1
|
Chen JCH, Gilski M, Chang C, Borek D, Rosenbaum G, Lavens A, Otwinowski Z, Kubicki M, Dauter Z, Jaskolski M, Joachimiak A. Solvent organization in the ultrahigh-resolution crystal structure of crambin at room temperature. IUCRJ 2024; 11:649-663. [PMID: 39190507 PMCID: PMC11364037 DOI: 10.1107/s2052252524007784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Ultrahigh-resolution structures provide unprecedented details about protein dynamics, hydrogen bonding and solvent networks. The reported 0.70 Å, room-temperature crystal structure of crambin is the highest-resolution ambient-temperature structure of a protein achieved to date. Sufficient data were collected to enable unrestrained refinement of the protein and associated solvent networks using SHELXL. Dynamic solvent networks resulting from alternative side-chain conformations and shifts in water positions are revealed, demonstrating that polypeptide flexibility and formation of clathrate-type structures at hydrophobic surfaces are the key features endowing crambin crystals with extraordinary diffraction power.
Collapse
Affiliation(s)
- Julian C.-H. Chen
- Structural Biology Center, X-ray Science DivisionArgonne National LaboratoryLemontIL60439USA
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM87545, USA
- Department of Chemistry and BiochemistryUniversity of Toledo2801 W. Bancroft StreetToledoOH43606USA
| | - Miroslaw Gilski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznańPoland
- Department of Crystallography, Faculty of ChemistryAdam Mickiewicz University in PoznańPoznańPoland
| | - Changsoo Chang
- Structural Biology Center, X-ray Science DivisionArgonne National LaboratoryLemontIL60439USA
| | - Dominika Borek
- Department of Biophysics and Department of BiochemistryThe University of Texas Southwestern Medical CenterDallasTXUSA
| | - Gerd Rosenbaum
- Structural Biology Center, X-ray Science DivisionArgonne National LaboratoryLemontIL60439USA
| | - Alex Lavens
- Structural Biology Center, X-ray Science DivisionArgonne National LaboratoryLemontIL60439USA
| | - Zbyszek Otwinowski
- Department of Biophysics and Department of BiochemistryThe University of Texas Southwestern Medical CenterDallasTXUSA
| | - Maciej Kubicki
- Department of Crystallography, Faculty of ChemistryAdam Mickiewicz University in PoznańPoznańPoland
| | - Zbigniew Dauter
- Macromolecular Crystallography LaboratoryNational Cancer Institute at FrederickFrederickMD21702USA
| | - Mariusz Jaskolski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznańPoland
- Department of Crystallography, Faculty of ChemistryAdam Mickiewicz University in PoznańPoznańPoland
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science DivisionArgonne National LaboratoryLemontIL60439USA
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoILUSA
| |
Collapse
|
2
|
Silva AR, Grosso C, Delerue-Matos C, Rocha JM. Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity. Eur J Med Chem 2019; 174:87-115. [PMID: 31029947 DOI: 10.1016/j.ejmech.2019.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Given their therapeutic activity, natural products have been used in traditional medicines throughout the centuries. The growing interest of the scientific community in phytopharmaceuticals, and more recently in marine products, has resulted in a significant number of research efforts towards understanding their effect in the treatment of neurodegenerative diseases, such as Alzheimer's (AD), Parkinson (PD) and Huntington (HD). Several studies have shown that many of the primary and secondary metabolites of plants, marine organisms and others, have high affinities for various brain receptors and may play a crucial role in the treatment of diseases affecting the central nervous system (CNS) in mammalians. Actually, such compounds may act on the brain receptors either by agonism, antagonism, allosteric modulation or other type of activity aimed at enhancing a certain effect. The current manuscript comprehensively reviews the state of the art on the interactions between natural compounds and brain receptors. This information is of foremost importance when it is intended to investigate and develop cutting-edge drugs, more effective and with alternative mechanisms of action to the conventional drugs presently used for the treatment of neurodegenerative diseases. Thus, we reviewed the effect of 173 natural products on neurotransmitter receptors, diabetes related receptors, neurotrophic factor related receptors, immune system related receptors, oxidative stress related receptors, transcription factors regulating gene expression related receptors and blood-brain barrier receptors.
