1
|
Hirata K. Useful experimental aspects of small-wedge synchrotron crystallography for accurate structure analysis of protein molecules. Acta Crystallogr D Struct Biol 2025; 81:22-37. [PMID: 39718396 PMCID: PMC11740584 DOI: 10.1107/s2059798324011987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
Recent advances in low-emittance synchrotron X-ray technology and highly sensitive photon-counting detectors have revolutionized protein micro-crystallography in structural biology. These developments and improvements to sample-exchange robots and beamline control have paved the way for automated and efficient unattended data collection. This study analyzed protein crystal structures such as type 2 angiotensin II receptor, CNNM/CorC membrane proteins and polyhedral protein crystals using small-wedge synchrotron crystallography (SWSX), which dramatically improves measurement efficiency through automated measurement. We evaluated the data quality using SWSX, focusing on `massive data collection'. In this context, `massive' refers to data sets with a multiplicity exceeding 100. The findings could potentially lead to the development of more efficient experimental conditions, such as obtaining high-resolution data using a smaller number of crystals. We have demonstrated that the application of machine learning, a modern key component of data science, to classify data groups is an integral part of the analysis process and may play a crucial role in improving data quality. These results indicate that SWSX is one of the essential candidates for crystal structure analysis methods for difficult-to-analyze samples: it can enable diverse and complex protein functional analysis.
Collapse
Affiliation(s)
- Kunio Hirata
- SR Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo679-5198, Japan
| |
Collapse
|
2
|
Dickerson JL, McCubbin PTN, Brooks‐Bartlett JC, Garman EF. Doses for X-ray and electron diffraction: New features in RADDOSE-3D including intensity decay models. Protein Sci 2024; 33:e5005. [PMID: 38923423 PMCID: PMC11196903 DOI: 10.1002/pro.5005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
New features in the dose estimation program RADDOSE-3D are summarised. They include the facility to enter a diffraction intensity decay model which modifies the "Diffraction Weighted Dose" output from a "Fluence Weighted Dose" to a "Diffraction-Decay Weighted Dose", a description of RADDOSE-ED for use in electron diffraction experiments, where dose is historically quoted in electrons/Å2 rather than in gray (Gy), and finally the development of a RADDOSE-3D GUI, enabling easy access to all the options available in the program.
Collapse
Affiliation(s)
- Joshua L. Dickerson
- Department of Biochemistry, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordUK
- MRC Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| | - Patrick T. N. McCubbin
- Department of Biochemistry, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordUK
- Division of Structural Biology, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - Elspeth F. Garman
- Department of Biochemistry, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Smith N, Horswill AR, Wilson MA. X-ray-driven chemistry and conformational heterogeneity in atomic resolution crystal structures of bacterial dihydrofolate reductases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566054. [PMID: 37986818 PMCID: PMC10659368 DOI: 10.1101/2023.11.07.566054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate. Bacterial DHFRs are targets of several important antibiotics as well as model enzymes for the role of protein conformational dynamics in enzyme catalysis. We collected 0.93 Å resolution X-ray diffraction data from both Bacillus subtilis (Bs) and E. coli (Ec) DHFRs bound to folate and NADP+. These oxidized ternary complexes should not be able to perform chemistry, however electron density maps suggest hydride transfer is occurring in both enzymes. Comparison of low- and high-dose EcDHFR datasets show that X-rays drive partial production of tetrahydrofolate. Hydride transfer causes the nicotinamide moiety of NADP+ to move towards the folate as well as correlated shifts in nearby residues. Higher radiation dose also changes the conformational heterogeneity of Met20 in EcDHFR, supporting a solvent gating role during catalysis. BsDHFR has a different pattern of conformational heterogeneity and an unexpected disulfide bond, illustrating important differences between bacterial DHFRs. This work demonstrates that X-rays can drive hydride transfer similar to the native DHFR reaction and that X-ray photoreduction can be used to interrogate catalytically relevant enzyme dynamics in favorable cases.
Collapse
Affiliation(s)
- Nathan Smith
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Alexander R. Horswill
- Department of Immunology & Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| |
Collapse
|
4
|
Kovalev K, Tsybrov F, Alekseev A, Shevchenko V, Soloviov D, Siletsky S, Bourenkov G, Agthe M, Nikolova M, von Stetten D, Astashkin R, Bukhdruker S, Chizhov I, Royant A, Kuzmin A, Gushchin I, Rosselli R, Rodriguez-Valera F, Ilyinskiy N, Rogachev A, Borshchevskiy V, Schneider TR, Bamberg E, Gordeliy V. Mechanisms of inward transmembrane proton translocation. Nat Struct Mol Biol 2023:10.1038/s41594-023-01020-9. [PMID: 37386213 DOI: 10.1038/s41594-023-01020-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
Proton transport is indispensable for cell life. It is believed that molecular mechanisms of proton movement through different types of proton-conducting molecules have general universal features. However, elucidation of such mechanisms is a challenge. It requires true-atomic-resolution structures of all key proton-conducting states. Here we present a comprehensive function-structure study of a light-driven bacterial inward proton pump, xenorhodopsin, from Bacillus coahuilensis in all major proton-conducting states. The structures reveal that proton translocation is based on proton wires regulated by internal gates. The wires serve as both selectivity filters and translocation pathways for protons. The cumulative results suggest a general concept of proton translocation. We demonstrate the use of serial time-resolved crystallography at a synchrotron source with sub-millisecond resolution for rhodopsin studies, opening the door for principally new applications. The results might also be of interest for optogenetics since xenorhodopsins are the only alternative tools to fire neurons.
Collapse
Affiliation(s)
- Kirill Kovalev
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Fedor Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Vitaly Shevchenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmytro Soloviov
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Sergey Siletsky
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Michael Agthe
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Marina Nikolova
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - David von Stetten
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Roman Astashkin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Antoine Royant
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Alexander Kuzmin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Riccardo Rosselli
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Evolutionary Genomics Group, Departamento de Produccion Vegetal y Microbiologıa, Universidad Miguel Hernandez, San Juan de Alicante, Alicante, Spain
| | - Nikolay Ilyinskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey Rogachev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, Dubna, Russian Federation
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, Dubna, Russian Federation
| | - Thomas R Schneider
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin Gordeliy
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
5
|
Schneider DK, Soares AS, Lazo EO, Kreitler DF, Qian K, Fuchs MR, Bhogadi DK, Antonelli S, Myers SS, Martins BS, Skinner JM, Aishima J, Bernstein HJ, Langdon T, Lara J, Petkus R, Cowan M, Flaks L, Smith T, Shea-McCarthy G, Idir M, Huang L, Chubar O, Sweet RM, Berman LE, McSweeney S, Jakoncic J. AMX - the highly automated macromolecular crystallography (17-ID-1) beamline at the NSLS-II. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1480-1494. [PMID: 36345756 PMCID: PMC9641562 DOI: 10.1107/s1600577522009377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The highly automated macromolecular crystallography beamline AMX/17-ID-1 is an undulator-based high-intensity (>5 × 1012 photons s-1), micro-focus (7 µm × 5 µm), low-divergence (1 mrad × 0.35 mrad) energy-tunable (5-18 keV) beamline at the NSLS-II, Brookhaven National Laboratory, Upton, NY, USA. It is one of the three life science beamlines constructed by the NIH under the ABBIX project and it shares sector 17-ID with the FMX beamline, the frontier micro-focus macromolecular crystallography beamline. AMX saw first light in March 2016 and started general user operation in February 2017. At AMX, emphasis has been placed on high throughput, high capacity, and automation to enable data collection from the most challenging projects using an intense micro-focus beam. Here, the current state and capabilities of the beamline are reported, and the different macromolecular crystallography experiments that are routinely performed at AMX/17-ID-1 as well as some plans for the near future are presented.
Collapse
Affiliation(s)
| | | | - Edwin O. Lazo
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | | | - Kun Qian
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Martin R. Fuchs
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Dileep K. Bhogadi
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Steve Antonelli
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Stuart S. Myers
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | | | - John M. Skinner
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Jun Aishima
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Herbert J. Bernstein
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
- Ronin Institute, Montclair, New Jersey, USA
| | - Thomas Langdon
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - John Lara
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Robert Petkus
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Matt Cowan
- CSI, Brookhaven National Laboratory, Upton, New York, USA
| | - Leonid Flaks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Thomas Smith
- Physics Department, Brookhaven National Laboratory, Upton, New York, USA
| | | | - Mourad Idir
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Lei Huang
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Oleg Chubar
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Robert M. Sweet
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Lonny E. Berman
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Sean McSweeney
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Jean Jakoncic
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
6
|
Kovalenko V, Popov A, Santoni G, Loiko N, Tereshkina K, Tereshkin E, Krupyanskii Y. Multi-crystal data collection using synchrotron radiation as exemplified with low-symmetry crystals of Dps. Acta Crystallogr F Struct Biol Commun 2020; 76:568-576. [PMID: 33135675 PMCID: PMC7605109 DOI: 10.1107/s2053230x20012571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/15/2020] [Indexed: 11/10/2022] Open
Abstract
Multi-crystal data collection using synchrotron radiation was successfully applied to determine the three-dimensional structure of a triclinic crystal form of Dps from Escherichia coli at 2.0 Å resolution. The final data set was obtained by combining 261 partial diffraction data sets measured from crystals with an average size of approximately 5 µm. The most important features of diffraction data measurement and processing for low-symmetry crystals are discussed.
