin in HEK-293T cells. However, S100A4 very weakly binds to full-length ezrin in vitro indicating that the interaction of S100A4 with ezrin requires other regulatory events such as protein phosphorylation and/or membrane binding, shifting the conformational equilibrium of ezrin towards the open state. As both proteins play an important role in promoting metastasis, the characterization of their interaction could shed more light on the molecular events contributing to this pathological process.
Collapse
Affiliation(s)
- Beáta Biri-Kovács
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Henrietta Vadászi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gergő Gógl
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gyula Pálfy
- Institute of Chemistry, Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary
| | - György Török
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - László Homolya
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Andrea Bodor
- Institute of Chemistry, Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
8
|
Cairns L, Tran T, Kavran JM. Structural Insights into the Regulation of Hippo Signaling. ACS Chem Biol 2017; 12:601-610. [PMID: 28150487 DOI: 10.1021/acschembio.6b01058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During development, the Hippo pathway regulates the balance between cell proliferation and apoptosis to control organ size. Appropriate Hippo signaling is associated with stem cell maintenance, while inappropriate signaling can result in tumorigenesis and cancer. Cellular and genetic investigations have identified core components and determined that complex formation and protein phosphorylation are crucial regulatory events. The recent spate of high-resolution structures of Hippo pathway components have begun to reveal the molecular mechanisms controlling these events, including the molecular determinates of complex formation between YAP and TEAD, the role of phosphorylation in controlling complex formation by Mob, and the conformational changes accompanying Mst1/2 kinase domain activation. We will review these advances and revisit previous structures to provide a comprehensive overview of the structural changes associated with the regulation of this pathway as well as discuss areas that could benefit from further mechanistic studies.
Collapse
Affiliation(s)
- Leah Cairns
- Department
of Biochemistry and Molecular Biology, Bloomberg School
of Public Health and ‡Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Thao Tran
- Department
of Biochemistry and Molecular Biology, Bloomberg School
of Public Health and ‡Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Jennifer M. Kavran
- Department
of Biochemistry and Molecular Biology, Bloomberg School
of Public Health and ‡Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
9
|
Yin MX, Catimel B, Gregory M, Condron M, Kapp E, Holmes AB, Burgess AW. Synthesis of an inositol hexakisphosphate (IP6) affinity probe to study the interactome from a colon cancer cell line. Integr Biol (Camb) 2016; 8:309-18. [PMID: 26840369 DOI: 10.1039/c5ib00264h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inositol hexakisphosphate (InsP6 or IP6) is an important signalling molecule in vesicular trafficking, neurotransmission, immune responses, regulation of protein kinases and phosphatases, activation of ion channels, antioxidant functions and anticancer activities. An IP6 probe was synthesised from myo-inositol via a derivatised analogue, which was immobilised through a terminal amino group onto Dynabeads. Systematic analysis of the IP6 interactome has been performed using the IP6 affinity probe using cytosolic extracts from the LIM1215 colonic carcinoma cell line. LC/MS/MS analysis identified 77 proteins or protein complexes that bind to IP6 specifically, including AP-2 complex proteins and β-arrestins as well as a number of novel potential IP6 interacting proteins. Bioinformatic enrichment analysis of the IP6 interactome reinforced the concept that IP6 regulates a number of biological processes including cell cycle and division, signal transduction, intracellular protein transport, vesicle-mediated transport and RNA splicing.
Collapse
Affiliation(s)
- Meng-Xin Yin
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia
| | - Bruno Catimel
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Olivia Newton-John Cancer & Wellness Centre, Studley Road, Heidelberg, Victoria 3084, Australia
| | - Mark Gregory
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia
| | - Melanie Condron
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Eugene Kapp
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew B Holmes
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia
| | - Antony W Burgess
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia and Department of Surgery, RMH, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
10
|
Tracing the evolution of FERM domain of Kindlins. Mol Phylogenet Evol 2014; 80:193-204. [DOI: 10.1016/j.ympev.2014.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 01/25/2023]
|
11
|
Ali Khajeh J, Ju JH, Atchiba M, Allaire M, Stanley C, Heller WT, Callaway DJE, Bu Z. Molecular conformation of the full-length tumor suppressor NF2/Merlin--a small-angle neutron scattering study. J Mol Biol 2014; 426:2755-68. [PMID: 24882693 PMCID: PMC4407695 DOI: 10.1016/j.jmb.2014.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/11/2014] [Accepted: 05/13/2014] [Indexed: 12/26/2022]
Abstract
The tumor suppressor protein Merlin inhibits cell proliferation upon establishing cell-cell contacts. Because Merlin has high level of sequence similarity to the Ezrin-Radixin-Moesin family of proteins, the structural model of Ezrin-Radixin-Moesin protein autoinhibition and cycling between closed/resting and open/active conformational states is often employed to explain Merlin function. However, recent biochemical studies suggest alternative molecular models of Merlin function. Here, we have determined the low-resolution molecular structure and binding activity of Merlin and a Merlin(S518D) mutant that mimics the inactivating phosphorylation at S518 using small-angle neutron scattering and binding experiments. Small-angle neutron scattering shows that, in solution, both Merlin and Merlin(S518D) adopt a closed conformation, but binding experiments indicate that a significant fraction of either Merlin or Merlin(S518D) is capable of binding to the target protein NHERF1. Upon binding to the phosphatidylinositol 4,5-bisphosphate lipid, the wild-type Merlin adopts a more open conformation than in solution, but Merlin(S518D) remains in a closed conformation. This study supports a rheostat model of Merlin in NHERF1 binding and contributes to resolving a controversy about the molecular conformation and binding activity of Merlin.