Collapse
Affiliation(s)
- Ana R Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, P-4249-015, Porto, Portugal.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, P-4249-015, Porto, Portugal
| | - João M Rocha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal; REQUIMTE/LAQV, Grupo de investigação de Química Orgânica Aplicada (QUINOA), Laboratório de polifenóis alimentares, Departamento de Química e Bioquímica (DQB), Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n, P-4169-007, Porto, Portugal
| |
Collapse
|
3
|
Fobe TL, Kazakov A, Riccardi D. Cys.sqlite: A Structured-Information Approach to the Comprehensive Analysis of Cysteine Disulfide Bonds in the Protein Databank. J Chem Inf Model 2019; 59:931-943. [PMID: 30694665 PMCID: PMC6999612 DOI: 10.1021/acs.jcim.8b00950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cysteine is a multifaceted amino acid that is central to the structure and function of many proteins. A disulfide bond formed between two cysteines restrains protein conformations through the strong covalent bond and torsions about the bond that prefer, energetically, ±90°. In this study, we transform over 30 000 Protein Databank files (PDBx/mmCIFs) into a single file, the SQLite database (Cys.sqlite). The database schema is designed to accommodate the structural information on both oxidized and reduced cysteines and to retain essential protein metadata to establish informational and biological provenance. Cys.sqlite contains over 95 000 peptide chains and 500 000 cysteines (700 000 structural conformers); there are over 265 000 cysteine disulfide bond conformations from structures solved with all available experimental methods. The structural information is analyzed with respect to sequence identity cutoff, the experimental method, and energetics of the disulfide. We find that as the experimental information becomes limiting and the influence of modeling becomes more pronounced, the observed average strain increases artificially. The database and analyses presented here can be used to improve the refinement of biological structures from experiments that are known to contain one or more disulfide bonds.
Collapse
Affiliation(s)
- Theodore L Fobe
- University of Maryland , Department of Chemical and Biomolecular Engineering , College Park , Maryland 20742 , United States
- Summer Undergraduate Research Fellowship , National Institute of Standards and Technology , Boulder , Colorado 80305 , United States
| | - Andrei Kazakov
- Applied Chemicals and Materials Division , National Institute of Standards and Technology , Boulder , Colorado 80305 , United States
| | - Demian Riccardi
- Applied Chemicals and Materials Division , National Institute of Standards and Technology , Boulder , Colorado 80305 , United States
| |
Collapse
|
4
|
Borek D, Bromberg R, Hattne J, Otwinowski Z. Real-space analysis of radiation-induced specific changes with independent component analysis. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:451-467. [PMID: 29488925 PMCID: PMC5829680 DOI: 10.1107/s1600577517018148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/19/2017] [Indexed: 05/06/2023]
Abstract
A method of analysis is presented that allows for the separation of specific radiation-induced changes into distinct components in real space. The method relies on independent component analysis (ICA) and can be effectively applied to electron density maps and other types of maps, provided that they can be represented as sets of numbers on a grid. Here, for glucose isomerase crystals, ICA was used in a proof-of-concept analysis to separate temperature-dependent and temperature-independent components of specific radiation-induced changes for data sets acquired from multiple crystals across multiple temperatures. ICA identified two components, with the temperature-independent component being responsible for the majority of specific radiation-induced changes at temperatures below 130 K. The patterns of specific temperature-independent radiation-induced changes suggest a contribution from the tunnelling of electron holes as a possible explanation. In the second case, where a group of 22 data sets was collected on a single thaumatin crystal, ICA was used in another type of analysis to separate specific radiation-induced effects happening on different exposure-level scales. Here, ICA identified two components of specific radiation-induced changes that likely result from radiation-induced chemical reactions progressing with different rates at different locations in the structure. In addition, ICA unexpectedly identified the radiation-damage state corresponding to reduced disulfide bridges rather than the zero-dose extrapolated state as the highest contrast structure. The application of ICA to the analysis of specific radiation-induced changes in real space and the data pre-processing for ICA that relies on singular value decomposition, which was used previously in data space to validate a two-component physical model of X-ray radiation-induced changes, are discussed in detail. This work lays a foundation for a better understanding of protein-specific radiation chemistries and provides a framework for analysing effects of specific radiation damage in crystallographic and cryo-EM experiments.
Collapse
Affiliation(s)
- Dominika Borek
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Raquel Bromberg
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Johan Hattne
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Zbyszek Otwinowski
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Bury CS, Carmichael I, Garman EF. OH cleavage from tyrosine: debunking a myth. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:7-18. [PMID: 28009542 PMCID: PMC5182017 DOI: 10.1107/s1600577516016775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/19/2016] [Indexed: 05/09/2023]
Abstract
During macromolecular X-ray crystallography experiments, protein crystals held at 100 K have been widely reported to exhibit reproducible bond scission events at doses on the order of several MGy. With the objective to mitigate the impact of radiation damage events on valid structure determination, it is essential to correctly understand the radiation chemistry mechanisms at play. OH-cleavage from tyrosine residues is regularly cited as amongst the most available damage pathways in protein crystals at 100 K, despite a lack of widespread reports of this phenomenon in protein crystal radiation damage studies. Furthermore, no clear mechanism for phenolic C-O bond cleavage in tyrosine has been reported, with the tyrosyl radical known to be relatively robust and long-lived in both aqueous solutions and the solid state. Here, the initial findings of Tyr -OH group damage in a myrosinase protein crystal have been reviewed. Consistent with that study, at increasing doses, clear electron density loss was detectable local to Tyr -OH groups. A systematic investigation performed on a range of protein crystal damage series deposited in the Protein Data Bank has established that Tyr -OH electron density loss is not generally a dominant damage pathway in protein crystals at 100 K. Full Tyr aromatic ring displacement is here proposed to account for instances of observable Tyr -OH electron density loss, with the original myrosinase data shown to be consistent with such a damage model. Systematic analysis of the effects of other environmental factors, including solvent accessibility and proximity to disulfide bonds or hydrogen bond interactions, is also presented. Residues in known active sites showed enhanced sensitivity to radiation-induced disordering, as has previously been reported.