Collapse
Affiliation(s)
- Vladislav Kovalenko
- Structure of Matter, Semenov FRC for Chemical Physics, RAS, 4 Kosygina Street, Moscow 119991, Russian Federation
| | - Alexander Popov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Gianluca Santoni
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Natalia Loiko
- Survival of Microorganisms, FRC ‘Fundamentals of Biotechnology’, 33 Leninsky Prospect, Building 2, Moscow 119071, Russian Federation
| | - Ksenia Tereshkina
- Structure of Matter, Semenov FRC for Chemical Physics, RAS, 4 Kosygina Street, Moscow 119991, Russian Federation
| | - Eduard Tereshkin
- Structure of Matter, Semenov FRC for Chemical Physics, RAS, 4 Kosygina Street, Moscow 119991, Russian Federation
| | - Yurii Krupyanskii
- Structure of Matter, Semenov FRC for Chemical Physics, RAS, 4 Kosygina Street, Moscow 119991, Russian Federation
| |
Collapse
|
7
|
Dickerson JL, Garman EF. The potential benefits of using higher X-ray energies for macromolecular crystallography. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:922-930. [PMID: 31274414 DOI: 10.1107/s160057751900612x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/01/2019] [Indexed: 05/06/2023]
Abstract
Using X-ray energies higher than those normally used (5-15 keV) for macromolecular X-ray crystallography (MX) at synchrotron sources can theoretically increase the achievable signal as a function of dose and reduce the rate of radiation damage. In practice, a major stumbling block to the use of higher X-ray energy has been the reduced quantum efficiency of silicon detectors as the X-ray energy increases, but hybrid photon-counting CdTe detectors are optimized for higher X-ray energies, and their performance has been steadily improving. Here the potential advantages of using higher incident beam energy together with a CdTe detector for MX are explored, with a particular focus on the advantages that higher beam energies may have for MX experiments with microbeams or microcrystals. Monte Carlo simulations are presented here which for the first time include the efficiency responses of some available X-ray detectors, as well as the possible escape of photoelectrons from the sample and their entry from surrounding material. The results reveal a `sweet spot' at an incident X-ray energy of 26 keV, and show a greater than factor of two improvement in diffraction efficiency at this energy when using microbeams and microcrystals of 5 µm or less.
Collapse
Affiliation(s)
- Joshua L Dickerson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
8
|
Garman EF, Weik M. X-ray radiation damage to biological samples: recent progress. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:907-911. [PMID: 31274412 DOI: 10.1107/s1600577519009408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 06/30/2019] [Indexed: 05/20/2023]
Abstract
With the continuing development of beamlines for macromolecular crystallography (MX) over the last few years providing ever higher X-ray flux densities, it has become even more important to be aware of the effects of radiation damage on the resulting structures. Nine papers in this issue cover a range of aspects related to the physics and chemistry of the manifestations of this damage, as observed in both MX and small-angle X-ray scattering (SAXS) on crystals, solutions and tissue samples. The reports include measurements of the heating caused by X-ray irradiation in ruby microcrystals, low-dose experiments examining damage rates as a function of incident X-ray energy up to 30 keV on a metallo-enzyme using a CdTe detector of high quantum efficiency as well as a theoretical analysis of the gains predicted in diffraction efficiency using these detectors, a SAXS examination of low-dose radiation exposure effects on the dissociation of a protein complex related to human health, theoretical calculations describing radiation chemistry pathways which aim to explain the specific structural damage widely observed in proteins, investigation of radiation-induced damage effects in a DNA crystal, a case study on a metallo-enzyme where structural movements thought to be mechanism related might actually be radiation-damage-induced changes, and finally a review describing what X-ray radiation-induced cysteine modifications can teach us about protein dynamics and catalysis. These papers, along with some other relevant literature published since the last Journal of Synchrotron Radiation Radiation Damage special issue in 2017, are briefly summarized below.
Collapse
Affiliation(s)
- Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|
9
|
Ueno G, Shimada A, Yamashita E, Hasegawa K, Kumasaka T, Shinzawa-Itoh K, Yoshikawa S, Tsukihara T, Yamamoto M. Low-dose X-ray structure analysis of cytochrome c oxidase utilizing high-energy X-rays. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:912-921. [PMID: 31274413 PMCID: PMC6613116 DOI: 10.1107/s1600577519006805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/12/2019] [Indexed: 05/29/2023]
Abstract
To investigate the effect of high-energy X-rays on site-specific radiation-damage, low-dose diffraction data were collected from radiation-sensitive crystals of the metal enzyme cytochrome c oxidase. Data were collected at the Structural Biology I beamline (BL41XU) at SPring-8, using 30 keV X-rays and a highly sensitive pixel array detector equipped with a cadmium telluride sensor. The experimental setup of continuous sample translation using multiple crystals allowed the average diffraction weighted dose per data set to be reduced to 58 kGy, and the resulting data revealed a ligand structure featuring an identical bond length to that in the damage-free structure determined using an X-ray free-electron laser. However, precise analysis of the residual density around the ligand structure refined with the synchrotron data showed the possibility of a small level of specific damage, which might have resulted from the accumulated dose of 58 kGy per data set. Further investigation of the photon-energy dependence of specific damage, as assessed by variations in UV-vis absorption spectra, was conducted using an on-line spectrometer at various energies ranging from 10 to 30 keV. No evidence was found for specific radiation damage being energy dependent.
Collapse
Affiliation(s)
- Go Ueno
- SR Life Science Instrumentation Team, Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Hasegawa
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Yamamoto
- SR Life Science Instrumentation Team, Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
10
|
Oscarsson M, Beteva A, Flot D, Gordon E, Guijarro M, Leonard G, McSweeney S, Monaco S, Mueller-Dieckmann C, Nanao M, Nurizzo D, Popov AN, von Stetten D, Svensson O, Rey-Bakaikoa V, Chado I, Chavas LMG, Gadea L, Gourhant P, Isabet T, Legrand P, Savko M, Sirigu S, Shepard W, Thompson A, Mueller U, Nan J, Eguiraun M, Bolmsten F, Nardella A, Milàn-Otero A, Thunnissen M, Hellmig M, Kastner A, Schmuckermaier L, Gerlach M, Feiler C, Weiss MS, Bowler MW, Gobbo A, Papp G, Sinoir J, McCarthy AA, Karpics I, Nikolova M, Bourenkov G, Schneider T, Andreu J, Cuní G, Juanhuix J, Boer R, Fogh R, Keller P, Flensburg C, Paciorek W, Vonrhein C, Bricogne G, de Sanctis D. MXCuBE2: the dawn of MXCuBE Collaboration. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:393-405. [PMID: 30855248 PMCID: PMC6412183 DOI: 10.1107/s1600577519001267] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/23/2019] [Indexed: 05/22/2023]
Abstract
MXCuBE2 is the second-generation evolution of the MXCuBE beamline control software, initially developed and used at ESRF - the European Synchrotron. MXCuBE2 extends, in an intuitive graphical user interface (GUI), the functionalities and data collection methods available to users while keeping all previously available features and allowing for the straightforward incorporation of ongoing and future developments. MXCuBE2 introduces an extended abstraction layer that allows easy interfacing of any kind of macromolecular crystallography (MX) hardware component, whether this is a diffractometer, sample changer, detector or optical element. MXCuBE2 also works in strong synergy with the ISPyB Laboratory Information Management System, accessing the list of samples available for a particular experimental session and associating, either from instructions contained in ISPyB or from user input via the MXCuBE2 GUI, different data collection types to them. The development of MXCuBE2 forms the core of a fruitful collaboration which brings together several European synchrotrons and a software development factory and, as such, defines a new paradigm for the development of beamline control platforms for the European MX user community.