Collapse
Affiliation(s)
- Jahan Ali Khajeh
- Department of Chemistry, City College of New York and CUNY Graduate Center, NY, USA
| | - Jeong Ho Ju
- Department of Chemistry, City College of New York and CUNY Graduate Center, NY, USA
| | - Moussoubaou Atchiba
- Department of Chemistry, City College of New York and CUNY Graduate Center, NY, USA
| | - Marc Allaire
- Photon Sciences Directorate, Brookhaven National Laboratory, NY, USA
| | | | - William T Heller
- Biology and Soft Matter Division, Oak Ridge National Laboratory, TN, USA
| | - David J E Callaway
- Department of Chemistry, City College of New York and CUNY Graduate Center, NY, USA
| | - Zimei Bu
- Department of Chemistry, City College of New York and CUNY Graduate Center, NY, USA.
| |
Collapse
|
12
|
Li Y, Wei Z, Zhang J, Yang Z, Zhang M. Structural basis of the binding of Merlin FERM domain to the E3 ubiquitin ligase substrate adaptor DCAF1. J Biol Chem 2014; 289:14674-81. [PMID: 24706749 DOI: 10.1074/jbc.m114.551184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The tumor suppressor gene Nf2 product, Merlin, plays vital roles in controlling proper development of organ sizes by specifically binding to a large number of target proteins localized both in cytoplasm and nuclei. The FERM domain of Merlin is chiefly responsible for its binding to target proteins, although the molecular basis governing these interactions are poorly understood due to lack of structural information. Here, we report the crystal structure of the Merlin FERM domain in complex with its binding domain derived from the E3 ubiquitin ligase substrate adaptor DCAF1 (also known as VPRBP). Unlike target binding modes found in ERM proteins, the Merlin-FERM binding domain of DCAF1 folds as a β-hairpin and binds to the α1/β5-groove of the F3 lobe of Merlin-FERM via extensive hydrophobic interactions. In addition to providing the first structural glimpse of a Merlin-FERM·target complex, the structure of the Merlin·DCAF1 complex is likely to be valuable for understanding the interactions of Merlin with its binding partners other than DCAF1.
Collapse
Affiliation(s)
- Youjun Li
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhiyi Wei
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, the Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, and the Department of Biology, South University of Science and Technology of China, Shenzhen, China
| | - Junyi Zhang
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhou Yang
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, the Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, and
| |
Collapse
|
13
|
Zemmoura I, Vourc'h P, Paubel A, Parfait B, Cohen J, Bilan F, Kitzis A, Rousselot C, Parker F, François P, Andres CR. A deletion causing NF2 exon 9 skipping is associated with familial autosomal dominant intramedullary ependymoma. Neuro Oncol 2013; 16:250-5. [PMID: 24357459 DOI: 10.1093/neuonc/not165] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intramedullary ependymomas are rare and benign tumors in the adult. Little is known about their physiopathology, but the implication of the NF2 gene is suspected because of their presence in a third of patients with type 2 neurofibromatosis (NF2), a disorder caused by mutation of the NF2 gene. METHODS We conducted a clinical and genetic study of a family in which 5 of 9 members suffered from intramedullary ependymoma. Karyotyping and CGH array analysis were performed on DNA from peripheral blood lymphocytes from affected participants. The NF2 gene sequences were then determined in DNA from 3 nonaffected and all 5 affected members of the family. RESULTS Karyotype and CGH array findings were normal. Sequencing of NF2 revealed a heterozygous deletion, c.811-39_841del69bp, at the intron 8/exon 9 junction, in all affected members that was absent from all nonaffected members. RT-PCR analysis and sequencing revealed a novel NF2 transcript characterized by a skipping of exon 9 (75 bp). This deletion is predicted to result in a 25-amino acid deletion in the N-terminal FERM domain of neurofibromin 2. Modeling of this mutant domain suggests possible disorganization of the subdomain C. CONCLUSION We report the first family with an NF2 mutation associated with intramedullary ependymomas without other features of NF2 syndrome. This mutation, which has not been described previously, may particularly affect the function of neurofibromin 2 in ependymocytes leading to the development of intramedullary WHO grade II ependymomas. We propose that sporadic intramedullary ependymomas should also be analyzed for this region of NF2 gene.
Collapse
Affiliation(s)
- Ilyess Zemmoura
- Corresponding author: Ilyess Zemmoura, MD, Service de Neurochirurgie, CHRU Bretonneau, 2 boulevard Tonnellé, 37004, Tours Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 2013; 154:1342-55. [PMID: 24012335 DOI: 10.1016/j.cell.2013.08.025] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/26/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
Abstract
Although Merlin/NF2 was discovered two decades ago as a tumor suppressor underlying Neurofibromatosis type II, its precise molecular mechanism remains poorly understood. Recent studies in Drosophila revealed a potential link between Merlin and the Hippo pathway by placing Merlin genetically upstream of the kinase Hpo/Mst. In contrast to the commonly depicted linear model of Merlin functioning through Hpo/Mst, here we show that in both Drosophila and mammals, Merlin promotes downstream Hippo signaling without activating the intrinsic kinase activity of Hpo/Mst. Instead, Merlin directly binds and recruits the effector kinase Wts/Lats to the plasma membrane. Membrane recruitment, in turn, promotes Wts phosphorylation by the Hpo-Sav kinase complex. We further show that disruption of the actin cytoskeleton promotes Merlin-Wts interactions, which implicates Merlin in actin-mediated regulation of Hippo signaling. Our findings elucidate an important molecular function of Merlin and highlight the plasma membrane as a critical subcellular compartment for Hippo signal transduction.
Collapse
|
15
|
Manetti ME, Geden S, Bott M, Sparrow N, Lambert S, Fernandez-Valle C. Stability of the tumor suppressor merlin depends on its ability to bind paxillin LD3 and associate with β1 integrin and actin at the plasma membrane. Biol Open 2012; 1:949-57. [PMID: 23213372 PMCID: PMC3507182 DOI: 10.1242/bio.20122121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/27/2012] [Indexed: 01/03/2023] Open
Abstract
The NF2 gene encodes a tumor suppressor protein known as merlin or schwannomin whose loss of function causes Neurofibromatosis Type 2 (NF2). NF2 is characterized by the development of benign tumors, predominantly schwannomas, in the peripheral nervous system. Merlin links plasma membrane receptors with the actin cytoskeleton and its targeting to the plasma membrane depends on direct binding to the paxillin scaffold protein. Exon 2 of NF2, an exon mutated in NF2 patients and deleted in a mouse model of NF2, encodes the merlin paxillin binding domain (PBD1). Here, we sought to determine the role of PBD1 in regulation of merlin stability and association with plasma membrane receptors and the actin cytoskeleton in Schwann cells. Using a fluorescence-based pulse-chase technique, we measured the half-life of Halo-tagged merlin variants carrying PBD1, exon 2, and exons 2 and 3 deletions in transiently transfected Schwann cells. We found that PBD1 alone was necessary and sufficient to increase merlin's half-life from approximately three to eleven hours. Merlin lacking PBD1 did not form a complex with surface β1 integrins or associate with the actin cytoskeleton. In addition, direct binding studies using purified merlin and paxillin domains revealed that merlin directly binds paxillin LD3 (leucine-aspartate 3) domain as well as the LD4 and LD5 domains. Together these results demonstrate that a direct interaction between merlin PBD1 and the paxillin LD3-5 domains targets merlin to the plasma membrane where it is stabilized by its association with surface β1 integrins and cortical actin.