Collapse
Affiliation(s)
- Charles S. Bury
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ian Carmichael
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
6
|
Michalska K, Tan K, Chang C, Li H, Hatzos-Skintges C, Molitsky M, Alkire R, Joachimiak A. In situ X-ray data collection and structure phasing of protein crystals at Structural Biology Center 19-ID. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:1386-95. [PMID: 26524303 PMCID: PMC4629866 DOI: 10.1107/s1600577515016598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/05/2015] [Indexed: 05/22/2023]
Abstract
A prototype of a 96-well plate scanner for in situ data collection has been developed at the Structural Biology Center (SBC) beamline 19-ID, located at the Advanced Photon Source, USA. The applicability of this instrument for protein crystal diffraction screening and data collection at ambient temperature has been demonstrated. Several different protein crystals, including selenium-labeled, were used for data collection and successful SAD phasing. Without the common procedure of crystal handling and subsequent cryo-cooling for data collection at T = 100 K, crystals in a crystallization buffer show remarkably low mosaicity (<0.1°) until deterioration by radiation damage occurs. Data presented here show that cryo-cooling can cause some unexpected structural changes. Based on the results of this study, the integration of the plate scanner into the 19-ID end-station with automated controls is being prepared. With improvement of hardware and software, in situ data collection will become available for the SBC user program including remote access.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Kemin Tan
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Changsoo Chang
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Hui Li
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
| | | | - Michael Molitsky
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Randy Alkire
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, USA
| |
Collapse
|
7
|
Gerstel M, Deane CM, Garman EF. Identifying and quantifying radiation damage at the atomic level. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:201-12. [PMID: 25723922 PMCID: PMC4344357 DOI: 10.1107/s1600577515002131] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/01/2015] [Indexed: 05/23/2023]
Abstract
Radiation damage impedes macromolecular diffraction experiments. Alongside the well known effects of global radiation damage, site-specific radiation damage affects data quality and the veracity of biological conclusions on protein mechanism and function. Site-specific radiation damage follows a relatively predetermined pattern, in that different structural motifs are affected at different dose regimes: in metal-free proteins, disulfide bonds tend to break first followed by the decarboxylation of aspartic and glutamic acids. Even within these damage motifs the decay does not progress uniformly at equal rates. Within the same protein, radiation-induced electron density decay of a particular chemical group is faster than for the same group elsewhere in the protein: an effect known as preferential specific damage. Here, BDamage, a new atomic metric, is defined and validated to recognize protein regions susceptible to specific damage and to quantify the damage at these sites. By applying BDamage to a large set of known protein structures in a statistical survey, correlations between the rates of damage and various physicochemical parameters were identified. Results indicate that specific radiation damage is independent of secondary protein structure. Different disulfide bond groups (spiral, hook, and staple) show dissimilar radiation damage susceptibility. There is a consistent positive correlation between specific damage and solvent accessibility.
Collapse
Affiliation(s)
- Markus Gerstel
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Charlotte M. Deane
- Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
8
|
Campos-Acevedo AA, Rudiño-Piñera E. Crystallographic studies evidencing the high energy tolerance to disrupting the interface disulfide bond of thioredoxin 1 from white leg shrimp Litopenaeus vannamei. Molecules 2014; 19:21113-26. [PMID: 25517346 PMCID: PMC6270739 DOI: 10.3390/molecules191221113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 11/16/2022] Open
Abstract
Thioredoxin (Trx) is a small 12-kDa redox protein that catalyzes the reduction of disulfide bonds in proteins from different biological systems. A recent study of the crystal structure of white leg shrimp thioredoxin 1 from Litopenaeus vannamei (LvTrx) revealed a dimeric form of the protein mediated by a covalent link through a disulfide bond between Cys73 from each monomer. In the present study, X-ray-induced damage in the catalytic and the interface disulfide bond of LvTrx was studied at atomic resolution at different transmission energies of 8% and 27%, 12.8 keV at 100 K in the beamline I-24 at Diamond Light Source. We found that at an absorbed dose of 32 MGy, the X-ray induces the cleavage of the disulfide bond of each catalytic site; however, the interface disulfide bond was cleaved at an X-ray adsorbed dose of 85 MGy; despite being the most solvent-exposed disulfide bond in LvTrx (~50 Å2). This result clearly established that the interface disulfide bond is very stable and, therefore, less susceptible to being reduced by X-rays. In fact, these studies open the possibility of the existence in solution of a dimeric LvTrx.