Collapse
Affiliation(s)
- Marcus Oscarsson
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Antonia Beteva
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - David Flot
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Elspeth Gordon
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Matias Guijarro
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Gordon Leonard
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Sean McSweeney
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Stephanie Monaco
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | | | - Max Nanao
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Didier Nurizzo
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Alexander N. Popov
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - David von Stetten
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Olof Svensson
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | | | | | | | - Laurent Gadea
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette Cedex, France
| | | | | | | | - Martin Savko
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette Cedex, France
| | - Serena Sirigu
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette Cedex, France
| | | | | | - Uwe Mueller
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | - Jie Nan
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | - Mikel Eguiraun
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | | | | | | | | | - Michael Hellmig
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Alexandra Kastner
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Lukas Schmuckermaier
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Martin Gerlach
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Christian Feiler
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Manfred S. Weiss
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Matthew W. Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Alexandre Gobbo
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Gergely Papp
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Jeremy Sinoir
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Andrew A. McCarthy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Ivars Karpics
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg, Germany
| | - Marina Nikolova
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg, Germany
| | - Gleb Bourenkov
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg, Germany
| | - Thomas Schneider
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg, Germany
| | - Jordi Andreu
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain
| | - Guifré Cuní
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain
| | - Judith Juanhuix
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain
| | - Roeland Boer
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain
| | - Rasmus Fogh
- Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AK, UK
| | - Peter Keller
- Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AK, UK
| | - Claus Flensburg
- Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AK, UK
| | - Wlodek Paciorek
- Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AK, UK
| | - Clemens Vonrhein
- Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AK, UK
| | - Gerard Bricogne
- Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AK, UK
| | - Daniele de Sanctis
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
11
|
Hirata K, Yamashita K, Ueno G, Kawano Y, Hasegawa K, Kumasaka T, Yamamoto M. ZOO: an automatic data-collection system for high-throughput structure analysis in protein microcrystallography. Acta Crystallogr D Struct Biol 2019; 75:138-150. [PMID: 30821703 PMCID: PMC6400253 DOI: 10.1107/s2059798318017795] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 12/17/2018] [Indexed: 11/10/2022] Open
Abstract
Owing to the development of brilliant microfocus beamlines, rapid-readout detectors and sample changers, protein microcrystallography is rapidly becoming a popular technique for accessing structural information from complex biological samples. However, the method is time-consuming and labor-intensive and requires technical expertise to obtain high-resolution protein crystal structures. At SPring-8, an automated data-collection system named ZOO has been developed. This system enables faster data collection, facilitates advanced data-collection and data-processing techniques, and permits the collection of higher quality data. In this paper, the key features of the functionality put in place on the SPring-8 microbeam beamline BL32XU are described and the major advantages of this system are outlined. The ZOO system will be a major driving force in the evolution of the macromolecular crystallography beamlines at SPring-8.
Collapse
Affiliation(s)
- Kunio Hirata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | - Go Ueno
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yoshiaki Kawano
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kazuya Hasegawa
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo 679-5198, Hyogo, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo 679-5198, Hyogo, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
12
|
Crystal structures of multicopper oxidase CueO G304K mutant: structural basis of the increased laccase activity. Sci Rep 2018; 8:14252. [PMID: 30250139 PMCID: PMC6155172 DOI: 10.1038/s41598-018-32446-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
The multicopper oxidase CueO is involved in copper homeostasis and copper (Cu) tolerance in Escherichia coli. The laccase activity of CueO G304K mutant is higher than wild-type CueO. To explain this increase in activity, we solved the crystal structure of G304K mutant at 1.49 Å. Compared with wild-type CueO, the G304K mutant showed dramatic conformational changes in methionine-rich helix and the relative regulatory loop (R-loop). We further solved the structure of Cu-soaked enzyme, and found that the addition of Cu ions induced further conformational changes in the R-loop and methionine-rich helix as a result of the new Cu-binding sites on the enzyme's surface. We propose a mechanism for the enhanced laccase activity of the G304K mutant, where movements of the R-loop combined with the changes of the methionine-rich region uncover the T1 Cu site allowing greater access of the substrate. Two of the G304K double mutants showed the enhanced or decreased laccase activity, providing further evidence for the interaction between the R-loop and the methionine-rich region. The cuprous oxidase activity of these mutants was about 20% that of wild-type CueO. These structural features of the G304K mutant provide clues for designing specific substrate-binding mutants in the biotechnological applications.
Collapse
|
13
|
Crystal structure of the human angiotensin II type 2 receptor bound to an angiotensin II analog. Nat Struct Mol Biol 2018; 25:570-576. [PMID: 29967536 DOI: 10.1038/s41594-018-0079-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
Angiotensin II (AngII) plays a central role in regulating human blood pressure, which is mainly mediated by interactions between AngII and the G-protein-coupled receptors (GPCRs) AngII type 1 receptor (AT1R) and AngII type 2 receptor (AT2R). We have solved the crystal structure of human AT2R binding the peptide ligand [Sar1, Ile8]AngII and its specific antibody at 3.2-Å resolution. [Sar1, Ile8]AngII interacts with both the 'core' binding domain, where the small-molecule ligands of AT1R and AT2R bind, and the 'extended' binding domain, which is equivalent to the allosteric modulator binding site of muscarinic acetylcholine receptor. We generated an antibody fragment to stabilize the extended binding domain that functions as a positive allosteric modulator. We also identified a signature positively charged cluster, which is conserved among peptide-binding receptors, to locate C termini at the bottom of the binding pocket. The reported results should help with designing ligands for angiotensin receptors and possibly to other peptide GPCRs.
Collapse
|
14
|
The Influence of Photoelectron Escape in Radiation Damage Simulations of Protein Micro-Crystallography. CRYSTALS 2018. [DOI: 10.3390/cryst8070267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiation damage represents a fundamental limit in the determination of protein structures via macromolecular crystallography (MX) at third-generation synchrotron sources. Over the past decade, improvements in both source and detector technology have led to MX experiments being performed with smaller and smaller crystals (on the order of a few microns), often using microfocus beams. Under these conditions, photoelectrons (PEs), the primary agents of radiation-damage in MX, may escape the diffraction volume prior to depositing all of their energy. The impact of PE escape is more significant at higher beam energies (>20 keV) as the electron inelastic mean free path (IMFP) is longer, allowing the electrons to deposit their energy over a larger area, extending further from their point of origin. Software such as RADDOSE-3D has been used extensively to predict the dose (energy absorbed per unit mass) that a crystal will absorb under a given set of experimental parameters and is an important component in planning a successful MX experiment. At the time this study was undertaken, dose predictions made using RADDOSE-3D were spatially-resolved, but did not yet account for the propagation of PEs through the diffraction volume. Hence, in the case of microfocus crystallography, it is anticipated that deviations may occur between the predicted and actual dose absorbed due to the influence of PEs. To explore this effect, we conducted a series of simulations of the dose absorbed by micron-sized crystals during microfocus MX experiments. Our simulations spanned beam and crystal sizes ranging from 1μm to 5μm for beam energies between 9 keV and 30 keV. Our simulations were spatially and temporarily resolved and accounted for the escape of PEs from the diffraction volume. The spatially-resolved dose maps produced by these simulations were used to predict the rate of intensity loss in a Bragg spot, a key metric for tracking global radiation damage. Our results were compared to predictions obtained using a recent version of RADDOSE-3D that did not account for PE escape; the predicted crystal lifetimes are shown to differ significantly for the smallest crystals and for high-energy beams, when PE escape is included in the simulations.
Collapse
|
15
|
Berejnov V, Rubinstein B, Melo LGA, Hitchcock AP. First-principles X-ray absorption dose calculation for time-dependent mass and optical density. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:833-847. [PMID: 29714195 DOI: 10.1107/s1600577518002655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.
Collapse
Affiliation(s)
- Viatcheslav Berejnov
- Automotive Fuel Cell Cooperation Corporation, 9000 Glenlyon Parkway, Burnaby, BC, Canada V5J 5J8
| | - Boris Rubinstein
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Lis G A Melo
- Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1
| | - Adam P Hitchcock
- Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1
| |
Collapse
|
16
|
Abstract
Radiation damage still remains a major limitation and challenge in macromolecular X-ray crystallography. Some of the high-intensity radiation used for diffraction data collection experiments is absorbed by the crystals, generating free radicals. These give rise to radiation damage even at cryotemperatures (~100 K), which can lead to incorrect biological conclusions being drawn from the resulting structure, or even prevent structure solution entirely. Investigation of mitigation strategies and the effects caused by radiation damage has been extensive over the past fifteen years. Here, recent understanding of the physical and chemical phenomena of radiation damage is described, along with the global effects inflicted on the collected data and the specific effects observed in the solved structure. Furthermore, this review aims to summarise the progress made in radiation damage studies in macromolecular crystallography from the experimentalist’s point of view and to give an introduction to the current literature.
Collapse
|
17
|
Wojdyla JA, Kaminski JW, Panepucci E, Ebner S, Wang X, Gabadinho J, Wang M. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:293-303. [PMID: 29271779 PMCID: PMC5741135 DOI: 10.1107/s1600577517014503] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/08/2017] [Indexed: 05/19/2023]
Abstract
Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods.