Collapse
Affiliation(s)
- Maria Elisa Manetti
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Health Science Campus , 6900 Lake Nona Boulevard, Orlando, FL 32827 , USA
| | | | | | | | | | | |
Collapse
|
16
|
Yogesha SD, Sharff AJ, Giovannini M, Bricogne G, Izard T. Unfurling of the band 4.1, ezrin, radixin, moesin (FERM) domain of the merlin tumor suppressor. Protein Sci 2011; 20:2113-20. [PMID: 22012890 DOI: 10.1002/pro.751] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/07/2011] [Indexed: 12/30/2022]
Abstract
The merlin-1 tumor suppressor is encoded by the Neurofibromatosis-2 (Nf2) gene and loss-of-function Nf2 mutations lead to nervous system tumors in man and to several tumor types in mice. Merlin is an ERM (ezrin, radixin, moesin) family cytoskeletal protein that interacts with other ERM proteins and with components of cell-cell adherens junctions (AJs). Merlin stabilizes the links of AJs to the actin cytoskeleton. Thus, its loss destabilizes AJs, promoting cell migration and invasion, which in Nf2(+/-) mice leads to highly metastatic tumors. Paradoxically, the "closed" conformation of merlin-1, where its N-terminal four-point-one, ezrin, radixin, moesin (FERM) domain binds to its C-terminal tail domain, directs its tumor suppressor functions. Here we report the crystal structure of the human merlin-1 head domain when crystallized in the presence of its tail domain. Remarkably, unlike other ERM head-tail interactions, this structure suggests that binding of the tail provokes dimerization and dynamic movement and unfurling of the F2 motif of the FERM domain. We conclude the "closed" tumor suppressor conformer of merlin-1 is in fact an "open" dimer whose functions are disabled by Nf2 mutations that disrupt this architecture.
Collapse
Affiliation(s)
- S D Yogesha
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | | | | | |
Collapse
|
17
|
FERM domain phosphoinositide binding targets merlin to the membrane and is essential for its growth-suppressive function. Mol Cell Biol 2011; 31:1983-96. [PMID: 21402777 DOI: 10.1128/mcb.00609-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The neurofibromatosis type 2 tumor suppressor protein, merlin, is related to the ERM (ezrin, radixin, and moesin) family of plasma membrane-actin cytoskeleton linkers. For ezrin, phosphatidylinositol 4,5-bisphosphate (PIP(2)) binding to the amino-terminal FERM domain is required for its conformational activation, proper subcellular localization, and function, but less is known about the role of phosphoinositide binding for merlin. Current evidence indicates that association with the membrane is important for merlin to function as a growth regulator; however, the mechanisms by which merlin localizes to the membrane are less clear. Here, we report that merlin binds phosphoinositides, including PIP(2), via a conserved binding motif in its FERM domain. Abolition of FERM domain-mediated phosphoinositide binding of merlin displaces merlin from the membrane and releases it into the cytosol without altering the folding of merlin. Importantly, a merlin protein whose FERM domain cannot bind phosphoinositide is defective in growth suppression. Retargeting the mutant merlin into the membrane using a dual-acylated amino-terminal decapeptide from Fyn is sufficient to restore the growth-suppressive properties to the mutant merlin. Thus, FERM domain-mediated phosphoinositide binding and membrane association are critical for the growth-regulatory function of merlin.
Collapse
|
18
|
Lallemand D, Saint-Amaux AL, Giovannini M. Tumor-suppression functions of merlin are independent of its role as an organizer of the actin cytoskeleton in Schwann cells. J Cell Sci 2010; 122:4141-9. [PMID: 19910496 DOI: 10.1242/jcs.045914] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Merlin is the product of the Nf2 tumor-suppressor gene, and inactivation of Nf2 leads to the development of neural tumors such as schwannomas and meningiomas in humans and mice. Merlin is a member of the ERM (ezrin, radixin and moesin) family of proteins that function as organizers of the actin cytoskeleton. Merlin structure is thought to be similar to that of the ERM proteins, and is held in a closed clamp conformation via intramolecular interactions of its N-terminal FERM (four-point-one, ERM) domain with an alpha-helical C-terminal domain. Like ERMs, merlin can remodel actin-rich cortical structures, yet merlin uniquely inhibits the proliferation of many different cell types. Here, we report that the F2 subdomain of the FERM domain and a domain close to the C-terminus that is defined by residues 532-579 are essential for merlin-mediated inhibition of primary Schwann cell proliferation. Furthermore, we demonstrate that the F1 subdomain of the merlin FERM domain is required for actin colocalization, proper regulation of merlin C-terminal phosphorylation and for remodeling the cytoskeleton, yet is not required for the inhibition of Schwann cell proliferation. Thus, tumor suppression by merlin is independent of its role as an organizer of the actin cytoskeleton in Schwann cells.
Collapse
Affiliation(s)
- Dominique Lallemand
- Université Paris 7-Denis Diderot, Institut Universitaire d'Hématologie, Paris, 75010, France.
| | | | | |
Collapse
|
19
|
Fluorescence resonance energy transfer analysis of merlin conformational changes. Mol Cell Biol 2010; 30:54-67. [PMID: 19884346 DOI: 10.1128/mcb.00248-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurofibromatosis type 2 is an inherited autosomal disorder caused by biallelic inactivation of the NF2 tumor suppressor gene. The NF2 gene encodes a 70-kDa protein, merlin, which is a member of the ezrin-radixin-moesin (ERM) family. ERM proteins are believed to be regulated by a transition between a closed conformation, formed by binding of their N-terminal FERM domain and C-terminal tail domain (CTD), and an open conformation, in which the two domains do not interact. Previous work suggests that the tumor suppressor function of merlin is similarly regulated and that only the closed form is active. Therefore, understanding the mechanisms that control its conformation is crucial. We have developed a series of probes that measures merlin conformation by fluorescence resonance energy transfer, both as purified protein and in live cells. Using these tools, we find that merlin exists predominately as a monomer in a stable, closed conformation that is mediated by the central alpha-helical domain. The contribution from the FERM-CTD interaction to the closed conformation appears to be less important. Upon phosphorylation or interaction with an effector protein, merlin undergoes a subtle conformational change, suggesting a novel mechanism that modulates the interaction between the FERM domain and the CTD.
Collapse
|
20
|
McClatchey AI, Fehon RG. Merlin and the ERM proteins--regulators of receptor distribution and signaling at the cell cortex. Trends Cell Biol 2009; 19:198-206. [PMID: 19345106 DOI: 10.1016/j.tcb.2009.02.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/16/2009] [Accepted: 02/19/2009] [Indexed: 11/19/2022]
Abstract
Recent studies highlight the importance of the distribution of membrane receptors in controlling receptor output and in contributing to complex biological processes. The cortical cytoskeleton is known to affect membrane protein distribution but the molecular basis of this is largely unknown. Here, we discuss the functions of Merlin and the ERM proteins both in linking membrane proteins to the underlying cortical cytoskeleton and in controlling the distribution of and signaling from membrane receptors. We also propose a model that could account for the intricacies of Merlin function across model organisms.
Collapse
Affiliation(s)
- Andrea I McClatchey
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School Department of Pathology, 149 13th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
21
|
Francalanci F, Avolio M, De Luca E, Longo D, Menchise V, Guazzi P, Sgrò F, Marino M, Goitre L, Balzac F, Trabalzini L, Retta SF. Structural and functional differences between KRIT1A and KRIT1B isoforms: a framework for understanding CCM pathogenesis. Exp Cell Res 2008; 315:285-303. [PMID: 18992740 DOI: 10.1016/j.yexcr.2008.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/27/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
Abstract
KRIT1 is a disease gene responsible for Cerebral Cavernous Malformations (CCM). It encodes for a protein containing distinct protein-protein interaction domains, including three NPXY/F motifs and a FERM domain. Previously, we isolated KRIT1B, an isoform characterized by the alternative splicing of the 15th coding exon and suspected to cause CCM when abnormally expressed. Combining homology modeling and docking methods of protein-structure and ligand binding prediction with the yeast two-hybrid assay of in vivo protein-protein interaction and cellular biology analyses we identified both structural and functional differences between KRIT1A and KRIT1B isoforms. We found that the 15th exon encodes for the distal beta-sheet of the F3/PTB-like subdomain of KRIT1A FERM domain, demonstrating that KRIT1B is devoid of a functional PTB binding pocket. As major functional consequence, KRIT1B is unable to bind Rap1A, while the FERM domain of KRIT1A is even sufficient for this function. Furthermore, we found that a functional PTB subdomain enables the nucleocytoplasmic shuttling of KRIT1A, while its alteration confers a restricted cytoplasmic localization and a dominant negative role to KRIT1B. Importantly, we also demonstrated that KRIT1A, but not KRIT1B, may adopt a closed conformation through an intramolecular interaction involving the third NPXY/F motif at the N-terminus and the PTB subdomain of the FERM domain, and proposed a mechanism whereby an open/closed conformation switch regulates KRIT1A nuclear translocation and interaction with Rap1A in a mutually exclusive manner. As most mutations found in CCM patients affect the KRIT1 FERM domain, the new insights into the structure-function relationship of this domain may constitute a useful framework for understanding molecular mechanisms underlying CCM pathogenesis.
Collapse
Affiliation(s)
- Floriana Francalanci
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, Via Nizza 52, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Eto M, Kirkbride JA, Brautigan DL. Assembly of MYPT1 with protein phosphatase-1 in fibroblasts redirects localization and reorganizes the actin cytoskeleton. ACTA ACUST UNITED AC 2008; 62:100-9. [PMID: 16106448 DOI: 10.1002/cm.20088] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dephosphorylation of actin-binding proteins by a specialized form of protein Ser/Thr phosphatase type-1 (PP1) regulates smooth muscle contraction and morphology and motility of nonmuscle cells. This myosin and ezrin/radixin/moesin (ERM)-targeted phosphatase comprises the delta isoform PP1 catalytic subunit plus a primary regulatory subunit called myosin phosphatase targeting (MYPT1). We reconstructed myosin/ERM phosphatase in living rat embryo fibroblasts (REF52 cells) by transient expression of epitope-tagged MYPT1 (myc-MYPT1) plus HA-tagged PP1. Unexpectedly, wild-type myc-MYPT1 expressed alone accumulated predominantly in the nucleus, as visualized by immunofluorescent microscopy, whereas if coexpressed with HA-PP1, it was localized in the cytosol and deposited on cytoskeleton myofilaments. The F38A mutation of MYPT1 that eliminates PP1 binding gave nuclear localization of myc-MYPT1, even when coexpressed with HA-PP1. Thus, expression of both subunits was necessary to form myosin/ERM phosphatase in situ and mediate myofilament localization. The results indicate there is little endogenous PP1 available for interaction or interchange with ectopic regulatory subunits in living cells. We concluded that myosin binding by the C-terminal domain of MYPT1 is not sufficient to override nuclear import in fibroblasts, but the binding of PP1 to myc-MYPT1 neutralizes nuclear import. Full-length myc-MYPT1 plus HA-PP1 induced only subtle changes in organization of the actin cytoskeleton, however coexpression of myc-MYPT1(1-300) with HA-PP1 dispersed stress fibers without major alteration in morphology and myc-MYPT1(1-498) disrupted the cytoskeleton and produced radically extended cells that appeared like neurons. Based on these responses, we conclude that the MYPT1 C-terminus functions as an auto-inhibitory domain, and a central domain in MYPT1 can mediate extensive reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Masumi Eto
- Department of Molecular Physiology and Biological Physics, Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
23
|
Haan S, Margue C, Engrand A, Rolvering C, Schmitz-Van de Leur H, Heinrich PC, Behrmann I, Haan C. Dual role of the Jak1 FERM and kinase domains in cytokine receptor binding and in stimulation-dependent Jak activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:998-1007. [PMID: 18178840 DOI: 10.4049/jimmunol.180.2.998] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Jak1 is a tyrosine kinase that noncovalently forms tight complexes with a variety of cytokine receptors and is critically involved in signal transduction via cytokines. Jaks are predicted to have a 4.1, ezrin, radixin, moesin (FERM) domain at their N terminus. FERM domains are composed of three structurally unrelated subdomains (F1, F2, and F3) which are in close contact to one another and form the clover-shaped FERM domain. We generated a model structure of the Jak1 FERM domain, based on solved FERM structures and the alignments with other FERM domains. To destabilize different subdomains and to uncover their exact function, we mutated specific hydrophobic residues conserved in FERM domains and involved in hydrophobic core interactions. In this study, we show that the structural integrity of the F2 subdomain of the FERM domain of Jak1 is necessary to bind the IFN-gammaRalpha. By mutagenesis of hydrophobic residues in the hydrophobic core between the three FERM subdomains, we find that the structural context of the FERM domain is necessary for the inhibition of Jak1 phosphorylation. Thus, FERM domain mutations can have repercussions on Jak1 function. Interestingly, a mutation in the kinase domain (Jak1-K907E), known to abolish the catalytic activity, also leads to an impaired binding to the IFN-gammaRalpha when this mutant is expressed at endogenous levels in U4C cells. Our data show that the structural integrity of both the FERM domain and of the kinase domain is essential for both receptor binding and catalytic function/autoinhibition.