Collapse
Affiliation(s)
| | - Jakub W. Kaminski
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | | - Simon Ebner
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Xiaoqiang Wang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jose Gabadinho
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
18
|
X-ray free electron laser: opportunities for drug discovery. Essays Biochem 2017; 61:529-542. [PMID: 29118098 DOI: 10.1042/ebc20170031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/16/2023]
Abstract
Past decades have shown the impact of structural information derived from complexes of drug candidates with their protein targets to facilitate the discovery of safe and effective medicines. Despite recent developments in single particle cryo-electron microscopy, X-ray crystallography has been the main method to derive structural information. The unique properties of X-ray free electron laser (XFEL) with unmet peak brilliance and beam focus allow X-ray diffraction data recording and successful structure determination from smaller and weaker diffracting crystals shortening timelines in crystal optimization. To further capitalize on the XFEL advantage, innovations in crystal sample delivery for the X-ray experiment, data collection and processing methods are required. This development was a key contributor to serial crystallography allowing structure determination at room temperature yielding physiologically more relevant structures. Adding the time resolution provided by the femtosecond X-ray pulse will enable monitoring and capturing of dynamic processes of ligand binding and associated conformational changes with great impact to the design of candidate drug compounds.
Collapse
|
19
|
Bury CS, Brooks-Bartlett JC, Walsh SP, Garman EF. Estimate your dose: RADDOSE-3D. Protein Sci 2017; 27:217-228. [PMID: 28921782 DOI: 10.1002/pro.3302] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/22/2022]
Abstract
We present the current status of RADDOSE-3D, a software tool allowing the estimation of the dose absorbed in a macromolecular crystallography diffraction experiment. The code allows a temporal and spatial dose contour map to be calculated for a crystal of any geometry and size as it is rotated in an X-ray beam, and gives several summary dose values: among them diffraction weighted dose. This allows experimenters to plan data collections which will minimize radiation damage effects by spreading the absorbed dose more homogeneously, and thus to optimize the use of their crystals. It also allows quantitative comparisons between different radiation damage studies, giving a universal "x-axis" against which to plot various metrics.
Collapse
Affiliation(s)
- Charles S Bury
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | - Steven P Walsh
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Elspeth F Garman
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
20
|
Chen C, Sun JK, Zhang YJ, Yang XD, Zhang J. Flexible Viologen-Based Porous Framework Showing X-ray Induced Photochromism with Single-Crystal-to-Single-Crystal Transformation. Angew Chem Int Ed Engl 2017; 56:14458-14462. [DOI: 10.1002/anie.201707290] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, CAS; Fuzhou Fujian 350002 P. R. China
| | - Jian-Ke Sun
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, CAS; Fuzhou Fujian 350002 P. R. China
- Current address: Department of Colloid Chemistry; Max Planck Institute of Colloids and Interfaces; Research Campus Golm 14476 Potsdam Germany
| | - Ya-Jun Zhang
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, CAS; Fuzhou Fujian 350002 P. R. China
| | - Xiao-Dong Yang
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, CAS; Fuzhou Fujian 350002 P. R. China
| | - Jie Zhang
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, CAS; Fuzhou Fujian 350002 P. R. China
- MOE Key Laboratory of Cluster Science; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 102488 P.R. China
| |
Collapse
|
21
|
Chen C, Sun JK, Zhang YJ, Yang XD, Zhang J. Flexible Viologen-Based Porous Framework Showing X-ray Induced Photochromism with Single-Crystal-to-Single-Crystal Transformation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, CAS; Fuzhou Fujian 350002 P. R. China
| | - Jian-Ke Sun
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, CAS; Fuzhou Fujian 350002 P. R. China
- Current address: Department of Colloid Chemistry; Max Planck Institute of Colloids and Interfaces; Research Campus Golm 14476 Potsdam Germany
| | - Ya-Jun Zhang
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, CAS; Fuzhou Fujian 350002 P. R. China
| | - Xiao-Dong Yang
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, CAS; Fuzhou Fujian 350002 P. R. China
| | - Jie Zhang
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, CAS; Fuzhou Fujian 350002 P. R. China
- MOE Key Laboratory of Cluster Science; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 102488 P.R. China
| |
Collapse
|
22
|
Abstract
Micro-diffraction tools for macromolecular crystallography, first developed at the end of 1990s and now an integral part of many synchrotron beamlines, enable some of the experiments which were not feasible just a decade or so ago. These include data collection from very small samples, just a few micrometers in size; from larger, but severely inhomogeneous samples; and from samples which are optically invisible. Improved micro-diffraction tools led to improved signal-to-noise ratio, to mitigation of radiation damage in some cases, and to better-designed diffraction experiments. Small, micron-scale beams can be attained in different ways and knowing the details of the implementation is important in order to design the diffraction experiment properly. Similarly, precision, reproducibility and stability of the goniometry, and caveats of detection systems need to be taken into account. Lastly, to make micro-diffraction widely applicable, the sophistication, robustness, and user-friendliness of these tools are just as important as the technical capabilities.
Collapse
Affiliation(s)
- Ruslan Sanishvili
- GM/CA@APS, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA.
| | - Robert F Fischetti
- GM/CA@APS, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| |
Collapse
|
23
|
Abstract
Radiation damage inflicted on macromolecular crystals during X-ray diffraction experiments remains a limiting factor for structure solution, even when samples are cooled to cryotemperatures (~100 K). Efforts to establish mitigation strategies are ongoing and various approaches, summarized below, have been investigated over the last 15 years, resulting in a deeper understanding of the physical and chemical factors affecting damage rates. The recent advent of X-ray free electron lasers permits "diffraction-before-destruction" by providing highly brilliant and short (a few tens of fs) X-ray pulses. New fourth generation synchrotron sources now coming on line with higher X-ray flux densities than those available from third generation synchrotrons will bring the issue of radiation damage once more to the fore for structural biologists.
Collapse
Affiliation(s)
- Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Martin Weik
- Institut de Biologie Structurale, University of Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38044, Grenoble, France.
| |
Collapse
|
24
|
Bury CS, Carmichael I, Garman EF. OH cleavage from tyrosine: debunking a myth. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:7-18. [PMID: 28009542 PMCID: PMC5182017 DOI: 10.1107/s1600577516016775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/19/2016] [Indexed: 05/09/2023]
Abstract
During macromolecular X-ray crystallography experiments, protein crystals held at 100 K have been widely reported to exhibit reproducible bond scission events at doses on the order of several MGy. With the objective to mitigate the impact of radiation damage events on valid structure determination, it is essential to correctly understand the radiation chemistry mechanisms at play. OH-cleavage from tyrosine residues is regularly cited as amongst the most available damage pathways in protein crystals at 100 K, despite a lack of widespread reports of this phenomenon in protein crystal radiation damage studies. Furthermore, no clear mechanism for phenolic C-O bond cleavage in tyrosine has been reported, with the tyrosyl radical known to be relatively robust and long-lived in both aqueous solutions and the solid state. Here, the initial findings of Tyr -OH group damage in a myrosinase protein crystal have been reviewed. Consistent with that study, at increasing doses, clear electron density loss was detectable local to Tyr -OH groups. A systematic investigation performed on a range of protein crystal damage series deposited in the Protein Data Bank has established that Tyr -OH electron density loss is not generally a dominant damage pathway in protein crystals at 100 K. Full Tyr aromatic ring displacement is here proposed to account for instances of observable Tyr -OH electron density loss, with the original myrosinase data shown to be consistent with such a damage model. Systematic analysis of the effects of other environmental factors, including solvent accessibility and proximity to disulfide bonds or hydrogen bond interactions, is also presented. Residues in known active sites showed enhanced sensitivity to radiation-induced disordering, as has previously been reported.
Collapse
Affiliation(s)
- Charles S. Bury
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ian Carmichael
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
25
|
Russi S, González A, Kenner LR, Keedy DA, Fraser JS, van den Bedem H. Conformational variation of proteins at room temperature is not dominated by radiation damage. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:73-82. [PMID: 28009548 PMCID: PMC5182021 DOI: 10.1107/s1600577516017343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/28/2016] [Indexed: 05/09/2023]
Abstract
Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature have not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 107 Gy at 100 K and 105 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. This analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.