Collapse
Affiliation(s)
- Serge Haan
- Life Science Research Unit, Faculté des Sciences, de la Technologie et de la Communication, Université du Luxembourg, Luxembourg
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Localization to the cortical cytoskeleton is necessary for Nf2/merlin-dependent epidermal growth factor receptor silencing. Mol Cell Biol 2007; 28:1274-84. [PMID: 18086884 DOI: 10.1128/mcb.01139-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Merlin, the product of the NF2 tumor suppressor gene, is closely related to the ERM (ezrin, radixin, moesin) proteins, which provide anchorage between membrane proteins and the underlying cortical cytoskeleton; all four proteins are members of the band 4.1 superfamily. Despite their similarity, the subcellular distributions and functional properties of merlin and the ERM proteins are largely distinct. Upon cell-cell contact merlin prevents internalization of and signaling from the epidermal growth factor receptor (EGFR) by sequestering it into an insoluble membrane compartment. Here we show that the extreme amino (N) terminus directs merlin biochemically to an insoluble membrane compartment and physically to the cortical actin network, with a marked concentration along cell-cell boundaries. This insoluble-membrane distribution is required for the growth-suppressing function of merlin and for the functional association of merlin with EGFR and other membrane receptors. Our data support a model whereby locally activated merlin sequesters membrane receptors such as EGFR at the cortical network, contributing to the long-held observation that the cortical actin cytoskeleton can control the lateral mobility of and signaling from certain membrane receptors.
Collapse
|
25
|
Liu R, Woolner S, Johndrow JE, Metzger D, Flores A, Parkhurst SM. Sisyphus, the Drosophila myosin XV homolog, traffics within filopodia transporting key sensory and adhesion cargos. Development 2007; 135:53-63. [PMID: 18045836 DOI: 10.1242/dev.011437] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Unconventional myosin proteins of the MyTH-FERM superclass are involved in intrafilopodial trafficking, are thought to be mediators of membrane-cytoskeleton interactions, and are linked to several forms of deafness in mammals. Here we show that the Drosophila myosin XV homolog, Sisyphus, is expressed at high levels in leading edge cells and their cellular protrusions during the morphogenetic process of dorsal closure. Sisyphus is required for the correct alignment of cells on opposing sides of the fusing epithelial sheets, as well as for adhesion of the cells during the final zippering/fusion phase. We have identified several putative Sisyphus cargos, including DE-cadherin (also known as Shotgun) and the microtubule-linked proteins Katanin-60, EB1, Milton and aPKC. These cargos bind to the Sisyphus FERM domain, and their binding is in some cases mutually exclusive. Our data suggest a mechanism for Sisyphus in which it maintains a balance between actin and microtubule cytoskeleton components, thereby contributing to cytoskeletal cross-talk necessary for regulating filopodial dynamics during dorsal closure.
Collapse
Affiliation(s)
- Raymond Liu
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
26
|
Baser ME. The distribution of constitutional and somatic mutations in the neurofibromatosis 2 gene. Hum Mutat 2006; 27:297-306. [PMID: 16521120 DOI: 10.1002/humu.20317] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Constitutional heterozygous inactivating mutations in the neurofibromatosis 2 (NF2) tumor suppressor gene cause the autosomal dominant disease NF2, and biallelic inactivating somatic NF2 mutations are found in a high proportion of unilateral sporadic vestibular schwannoma (USVS) and sporadic meningioma. We surveyed the distributions of constitutional NF2 mutations in 823 NF2 families, 278 somatic NF2 mutations in USVS, and 208 somatic NF2 mutations in sporadic meningioma. Based on the available NF2 mutation data, the most dominant influence on the spectra of mutations in exons 1-15 are C>T transitions that change arginine codons (CGA) to stop codons (TGA) due to spontaneous deamination of methylcytosine to thymine in CpG dinucleotides. The paucity of reported mutations in exon 9 and the absence of reported mutations in exons 16 and 17 may be related to structure-function relationships in the NF2 protein.
Collapse
Affiliation(s)
- Michael E Baser
- Academic Unit of Medical Genetics, St. Mary's Hospital, Manchester, United Kingdom
| |
Collapse
|
27
|
Riemenschneider MJ, Perry A, Reifenberger G. Histological classification and molecular genetics of meningiomas. Lancet Neurol 2006; 5:1045-54. [PMID: 17110285 DOI: 10.1016/s1474-4422(06)70625-1] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meningiomas account for up to 30% of all primary intracranial tumours. They are histologically classified according to the World Health Organization (WHO) classification of tumours of the nervous system. Most meningiomas are benign lesions of WHO grade I, whereas some meningioma variants correspond with WHO grades II and III and are associated with a higher risk of recurrence and shorter survival times. Mutations in the NF2 gene and loss of chromosome 22q are the most common genetic alterations associated with the initiation of meningiomas. With increase in tumour grade, additional progression-associated molecular aberrations can be found; however, most of the relevant genes are yet to be identified. High-throughput techniques of global genome and transcriptome analyses and new meningioma models provide increasing insight into meningioma biology and will help to identify common pathogenic pathways that may be targeted by new therapeutic approaches.