Collapse
Affiliation(s)
- Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ana González
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Lillian R. Kenner
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA
| | - Daniel A. Keedy
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA
| | - Henry van den Bedem
- Bioscience Department, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
26
|
Hirata K, Foadi J, Evans G, Hasegawa K, Zeldin OB. Structural Biology with Microfocus Beamlines. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-4-431-56030-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
27
|
Hopkins JB, Thorne RE. Quantifying radiation damage in biomolecular small-angle X-ray scattering. J Appl Crystallogr 2016; 49:880-890. [PMID: 27275138 PMCID: PMC4886981 DOI: 10.1107/s1600576716005136] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/25/2016] [Indexed: 11/10/2022] Open
Abstract
Small-angle X-ray scattering (SAXS) is an increasingly popular technique that provides low-resolution structural information about biological macromolecules in solution. Many of the practical limitations of the technique, such as minimum required sample volume, and of experimental design, such as sample flow cells, are necessary because the biological samples are sensitive to damage from the X-rays. Radiation damage typically manifests as aggregation of the sample, which makes the collected data unreliable. However, there has been little systematic investigation of the most effective methods to reduce damage rates, and results from previous damage studies are not easily compared with results from other beamlines. Here a methodology is provided for quantifying radiation damage in SAXS to provide consistent results between different experiments, experimenters and beamlines. These methods are demonstrated on radiation damage data collected from lysozyme, glucose isomerase and xylanase, and it is found that no single metric is sufficient to describe radiation damage in SAXS for all samples. The radius of gyration, molecular weight and integrated SAXS profile intensity constitute a minimal set of parameters that capture all types of observed behavior. Radiation sensitivities derived from these parameters show a large protein dependence, varying by up to six orders of magnitude between the different proteins tested. This work should enable consistent reporting of radiation damage effects, allowing more systematic studies of the most effective minimization strategies.
Collapse
Affiliation(s)
| | - Robert E. Thorne
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
28
|
Correy GJ, Carr PD, Meirelles T, Mabbitt PD, Fraser NJ, Weik M, Jackson CJ. Mapping the Accessible Conformational Landscape of an Insect Carboxylesterase Using Conformational Ensemble Analysis and Kinetic Crystallography. Structure 2016; 24:977-87. [PMID: 27210287 DOI: 10.1016/j.str.2016.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 11/26/2022]
Abstract
The proper function of enzymes often depends upon their efficient interconversion between particular conformational sub-states on a free-energy landscape. Experimentally characterizing these sub-states is challenging, which has limited our understanding of the role of protein dynamics in many enzymes. Here, we have used a combination of kinetic crystallography and detailed analysis of crystallographic protein ensembles to map the accessible conformational landscape of an insect carboxylesterase (LcαE7) as it traverses all steps in its catalytic cycle. LcαE7 is of special interest because of its evolving role in organophosphate insecticide resistance. Our results reveal that a dynamically coupled network of residues extends from the substrate-binding site to a surface loop. Interestingly, the coupling of this network that is apparent in the apoenzyme appears to be reduced in the phosphorylated enzyme intermediate. Altogether, the results of this work highlight the importance of protein dynamics to enzyme function and the evolution of new activity.
Collapse
Affiliation(s)
- Galen J Correy
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Paul D Carr
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Tamara Meirelles
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Peter D Mabbitt
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Nicholas J Fraser
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Martin Weik
- Institut de Biologie Structurale Jean Pierre Ebel, Commisariat a l'Energie Atomique, Centre de National de la Recherche Scientifique, University Josef Fourier, 41 rue Jules Horowitz, 38027 Grenoble, France
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
29
|
Roessler CG, Agarwal R, Allaire M, Alonso-Mori R, Andi B, Bachega JFR, Bommer M, Brewster AS, Browne MC, Chatterjee R, Cho E, Cohen AE, Cowan M, Datwani S, Davidson VL, Defever J, Eaton B, Ellson R, Feng Y, Ghislain LP, Glownia JM, Han G, Hattne J, Hellmich J, Héroux A, Ibrahim M, Kern J, Kuczewski A, Lemke HT, Liu P, Majlof L, McClintock WM, Myers S, Nelsen S, Olechno J, Orville AM, Sauter NK, Soares AS, Soltis SM, Song H, Stearns RG, Tran R, Tsai Y, Uervirojnangkoorn M, Wilmot CM, Yachandra V, Yano J, Yukl ET, Zhu D, Zouni A. Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography. Structure 2016; 24:631-640. [PMID: 26996959 DOI: 10.1016/j.str.2016.02.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/25/2015] [Accepted: 02/17/2016] [Indexed: 02/01/2023]
Abstract
X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallization conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. We report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). Additional samples were screened to demonstrate that these methods can be applied to rare samples.
Collapse
Affiliation(s)
- Christian G Roessler
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Rakhi Agarwal
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Marc Allaire
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Babak Andi
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - José F R Bachega
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, CEP: 13560-970, Brazil
| | - Martin Bommer
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| | - Aaron S Brewster
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Michael C Browne
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ruchira Chatterjee
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Eunsun Cho
- Department of Chemistry, Boston University, Boston, MA 02215-2521, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Matthew Cowan
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | | | - Victor L Davidson
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816-2364, USA
| | - Jim Defever
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | | | - Yiping Feng
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Guangye Han
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Johan Hattne
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Julia Hellmich
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität, D-10623 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| | - Annie Héroux
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Mohamed Ibrahim
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| | - Jan Kern
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Anthony Kuczewski
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Henrik T Lemke
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215-2521, USA
| | | | | | - Stuart Myers
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Silke Nelsen
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Allen M Orville
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA; Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | - Nicholas K Sauter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Alexei S Soares
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | - S Michael Soltis
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Heng Song
- Department of Chemistry, Boston University, Boston, MA 02215-2521, USA
| | | | - Rosalie Tran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Yingssu Tsai
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA; Department of Chemistry, Stanford University, Stanford, CA 94305-4401, USA
| | | | - Carrie M Wilmot
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vittal Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Erik T Yukl
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| |
Collapse
|
30
|
Senda T. [Structural Study in the Platform for Drug Discovery, Informatics, and Structural Life Science]. YAKUGAKU ZASSHI 2016; 136:449-58. [PMID: 26935085 DOI: 10.1248/yakushi.15-00236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Platform for Drug Discovery, Informatics, and Structural Life Science (PDIS), which has been launched since FY2012, is a national project in the field of structural biology. The PDIS consists of three cores - structural analysis, control, and informatics - and aims to support life science researchers who are not familiar with structural biology. The PDIS project is able to provide full-scale support for structural biology research. The support provided by the PDIS project includes protein purification with various expression systems, large scale protein crystallization, crystal structure determination, small angle scattering (SAXS), NMR, electron microscopy, bioinformatics, etc. In order to utilize these methods of support, PDIS users need to submit an application form to the one-stop service office. Submitted applications will be reviewed by three referees. It is strongly encouraged that PDIS users have sufficient discussion with researchers in the PDIS project before submitting the application. This discussion is very useful in the process of project design, particularly for beginners in structural biology. In addition to this user support, the PDIS project has conducted R&D, which includes the development of synchrotron beamlines. In the PDIS project, PF and SPring-8 have developed beamlines for micro-crystallography, high-throughput data collection, supramolecular assembly, and native single anomalous dispersion (SAD) phasing. The newly developed beamlines have been open to all users, and have accelerated structural biology research. Beamlines for SAXS have also been developed, which has dramatically increased bio-SAXS users.
Collapse
Affiliation(s)
- Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization
| |
Collapse
|
31
|
de Sanctis D, Oscarsson M, Popov A, Svensson O, Leonard G. Facilitating best practices in collecting anomalous scattering data for de novo structure solution at the ESRF Structural Biology Beamlines. Acta Crystallogr D Struct Biol 2016; 72:413-20. [PMID: 26960128 PMCID: PMC4784672 DOI: 10.1107/s2059798316001042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/18/2016] [Indexed: 11/10/2022] Open
Abstract
The constant evolution of synchrotron structural biology beamlines, the viability of screening protein crystals for a wide range of heavy-atom derivatives, the advent of efficient protein labelling and the availability of automatic data-processing and structure-solution pipelines have combined to make de novo structure solution in macromolecular crystallography a less arduous task. Nevertheless, the collection of diffraction data of sufficient quality for experimental phasing is still a difficult and crucial step. Here, some examples of good data-collection practice for projects requiring experimental phasing are presented and recent developments at the ESRF Structural Biology beamlines that have facilitated these are illustrated.