Collapse
|
28
|
Bai Y, Liu YJ, Wang H, Xu Y, Stamenkovic I, Yu Q. Inhibition of the hyaluronan-CD44 interaction by merlin contributes to the tumor-suppressor activity of merlin. Oncogene 2006; 26:836-50. [PMID: 16953231 DOI: 10.1038/sj.onc.1209849] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutation or loss of expression of merlin is responsible for neurofibromatosis type 2 (NF2), which is characterized by the development of schwannomas and other tumors of the nervous system. Like the ERM (ezrin-radixin-moesin) proteins, merlin interacts with CD44, a cell-surface receptor for hyaluronan (HA) that promotes tumorigenesis. However, the relationship between merlin and CD44 and the mechanism by which merlin exerts its tumor-suppressor function have not been elucidated. In the present study, we show that increased expression of wild-type merlin in Tr6BC1 schwannoma cells inhibits HA binding to CD44. Furthermore, we demonstrate that the residues required for this inhibitory effect and the interaction between CD44 and merlin lie within the first 50 amino acids of merlin. Overexpression of merlin inhibited subcutaneous growth of Tr6BC1 cells in immunocompromised Rag1 mice. In contrast, knocking down expression of endogenous merlin promoted tumor cell growth, as did overexpression of a merlin deletion mutant (merlinDel-1) that lacks the first 50 amino acids but not of other NH(2)-terminal deletion mutants. Together, our results demonstrate that inhibition of the CD44-HA interaction contributes to the tumor-suppressor function of merlin, and they suggest that merlin inhibits tumor growth, at least in part, by negatively regulating CD44 function.
Collapse
Affiliation(s)
- Y Bai
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
29
|
Suárez C, Rodrigo JP, Ferlito A, Cabanillas R, Shaha AR, Rinaldo A. Tumours of familial origin in the head and neck. Oral Oncol 2006; 42:965-78. [PMID: 16857415 DOI: 10.1016/j.oraloncology.2006.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 03/08/2006] [Indexed: 12/15/2022]
Abstract
Individuals with inherited cancer syndromes are at significant risk of developing both benign and malignant tumours as a result of a germline mutation in a specific tumour suppressor gene. Tumours of familial origin are a rare event in the head and neck but despite this, they deserve a growing interest. Familial paragangliomas are most of the time limited to the paraganglionar system, but also may be part of different syndromic associations. Since early detection of paragangliomas reduces the incidence of morbidity and mortality, genotypic analysis in the search of SDHB, SDHC and SDHD mutations in families of affected patients plays a front-line diagnostic role, leading to more efficient patient management. Multiple endocrine neoplasias type 1 are characterized by the simultaneous occurrence of at least two of the three main related endocrine tumours: parathyroid, enteropancreatic and anterior pituitary. These tumours arise from inactivating germline mutations in the MEN-1 gene. No clear correlation of MEN-1 genotype with genotype has emerged to date, and MEN-1 mutation testing in tumours is not used clinically because it have not implications for tumour staging. Multiple endocrine neoplasia type 2 is due to a germline mutation in the RET proto-oncogene. Hallmarks of MEN-2A (the commonest phenotypic variant) include medullary thyroid carcinoma, pheochromocytoma, and hyperparathyroidism. The most central clinical difference with MEN-1 is that the associated cancer can be prevented or cured by early thyroidectomy in mutation carriers. Individuals with neurofibomatosis type 1 present early in life with pigmentary abnormalities, skinfold freckling and iris hamartomas, as result of NF1 gene mutation. Neurofibromatosis 2 is caused by inactivating mutations of the NF2 gene, and is characterized by the development of nervous system tumours (mainly bilateral vestibular schwannomas), ocular abnormalities, and skin tumours. The molecular genetic basis of nasopharyngeal carcinomas remains unknown, but there is evidence for the linkage of these tumours to chromosome 3p. Finally, the high rate of p16 mutations in squamous cell carcinomas and the association of p16 with familial melanoma propose p16 as an ideal candidate gene predisposing to familial squamous cell carcinomas. The elucidation of the cellular processes affected by dysfunction in familial tumours of the head and neck may serve to identify potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Carlos Suárez
- Department of Otolaryngology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Baines AJ. A FERM-adjacent (FA) region defines a subset of the 4.1 superfamily and is a potential regulator of FERM domain function. BMC Genomics 2006; 7:85. [PMID: 16626485 PMCID: PMC1459144 DOI: 10.1186/1471-2164-7-85] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 04/20/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteins containing FERM domains comprise a diverse group of eukaryotic proteins that bind membrane proteins and lipids. In doing so, they organise membrane microstructure, and coordinate the disposition of signalling and cell adhesion complexes. In protein 4.1R, phosphorylation adjacent to the FERM domain regulates its activity, and membrane mechanical properties. RESULTS A novel sequence domain has been detected in a subset of proteins that contain FERM domains. This subset includes the true 4.1 proteins, some tyrosine phosphatases, rho-GEF proteins and type II transmembrane proteins, as well as some uncharacterised FERM proteins. This FERM-adjacent region is always closely proximate to the C-terminal of the FERM domain. This sequence is likely to be folded with elements of alpha and beta structure. The FERM-adjacent region of 4.1R contains serine residues phosphorylated by PKC and PKA; these appear conserved in about half of all other FERM-adjacent regions. Phylogenetic analyses indicate that all proteins containing a FERM-adjacent region arose from a single ancestor after FERM domains had started to proliferate in genomes of animals, plants and mycetozoa. CONCLUSION The FERM-adjacent region defines a subset of the FERM proteins in animals. The conservation of motifs in this region that are potential substrates for kinases together with the known regulatory phosphorylation of 4.1R in this region raises the possibility that the FERM-adjacent region is a regulatory adaptation in this subset of the FERM proteins.
Collapse
Affiliation(s)
- Anthony J Baines
- Department of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
31
|
Abstract
Neurofibromatosis types 1 and 2 (NF1 and NF2) are autosomal dominant phakomatoses. The NF1 and NF2 genes encode for neurofibromin and merlin, respectively. These 2 functionally unrelated proteins both act as tumor suppressor genes, possibly through modulation of the RAS/RAC oncogenic pathways. Improved understanding of the mechanisms by which these tumor suppressors act may allow for medical therapies for neurofibromatosis and may offer insights for cancer therapeutics.
Collapse
Affiliation(s)
- Kaleb H Yohay
- Division of Child Neurology and Pediatrics, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
32
|
Ceccarelli DFJ, Song HK, Poy F, Schaller MD, Eck MJ. Crystal Structure of the FERM Domain of Focal Adhesion Kinase. J Biol Chem 2006; 281:252-9. [PMID: 16221668 DOI: 10.1074/jbc.m509188200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment.
Collapse
Affiliation(s)
- Derek F J Ceccarelli
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
33
|
Golovnina K, Blinov A, Akhmametyeva EM, Omelyanchuk LV, Chang LS. Evolution and origin of merlin, the product of the Neurofibromatosis type 2 (NF2) tumor-suppressor gene. BMC Evol Biol 2005; 5:69. [PMID: 16324214 PMCID: PMC1315344 DOI: 10.1186/1471-2148-5-69] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 12/02/2005] [Indexed: 11/10/2022] Open
Abstract
Background Merlin, the product of the Neurofibromatosis type 2 (NF2) tumor suppressor gene, belongs to the ezrin-radixin-moesin (ERM) subgroup of the protein 4.1 superfamily, which links cell surface glycoproteins to the actin cytoskeleton. While merlin's functional activity has been examined in mammalian and Drosophila models, little is understood about its evolution, diversity, and overall distribution among different taxa. Results By combining bioinformatic and phylogenetic approaches, we demonstrate that merlin homologs are present across a wide range of metazoan lineages. While the phylogenetic tree shows a monophyletic origin of the ERM family, the origin of the merlin proteins is robustly separated from that of the ERM proteins. The derivation of merlin is thought to be in early metazoa. We have also observed the expansion of the ERM-like proteins within the vertebrate clade, which occurred after its separation from Urochordata (Ciona intestinalis). Amino acid sequence alignment reveals the absence of an actin-binding site in the C-terminal region of all merlin proteins from various species but the presence of a conserved internal binding site in the N-terminal domain of the merlin and ERM proteins. In addition, a more conserved pattern of amino acid residues is found in the region containing the so-called "Blue Box," although some amino acid substitutions in this region exist in the merlin sequences of worms, fish, and Ciona. Examination of sequence variability at functionally significant sites, including the serine-518 residue, the phosphorylation of which modulates merlin's intra-molecular association and function as a tumor suppressor, identifies several potentially important sites that are conserved among all merlin proteins but divergent in the ERM proteins. Secondary structure prediction reveals the presence of a conserved α-helical domain in the central to C-terminal region of the merlin proteins of various species. The conserved residues and structures identified correspond to the important sites highlighted by the available crystal structures of the merlin and ERM proteins. Furthermore, analysis of the merlin gene structures from various organisms reveals the increase of gene length during evolution due to the expansion of introns; however, a reduction of intron number and length appears to occur in the merlin gene of the insect group. Conclusion Our results demonstrate a monophyletic origin of the merlin proteins with their root in the early metazoa. The overall similarity among the primary and secondary structures of all merlin proteins and the conservation of several functionally important residues suggest a universal role for merlin in a wide range of metazoa.
Collapse
Affiliation(s)
- Kseniya Golovnina
- Institute of Cytology and Genetics, Russian Academy of Sciences, 10 Lavrent'ev Ave., 630090, Novosibirsk, Russia
| | - Alexander Blinov
- Institute of Cytology and Genetics, Russian Academy of Sciences, 10 Lavrent'ev Ave., 630090, Novosibirsk, Russia
| | - Elena M Akhmametyeva
- Center for Childhood Cancer, Children's Research Institute, Children's Hospital and Department of Pediatrics, The Ohio State University, 700 Children's Drive, Columbus, OH 43205-2696, USA
| | - Leonid V Omelyanchuk
- Institute of Cytology and Genetics, Russian Academy of Sciences, 10 Lavrent'ev Ave., 630090, Novosibirsk, Russia
| | - Long-Sheng Chang
- Center for Childhood Cancer, Children's Research Institute, Children's Hospital and Department of Pediatrics, The Ohio State University, 700 Children's Drive, Columbus, OH 43205-2696, USA
| |
Collapse
|
34
|
Abstract
Modular domains that recognize and target intracellular membranes play a critical role in the assembly, localization, and function of signaling and trafficking complexes in eukaryotic cells. Large domain families, including PH, FYVE, PX, PHD, and C2 domains, combine specific, nonspecific, and multivalent interactions to achieve selective membrane targeting. Despite structural and functional diversity, general features of lipid recognition are evident in the various membrane-targeting mechanisms.
Collapse
Affiliation(s)
- Jonathan P DiNitto
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
35
|
Abstract
Neurofibromatosis type II (NF2) is an autosomal dominant cancer syndrome characterized by the formation of tumors of the nervous system, particularly schwannomas and meningiomas. The NF2 gene is also implicated in the development of sporadic schwannomas and meningiomas, as well as tumor types seemingly unrelated to the NF2 disorder, such as malignant mesotheliomas. Inactivation of NF2 occurs by a "two-hit" mechanism, as proposed by Al Knudson, and the NF2 gene behaves as a classical tumor suppressor gene. The NF2 gene product, merlin, exhibits homology with the ezrin-radixin-moesin family of membrane-cytoskeleton-linking proteins. During the past several years, there has been intensive investigation aimed at elucidating the mechanisms underlying merlin's functions. In this review, we summarize the involvement of NF2 inactivation in tumorigenesis. We also discuss observations implicating merlin in cell motility and cell proliferation, with a focus on recent findings linking merlin to Rac signaling.
Collapse
Affiliation(s)
- Guang-Hui Xiao
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
36
|
Smith WJ, Nassar N, Bretscher A, Cerione RA, Karplus PA. Structure of the active N-terminal domain of Ezrin. Conformational and mobility changes identify keystone interactions. J Biol Chem 2003; 278:4949-56. [PMID: 12429733 DOI: 10.1074/jbc.m210601200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ezrin is a member of the ERM (ezrin, radixin, moesin) family of proteins that cross-link the actin cytoskeleton to the plasma membrane and also may function in signaling cascades that regulate the assembly of actin stress fibers. Here, we report a crystal structure for the free (activated) FERM domain (residues 2-297) of recombinant human ezrin at 2.3 A resolution. Structural comparison among the dormant moesin FERM domain structure and the three known active FERM domain structures (radixin, moesin, and now ezrin) allows the clear definition of regions that undergo structural changes during activation. The key regions affected are residues 135-150 and 155-180 in lobe F2 and residues 210-214 and 235-267 in lobe F3. Furthermore, we show that a large increase in the mobilities of lobes F2 and F3 accompanies activation, suggesting that their integrity is compromised. This leads us to propose a new concept that we refer to as keystone interactions. Keystone interactions occur when one protein (or protein part) contributes residues that allow another protein to complete folding, meaning that it becomes an integral part of the structure and would rarely dissociate. Such interactions are well suited for long-lived cytoskeletal protein interactions. The keystone interactions concept leads us to predict two specific docking sites within lobes F2 and F3 that are likely to bind target proteins.