Collapse
Affiliation(s)
- Daniele de Sanctis
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Marcus Oscarsson
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Alexander Popov
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Olof Svensson
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Gordon Leonard
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
32
|
Fukuda Y, Tse KM, Suzuki M, Diederichs K, Hirata K, Nakane T, Sugahara M, Nango E, Tono K, Joti Y, Kameshima T, Song C, Hatsui T, Yabashi M, Nureki O, Matsumura H, Inoue T, Iwata S, Mizohata E. Redox-coupled structural changes in nitrite reductase revealed by serial femtosecond and microfocus crystallography. J Biochem 2016; 159:527-38. [PMID: 26769972 PMCID: PMC4846774 DOI: 10.1093/jb/mvv133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/19/2015] [Indexed: 11/17/2022] Open
Abstract
Serial femtosecond crystallography (SFX) has enabled the damage-free structural determination of metalloenzymes and filled the gaps of our knowledge between crystallographic and spectroscopic data. Crystallographers, however, scarcely know whether the rising technique provides truly new structural insights into mechanisms of metalloenzymes partly because of limited resolutions. Copper nitrite reductase (CuNiR), which converts nitrite to nitric oxide in denitrification, has been extensively studied by synchrotron radiation crystallography (SRX). Although catalytic Cu (Type 2 copper (T2Cu)) of CuNiR had been suspected to tolerate X-ray photoreduction, we here showed that T2Cu in the form free of nitrite is reduced and changes its coordination structure in SRX. Moreover, we determined the completely oxidized CuNiR structure at 1.43 Å resolution with SFX. Comparison between the high-resolution SFX and SRX data revealed the subtle structural change of a catalytic His residue by X-ray photoreduction. This finding, which SRX has failed to uncover, provides new insight into the reaction mechanism of CuNiR.
Collapse
Affiliation(s)
- Yohta Fukuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ka Man Tse
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Mamoru Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Kay Diederichs
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany;
| | - Kunio Hirata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan;
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan;
| | - Takashi Kameshima
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan;
| | - Changyong Song
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea; and
| | - Takaki Hatsui
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Hiroyoshi Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
33
|
Abstract
Although crystallographers typically seek to mitigate radiation damage in macromolecular crystals, in some cases, radiation damage to specific atoms can be used to determine phases de novo. This process is called radiation damage-induced phasing or "RIP." Here, we provide a general overview of the method and a practical set of data collection and processing strategies for phasing macromolecular structures using RIP.
Collapse
Affiliation(s)
- Chloe Zubieta
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | | |
Collapse
|
34
|
Rostislavleva K, Soler N, Ohashi Y, Zhang L, Pardon E, Burke JE, Masson GR, Johnson C, Steyaert J, Ktistakis NT, Williams RL. Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science 2015; 350:aac7365. [PMID: 26450213 DOI: 10.1126/science.aac7365] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphatidylinositol 3-kinase Vps34 complexes regulate intracellular membrane trafficking in endocytic sorting, cytokinesis, and autophagy. We present the 4.4 angstrom crystal structure of the 385-kilodalton endosomal complex II (PIK3C3-CII), consisting of Vps34, Vps15 (p150), Vps30/Atg6 (Beclin 1), and Vps38 (UVRAG). The subunits form a Y-shaped complex, centered on the Vps34 C2 domain. Vps34 and Vps15 intertwine in one arm, where the Vps15 kinase domain engages the Vps34 activation loop to regulate its activity. Vps30 and Vps38 form the other arm that brackets the Vps15/Vps34 heterodimer, suggesting a path for complex assembly. We used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to reveal conformational changes accompanying membrane binding and identify a Vps30 loop that is critical for the ability of complex II to phosphorylate giant liposomes on which complex I is inactive.
Collapse
Affiliation(s)
| | - Nicolas Soler
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Yohei Ohashi
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Lufei Zhang
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Els Pardon
- Structural Biology Research Center, VIB, B-1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussel, Belgium
| | - John E Burke
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Glenn R Masson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Chris Johnson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Jan Steyaert
- Structural Biology Research Center, VIB, B-1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussel, Belgium
| | | | | |
Collapse
|
35
|
Zander U, Bourenkov G, Popov AN, de Sanctis D, Svensson O, McCarthy AA, Round E, Gordeliy V, Mueller-Dieckmann C, Leonard GA. MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2328-43. [PMID: 26527148 PMCID: PMC4631482 DOI: 10.1107/s1399004715017927] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/24/2015] [Indexed: 01/30/2023]
Abstract
Here, an automated procedure is described to identify the positions of many cryocooled crystals mounted on the same sample holder, to rapidly predict and rank their relative diffraction strengths and to collect partial X-ray diffraction data sets from as many of the crystals as desired. Subsequent hierarchical cluster analysis then allows the best combination of partial data sets, optimizing the quality of the final data set obtained. The results of applying the method developed to various systems and scenarios including the compilation of a complete data set from tiny crystals of the membrane protein bacteriorhodopsin and the collection of data sets for successful structure determination using the single-wavelength anomalous dispersion technique are also presented.
Collapse
Affiliation(s)
- Ulrich Zander
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble, France
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Alexander N. Popov
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble, France
| | - Daniele de Sanctis
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble, France
| | - Olof Svensson
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble, France
| | - Andrew A. McCarthy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
- Unit of Virus Host-Cell Interactions, Université Grenoble Alpes–EMBL–CNRS, 38042 Grenoble, France
| | - Ekaterina Round
- Université Grenoble Alpes, IBS, 38044 Grenoble, France
- CNRS, IBS, 38044 Grenoble, France
- CEA, IBS, 38044 Grenoble, France
- ICS-6: Molecular Biophysics, Institute of Complex Systems (ICS), Research Centre Juelich, 52425 Juelich, Germany
- Laboratory for Advanced Studies of Membrane Proteins, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russian Federation
| | - Valentin Gordeliy
- Université Grenoble Alpes, IBS, 38044 Grenoble, France
- CNRS, IBS, 38044 Grenoble, France
- CEA, IBS, 38044 Grenoble, France
- ICS-6: Molecular Biophysics, Institute of Complex Systems (ICS), Research Centre Juelich, 52425 Juelich, Germany
- Laboratory for Advanced Studies of Membrane Proteins, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russian Federation
| | | | - Gordon A. Leonard
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble, France
| |
Collapse
|
36
|
Insights into unknown foreign ligand in copper nitrite reductase. Biochem Biophys Res Commun 2015; 464:622-8. [DOI: 10.1016/j.bbrc.2015.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/05/2015] [Indexed: 11/23/2022]
|
37
|
Campos-Acevedo AA, Rudiño-Piñera E. Crystallographic studies evidencing the high energy tolerance to disrupting the interface disulfide bond of thioredoxin 1 from white leg shrimp Litopenaeus vannamei. Molecules 2014; 19:21113-26. [PMID: 25517346 PMCID: PMC6270739 DOI: 10.3390/molecules191221113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 11/16/2022] Open
Abstract
Thioredoxin (Trx) is a small 12-kDa redox protein that catalyzes the reduction of disulfide bonds in proteins from different biological systems. A recent study of the crystal structure of white leg shrimp thioredoxin 1 from Litopenaeus vannamei (LvTrx) revealed a dimeric form of the protein mediated by a covalent link through a disulfide bond between Cys73 from each monomer. In the present study, X-ray-induced damage in the catalytic and the interface disulfide bond of LvTrx was studied at atomic resolution at different transmission energies of 8% and 27%, 12.8 keV at 100 K in the beamline I-24 at Diamond Light Source. We found that at an absorbed dose of 32 MGy, the X-ray induces the cleavage of the disulfide bond of each catalytic site; however, the interface disulfide bond was cleaved at an X-ray adsorbed dose of 85 MGy; despite being the most solvent-exposed disulfide bond in LvTrx (~50 Å2). This result clearly established that the interface disulfide bond is very stable and, therefore, less susceptible to being reduced by X-rays. In fact, these studies open the possibility of the existence in solution of a dimeric LvTrx.
Collapse
Affiliation(s)
- Adam A Campos-Acevedo
- Departamento de Medicina molecular y Bioprocesos, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca 62210, Mexico
| | - Enrique Rudiño-Piñera
- Departamento de Medicina molecular y Bioprocesos, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca 62210, Mexico.
| |
Collapse
|
38
|
Warkentin M, Hopkins JB, Haber JB, Blaha G, Thorne RE. Temperature-dependent radiation sensitivity and order of 70S ribosome crystals. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2890-6. [PMID: 25372680 PMCID: PMC4220972 DOI: 10.1107/s1399004714017672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 08/01/2014] [Indexed: 11/10/2022]
Abstract
All evidence to date indicates that at T = 100 K all protein crystals exhibit comparable sensitivity to X-ray damage when quantified using global metrics such as change in scaling B factor or integrated intensity versus dose. This is consistent with observations in cryo-electron microscopy, and results because nearly all diffusive motions of protein and solvent, including motions induced by radiation damage, are frozen out. But how do the sensitivities of different proteins compare at room temperature, where radiation-induced radicals are free to diffuse and protein and lattice structures are free to relax in response to local damage? It might be expected that a large complex with extensive conformational degrees of freedom would be more radiation sensitive than a small, compact globular protein. As a test case, the radiation sensitivity of 70S ribosome crystals has been examined. At T = 100 and 300 K, the half doses are 64 MGy (at 3 Å resolution) and 150 kGy (at 5 Å resolution), respectively. The maximum tolerable dose in a crystallography experiment depends upon the initial or desired resolution. When differences in initial data-set resolution are accounted for, the former half dose is roughly consistent with that for model proteins, and the 100/300 K half-dose ratio is roughly a factor of ten larger. 70S ribosome crystals exhibit substantially increased resolution at 100 K relative to 300 K owing to cooling-induced ordering and not to reduced radiation sensitivity and slower radiation damage.
Collapse
Affiliation(s)
| | | | - Jonah B. Haber
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - Gregor Blaha
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
39
|
Yorke BA, Beddard GS, Owen RL, Pearson AR. Time-resolved crystallography using the Hadamard transform. Nat Methods 2014; 11:1131-4. [PMID: 25282611 PMCID: PMC4216935 DOI: 10.1038/nmeth.3139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 09/04/2014] [Indexed: 11/08/2022]
Abstract
We describe a method for performing time-resolved X-ray crystallographic experiments based on the Hadamard transform, in which time resolution is defined by the underlying periodicity of the probe pulse sequence, and signal/noise is greatly improved over that for the fastest pump-probe experiments depending on a single pulse. This approach should be applicable on standard synchrotron beamlines and will enable high-resolution measurements of protein and small-molecule structural dynamics. It is also applicable to other time-resolved measurements where a probe can be encoded, such as pump-probe spectroscopy.
Collapse
Affiliation(s)
- Briony A Yorke
- Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, UK
| | | | - Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Arwen R Pearson
- Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, UK
| |
Collapse
|
40
|
Gati C, Bourenkov G, Klinge M, Rehders D, Stellato F, Oberthür D, Yefanov O, Sommer BP, Mogk S, Duszenko M, Betzel C, Schneider TR, Chapman HN, Redecke L. Serial crystallography on in vivo grown microcrystals using synchrotron radiation. IUCRJ 2014; 1:87-94. [PMID: 25075324 PMCID: PMC4062088 DOI: 10.1107/s2052252513033939] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/16/2013] [Indexed: 05/03/2023]
Abstract
Crystal structure determinations of biological macromolecules are limited by the availability of sufficiently sized crystals and by the fact that crystal quality deteriorates during data collection owing to radiation damage. Exploiting a micrometre-sized X-ray beam, high-precision diffractometry and shutterless data acquisition with a pixel-array detector, a strategy for collecting data from many micrometre-sized crystals presented to an X-ray beam in a vitrified suspension is demonstrated. By combining diffraction data from 80 Trypanosoma brucei procathepsin B crystals with an average volume of 9 µm(3), a complete data set to 3.0 Å resolution has been assembled. The data allowed the refinement of a structural model that is consistent with that previously obtained using free-electron laser radiation, providing mutual validation. Further improvements of the serial synchrotron crystallography technique and its combination with serial femtosecond crystallography are discussed that may allow the determination of high-resolution structures of micrometre-sized crystals.
Collapse
Affiliation(s)
- Cornelius Gati
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronensynchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Gleb Bourenkov
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Marco Klinge
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lübeck, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dirk Rehders
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lübeck, Notkestrasse 85, 22607 Hamburg, Germany
| | - Francesco Stellato
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronensynchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronensynchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronensynchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Benjamin P. Sommer
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Stefan Mogk
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Michael Duszenko
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Thomas R. Schneider
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronensynchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Institute of Experimental Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Lars Redecke
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lübeck, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
41
|
Murphy BM, Greve M, Runge B, Koops CT, Elsen A, Stettner J, Seeck OH, Magnussen OM. A novel X-ray diffractometer for studies of liquid-liquid interfaces. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:45-56. [PMID: 24365915 DOI: 10.1107/s1600577513026192] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/22/2013] [Indexed: 06/03/2023]
Abstract
The study of liquid-liquid interfaces with X-ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double-crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing-incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability. The available energy range is from 6.4 to 29.4 keV, covering many important absorption edges. The instrument provides access in momentum space out to 2.54 Å(-1) in the surface normal and out to 14.8 Å(-1) in the in-plane direction at 29.4 keV. Owing to its modular design the diffractometer is also suitable for heavy apparatus such as vacuum chambers. The instrument performance is described and examples of X-ray reflectivity studies performed under in situ electrochemical control and on biochemical model systems are given.
Collapse
Affiliation(s)
- Bridget M Murphy
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Matthais Greve
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Benjamin Runge
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Christian T Koops
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Annika Elsen
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Jochim Stettner
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Oliver H Seeck
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Olaf M Magnussen
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| |
Collapse
|
42
|
Abstract
Radiation damage is a major cause of failure in macromolecular crystallography experiments. Although it is always best to evenly illuminate the entire volume of a homogeneously diffracting crystal, limitations of the available equipment and imperfections in the sample often require a more sophisticated targeting strategy, involving microbeams smaller than the crystal, and translations of the crystal during data collection. This leads to a highly inhomogeneous distribution of absorbed X-rays (i.e., dose). Under these common experimental conditions, the relationship between dose and time is nonlinear, making it difficult to design an experimental strategy that optimizes the radiation damage lifetime of the crystal, or to assign appropriate dose values to an experiment. We present, and experimentally validate, a predictive metric diffraction-weighted dose for modeling the rate of decay of total diffracted intensity from protein crystals in macromolecular crystallography, and hence we can now assign appropriate "dose" values to modern experimental setups. Further, by taking the ratio of total elastic scattering to diffraction-weighted dose, we show that it is possible to directly compare potential data-collection strategies to optimize the diffraction for a given level of damage under specific experimental conditions. As an example of the applicability of this method, we demonstrate that by offsetting the rotation axis from the beam axis by 1.25 times the full-width half maximum of the beam, it is possible to significantly extend the dose lifetime of the crystal, leading to a higher number of diffracted photons, better statistics, and lower overall radiation damage.
Collapse
|
43
|
Sutton KA, Black PJ, Mercer KR, Garman EF, Owen RL, Snell EH, Bernhard WA. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2381-94. [PMID: 24311579 PMCID: PMC3852651 DOI: 10.1107/s0907444913022117] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/07/2013] [Indexed: 11/24/2022]
Abstract
Electron paramagnetic resonance (EPR) and online UV-visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV-visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5-0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.
Collapse
Affiliation(s)
- Kristin A. Sutton
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14086, USA
| | - Paul J. Black
- University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kermit R. Mercer
- University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QU, England
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, England
| | - Edward H. Snell
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14086, USA
- Department of Structural Biology, SUNY Buffalo Medical School, 700 Ellicott Street, Buffalo, NY 14203, USA
| | | |
Collapse
|
44
|
Shimizu N, Shimizu T, Baba S, Hasegawa K, Yamamoto M, Kumasaka T. Development of an online UV-visible microspectrophotometer for a macromolecular crystallography beamline. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:948-952. [PMID: 24121346 PMCID: PMC3795562 DOI: 10.1107/s0909049513022887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/14/2013] [Indexed: 05/30/2023]
Abstract
Measurement of the UV-visible absorption spectrum is a convenient technique for detecting chemical changes of proteins, and it is therefore useful to combine spectroscopy and diffraction studies. An online microspectrophotometer for the UV-visible region was developed and installed on the macromolecular crystallography beamline, BL38B1, at SPring-8. This spectrophotometer is equipped with a difference dispersive double monochromator, a mercury-xenon lamp as the light source, and a photomultiplier as the detector. The optical path is mostly constructed using mirrors, in order to obtain high brightness in the UV region, and the confocal optics are assembled using a cross-slit diaphragm like an iris to eliminate stray light. This system can measure optical densities up to a maximum of 4.0. To study the effect of radiation damage, preliminary measurements of glucose isomerase and thaumatin crystals were conducted in the UV region. Spectral changes dependent on X-ray dose were observed at around 280 nm, suggesting that structural changes involving Trp or Tyr residues occurred in the protein crystal. In the case of the thaumatin crystal, a broad peak around 400 nm was also generated after X-ray irradiation, suggesting the cleavage of a disulfide bond. Dose-dependent spectral changes were also observed in cryo-solutions alone, and these changes differed with the composition of the cryo-solution. These responses in the UV region are informative regarding the state of the sample; consequently, this device might be useful for X-ray crystallography.