Collapse
|
37
|
Hamada K, Shimizu T, Yonemura S, Tsukita S, Tsukita S, Hakoshima T. Structural basis of adhesion-molecule recognition by ERM proteins revealed by the crystal structure of the radixin-ICAM-2 complex. EMBO J 2003; 22:502-14. [PMID: 12554651 PMCID: PMC140724 DOI: 10.1093/emboj/cdg039] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
ERM (ezrin/radixin/moesin) proteins recognize the cytoplasmic domains of adhesion molecules in the formation of the membrane-associated cytoskeleton. Here we report the crystal structure of the radixin FERM (4.1 and ERM) domain complexed with the ICAM-2 cytoplasmic peptide. The non-polar region of the ICAM-2 peptide contains the RxxTYxVxxA sequence motif to form a beta-strand followed by a short 3(10)-helix. It binds the groove of the phosphotyrosine-binding (PTB)-like subdomain C mediated by a beta-beta association and several side-chain interactions. The binding mode of the ICAM-2 peptide to the FERM domain is distinct from that of the NPxY motif-containing peptide binding to the canonical PTB domain. Mutation analyses based on the crystal structure reveal the determinant elements of recognition and provide the first insights into the physical link between adhesion molecules and ERM proteins.
Collapse
Affiliation(s)
- Keisuke Hamada
- Structural Biology Laboratory, Nara Institute of Science and Technology and CREST, Japan Science and Technology Corporation, 8916-5 Takayama, Ikoma, Nara 630-0101, Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501 and College of Medical Technology, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan Present address: RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan Present address: Science of Biological Supramolecular Systems, Yokohama-city University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Present address: RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Corresponding author e-mail:
| | - Toshiyuki Shimizu
- Structural Biology Laboratory, Nara Institute of Science and Technology and CREST, Japan Science and Technology Corporation, 8916-5 Takayama, Ikoma, Nara 630-0101, Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501 and College of Medical Technology, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan Present address: RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan Present address: Science of Biological Supramolecular Systems, Yokohama-city University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Present address: RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Corresponding author e-mail:
| | - Shigenobu Yonemura
- Structural Biology Laboratory, Nara Institute of Science and Technology and CREST, Japan Science and Technology Corporation, 8916-5 Takayama, Ikoma, Nara 630-0101, Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501 and College of Medical Technology, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan Present address: RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan Present address: Science of Biological Supramolecular Systems, Yokohama-city University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Present address: RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Corresponding author e-mail:
| | - Shoichiro Tsukita
- Structural Biology Laboratory, Nara Institute of Science and Technology and CREST, Japan Science and Technology Corporation, 8916-5 Takayama, Ikoma, Nara 630-0101, Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501 and College of Medical Technology, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan Present address: RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan Present address: Science of Biological Supramolecular Systems, Yokohama-city University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Present address: RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Corresponding author e-mail:
| | - Sachiko Tsukita
- Structural Biology Laboratory, Nara Institute of Science and Technology and CREST, Japan Science and Technology Corporation, 8916-5 Takayama, Ikoma, Nara 630-0101, Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501 and College of Medical Technology, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan Present address: RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan Present address: Science of Biological Supramolecular Systems, Yokohama-city University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Present address: RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Corresponding author e-mail:
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology and CREST, Japan Science and Technology Corporation, 8916-5 Takayama, Ikoma, Nara 630-0101, Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501 and College of Medical Technology, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan Present address: RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan Present address: Science of Biological Supramolecular Systems, Yokohama-city University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Present address: RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Corresponding author e-mail:
| |
Collapse
|
38
|
Sun CX, Robb VA, Gutmann DH. Protein 4.1 tumor suppressors: getting a FERM grip on growth regulation. J Cell Sci 2002; 115:3991-4000. [PMID: 12356905 DOI: 10.1242/jcs.00094] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Members of the Protein 4.1 superfamily have highly conserved FERM domains that link cell surface glycoproteins to the actin cytoskeleton. Within this large and constantly expanding superfamily, at least five subgroups have been proposed. Two of these subgroups, the ERM and prototypic Protein 4.1 molecules, include proteins that function as tumor suppressors. The ERM subgroup member merlin/schwannomin is inactivated in the tumor-predisposition syndrome neurofibromatosis 2 (NF2), and the prototypic 4.1 subgroup member, Protein 4.1B, has been implicated in the molecular pathogenesis of breast, lung and brain cancers. This review focuses on what is known of mechanisms of action and critical protein interactions that may mediate the unique growth inhibitory signals of these two Protein 4.1 tumor suppressors. On the basis of insights derived from studying the NF2 tumor suppressor, we propose a model for merlin growth regulation in which CD44 links growth signals from plasma membrane to the nucleus by interacting with ERM proteins and merlin.
Collapse
Affiliation(s)
- Chun-Xiao Sun
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
39
|
Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 2002; 3:586-99. [PMID: 12154370 DOI: 10.1038/nrm882] [Citation(s) in RCA: 1045] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A fundamental property of many plasma-membrane proteins is their association with the underlying cytoskeleton to determine cell shape, and to participate in adhesion, motility and other plasma-membrane processes, including endocytosis and exocytosis. The ezrin-radixin-moesin (ERM) proteins are crucial components that provide a regulated linkage between membrane proteins and the cortical cytoskeleton, and also participate in signal-transduction pathways. The closely related tumour suppressor merlin shares many properties with ERM proteins, yet also provides a distinct and essential function.
Collapse
Affiliation(s)
- Anthony Bretscher
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
40
|
Fernandez-Valle C, Tang Y, Ricard J, Rodenas-Ruano A, Taylor A, Hackler E, Biggerstaff J, Iacovelli J. Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet 2002; 31:354-62. [PMID: 12118253 DOI: 10.1038/ng930] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neurofibromatosis type 2 is an autosomal dominant disorder characterized by tumors, predominantly schwannomas, in the nervous system. It is caused by mutations in the gene NF2, encoding the growth regulator schwannomin (also known as merlin). Mutations occur throughout the 17-exon gene, with most resulting in protein truncation and undetectable amounts of schwannomin protein. Pathogenic mutations that result in production of defective schwannomin include in-frame deletions of exon 2 and three independent missense mutations within this same exon. Mice with conditional deletion of exon 2 in Schwann cells develop schwannomas, which confirms the crucial nature of exon 2 for growth control. Here we report that the molecular adaptor paxillin binds directly to schwannomin at residues 50-70, which are encoded by exon 2. This interaction mediates the membrane localization of schwannomin to the plasma membrane, where it associates with beta 1 integrin and erbB2. It defines a pathogenic mechanism for the development of NF2 in humans with mutations in exon 2 of NF2.
Collapse
Affiliation(s)
- Cristina Fernandez-Valle
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida 32826, USA.
| | | | | | | | | | | | | | | |
Collapse
|