Collapse
Affiliation(s)
- Nobutaka Shimizu
- Structural Biology Group, SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tetsuya Shimizu
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Seiki Baba
- Structural Biology Group, SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kazuya Hasegawa
- Structural Biology Group, SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Kumasaka
- Structural Biology Group, SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
45
|
Can M, Krucinska J, Zoppellaro G, Andersen NH, Wedekind JE, Hersleth HP, Andersson KK, Bren KL. Structural characterization of nitrosomonas europaea cytochrome c-552 variants with marked differences in electronic structure. Chembiochem 2013; 14:1828-38. [PMID: 23908017 DOI: 10.1002/cbic.201300118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Indexed: 11/09/2022]
Abstract
Nitrosomonas europaea cytochrome c-552 (Ne c-552) variants with the same His/Met axial ligand set but with different EPR spectra have been characterized structurally, to aid understanding of how molecular structure determines heme electronic structure. Visible light absorption, Raman, and resonance Raman spectroscopy of the protein crystals was performed along with structure determination. The structures solved are those of Ne c-552, which displays a "HALS" (or highly anisotropic low-spin) EPR spectrum, and of the deletion mutant Ne N64Δ, which has a rhombic EPR spectrum. Two X-ray crystal structures of wild-type Ne c-552 are reported; one is of the protein isolated from N. europaea cells (Ne c-552n, 2.35 Å resolution), and the other is of recombinant protein expressed in Escherichia coli (Ne c-552r, 1.63 Å resolution). Ne N64Δ crystallized in two different space groups, and two structures are reported [monoclinic (2.1 Å resolution) and hexagonal (2.3 Å resolution)]. Comparison of the structures of the wild-type and mutant proteins reveals that heme ruffling is increased in the mutant; increased ruffling is predicted to yield a more rhombic EPR spectrum. The 2.35 Å Ne c-552n structure shows 18 molecules in the asymmetric unit; analysis of the structure is consistent with population of more than one axial Met configuration, as seen previously by NMR. Finally, the mutation was shown to yield a more hydrophobic heme pocket and to expel water molecules from near the axial Met. These structures reveal that heme pocket residue 64 plays multiple roles in regulating the axial ligand orientation and the interaction of water with the heme. These results support the hypothesis that more ruffled hemes lead to more rhombic EPR signals in cytochromes c with His/Met axial ligation.
Collapse
Affiliation(s)
- Mehmet Can
- Department of Chemistry, University of Rochester, Rochester, NY 14627 (USA)
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Finfrock YZ, Stern EA, Alkire RW, Kas JJ, Evans-Lutterodt K, Stein A, Duke N, Lazarski K, Joachimiak A. Mitigation of X-ray damage in macromolecular crystallography by submicrometre line focusing. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1463-9. [PMID: 23897469 DOI: 10.1107/s0907444913009335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/06/2013] [Indexed: 11/10/2022]
Abstract
Reported here are measurements of the penetration depth and spatial distribution of photoelectron (PE) damage excited by 18.6 keV X-ray photons in a lysozyme crystal with a vertical submicrometre line-focus beam of 0.7 µm full-width half-maximum (FWHM). The experimental results determined that the penetration depth of PEs is 5 ± 0.5 µm with a monotonically decreasing spatial distribution shape, resulting in mitigation of diffraction signal damage. This does not agree with previous theoretical predication that the mitigation of damage requires a peak of damage outside the focus. A new improved calculation provides some qualitative agreement with the experimental results, but significant errors still remain. The mitigation of radiation damage by line focusing was measured experimentally by comparing the damage in the X-ray-irradiated regions of the submicrometre focus with the large-beam case under conditions of equal exposure and equal volumes of the protein crystal, and a mitigation factor of 4.4 ± 0.4 was determined. The mitigation of radiation damage is caused by spatial separation of the dominant PE radiation-damage component from the crystal region of the line-focus beam that contributes the diffraction signal. The diffraction signal is generated by coherent scattering of incident X-rays (which introduces no damage), while the overwhelming proportion of damage is caused by PE emission as X-ray photons are absorbed.
Collapse
Affiliation(s)
- Y Zou Finfrock
- Physics Department, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Krojer T, Pike ACW, von Delft F. Squeezing the most from every crystal: the fine details of data collection. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1303-13. [PMID: 23793157 PMCID: PMC3689534 DOI: 10.1107/s0907444913013280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/14/2013] [Indexed: 11/11/2022]
Abstract
Modern synchrotron beamlines offer instrumentation of unprecedented quality, which in turn encourages increasingly marginal experiments, and for these, as much as ever, the ultimate success of data collection depends on the experience, but especially the care, of the experimenter. A representative set of difficult cases has been encountered at the Structural Genomics Consortium, a worldwide structural genomics initiative of which the Oxford site currently deposits three novel human structures per month. Achieving this target relies heavily on frequent visits to the Diamond Light Source, and the variety of crystal systems still demand customized data collection, diligent checks and careful planning of each experiment. Here, an overview is presented of the techniques and procedures that have been refined over the years and that are considered synchrotron best practice.
Collapse
Affiliation(s)
- Tobias Krojer
- Structural Genomics Consortium, Oxford University, Roosevelt Drive, Oxford OX3 7DQ, England
| | - Ashley C. W. Pike
- Structural Genomics Consortium, Oxford University, Roosevelt Drive, Oxford OX3 7DQ, England
| | - Frank von Delft
- Structural Genomics Consortium, Oxford University, Roosevelt Drive, Oxford OX3 7DQ, England
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| |
Collapse
|
48
|
Brockhauser S, Ravelli RBG, McCarthy AA. The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1241-51. [PMID: 23793150 PMCID: PMC3689527 DOI: 10.1107/s0907444913003880] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 02/08/2013] [Indexed: 03/22/2024]
Abstract
Most macromolecular crystallography (MX) diffraction experiments at synchrotrons use a single-axis goniometer. This markedly contrasts with small-molecule crystallography, in which the majority of the diffraction data are collected using multi-axis goniometers. A novel miniaturized κ-goniometer head, the MK3, has been developed to allow macromolecular crystals to be aligned. It is available on the majority of the structural biology beamlines at the ESRF, as well as elsewhere. In addition, the Strategy for the Alignment of Crystals (STAC) software package has been developed to facilitate the use of the MK3 and other similar devices. Use of the MK3 and STAC is streamlined by their incorporation into online analysis tools such as EDNA. The current use of STAC and MK3 on the MX beamlines at the ESRF is discussed. It is shown that the alignment of macromolecular crystals can result in improved diffraction data quality compared with data obtained from randomly aligned crystals.
Collapse
Affiliation(s)
- Sandor Brockhauser
- European Molecular Biology Laboratory (EMBL), 6 Rue Jules Horowitz, 38042 Grenoble, France
- Unit of Virus Host-Cell Interactions, UJF–EMBL–CNRS UMI 3265, 6 Rue Jules Horowitz, 38043 Grenoble, France
| | - Raimond B. G. Ravelli
- Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Andrew A. McCarthy
- European Molecular Biology Laboratory (EMBL), 6 Rue Jules Horowitz, 38042 Grenoble, France
- Unit of Virus Host-Cell Interactions, UJF–EMBL–CNRS UMI 3265, 6 Rue Jules Horowitz, 38043 Grenoble, France
| |
Collapse
|
49
|
Malbet-Monaco S, Leonard GA, Mitchell EP, Gordon EJ. How the ESRF helps industry and how they help the ESRF. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1289-96. [PMID: 23793155 PMCID: PMC3689532 DOI: 10.1107/s0907444913001108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 01/11/2013] [Indexed: 11/11/2022]
Abstract
The ESRF has worked with, and provided services for, the pharmaceutical industry since the construction of its first protein crystallography beamline in the mid-1990s. In more recent times, industrial clients have benefited from a portfolio of beamlines which offer a wide range of functionality and beam characteristics, including tunability, microfocus and micro-aperture. Included in this portfolio is a small-angle X-ray scattering beamline dedicated to the study of biological molecules in solution. The high demands on throughput and efficiency made by the ESRF's industrial clients have been a major driving force in the evolution of the ESRF's macromolecular crystallography resources, which now include remote access, the automation of crystal screening and data collection, and a beamline database allowing sample tracking, experiment reporting and real-time at-a-distance monitoring of experiments. This paper describes the key features of the functionality put in place on the ESRF structural biology beamlines and outlines the major advantages of the interaction of the ESRF with the pharmaceutical industry.
Collapse
Affiliation(s)
- Stéphanie Malbet-Monaco
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble, France
| | - Gordon A. Leonard
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble, France
| | - Edward P. Mitchell
- Business Development Office, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble, France
| | - Elspeth J. Gordon
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble, France
| |
Collapse
|
50
|
Zeldin OB, Gerstel M, Garman EF. RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography. J Appl Crystallogr 2013. [DOI: 10.1107/s0021889813011461] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
RADDOSE-3D allows the macroscopic modelling of an X-ray diffraction experiment for the purpose of better predicting radiation-damage progression. The distribution of dose within the crystal volume is calculated for a number of iterations in small angular steps across one or more data collection wedges, providing a time-resolved picture of the dose state of the crystal. The code is highly modular so that future contributions from the community can be easily integrated into it, in particular to incorporate online methods for determining the shape of macromolecular crystals and better protocols for imaging real experimental X-ray beam profiles.
Collapse
|