Collapse
Affiliation(s)
- Adam A Campos-Acevedo
- Departamento de Medicina molecular y Bioprocesos, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca 62210, Mexico
| | - Enrique Rudiño-Piñera
- Departamento de Medicina molecular y Bioprocesos, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca 62210, Mexico.
| |
Collapse
|
9
|
Krupyanskii YF, Balabaev NK, Petrova TE, Sinitsyn DO, Gryzlova EV, Tereshkina KB, Abdulnasyrov EG, Stepanov AS, Lunin VY, Grum-Grzhimailo AN. Femtosecond X-ray free-electron lasers: A new tool for studying nanocrystals and single macromolecules. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2014. [DOI: 10.1134/s1990793114040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Sutton KA, Black PJ, Mercer KR, Garman EF, Owen RL, Snell EH, Bernhard WA. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2381-94. [PMID: 24311579 PMCID: PMC3852651 DOI: 10.1107/s0907444913022117] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/07/2013] [Indexed: 11/24/2022]
Abstract
Electron paramagnetic resonance (EPR) and online UV-visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV-visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5-0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.
Collapse
Affiliation(s)
- Kristin A. Sutton
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14086, USA
| | - Paul J. Black
- University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kermit R. Mercer
- University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QU, England
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, England
| | - Edward H. Snell
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14086, USA
- Department of Structural Biology, SUNY Buffalo Medical School, 700 Ellicott Street, Buffalo, NY 14203, USA
| | | |
Collapse
|
11
|
Finfrock YZ, Stern EA, Alkire RW, Kas JJ, Evans-Lutterodt K, Stein A, Duke N, Lazarski K, Joachimiak A. Mitigation of X-ray damage in macromolecular crystallography by submicrometre line focusing. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1463-9. [PMID: 23897469 DOI: 10.1107/s0907444913009335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/06/2013] [Indexed: 11/10/2022]
Abstract
Reported here are measurements of the penetration depth and spatial distribution of photoelectron (PE) damage excited by 18.6 keV X-ray photons in a lysozyme crystal with a vertical submicrometre line-focus beam of 0.7 µm full-width half-maximum (FWHM). The experimental results determined that the penetration depth of PEs is 5 ± 0.5 µm with a monotonically decreasing spatial distribution shape, resulting in mitigation of diffraction signal damage. This does not agree with previous theoretical predication that the mitigation of damage requires a peak of damage outside the focus. A new improved calculation provides some qualitative agreement with the experimental results, but significant errors still remain. The mitigation of radiation damage by line focusing was measured experimentally by comparing the damage in the X-ray-irradiated regions of the submicrometre focus with the large-beam case under conditions of equal exposure and equal volumes of the protein crystal, and a mitigation factor of 4.4 ± 0.4 was determined. The mitigation of radiation damage is caused by spatial separation of the dominant PE radiation-damage component from the crystal region of the line-focus beam that contributes the diffraction signal. The diffraction signal is generated by coherent scattering of incident X-rays (which introduces no damage), while the overwhelming proportion of damage is caused by PE emission as X-ray photons are absorbed.
Collapse
Affiliation(s)
- Y Zou Finfrock
- Physics Department, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Brugarolas P, Movahedzadeh F, Wang Y, Zhang N, Bartek IL, Gao YN, Voskuil MI, Franzblau SG, He C. The oxidation-sensing regulator (MosR) is a new redox-dependent transcription factor in Mycobacterium tuberculosis. J Biol Chem 2012; 287:37703-12. [PMID: 22992749 DOI: 10.1074/jbc.m112.388611] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis thrives in oxidative environments such as the macrophage. To survive, the bacterium must sense and adapt to the oxidative conditions. Several antioxidant defenses including a thick cell wall, millimolar concentrations of small molecule thiols, and protective enzymes are known to help the bacterium withstand the oxidative stress. However, oxidation-sensing regulators that control these defenses have remained elusive. In this study, we report a new oxidation-sensing regulator, Rv1049 or MosR (M. tuberculosis oxidation-sensing regulator). MosR is a transcriptional repressor of the MarR family, which, similarly to Bacillus subtilis OhrR and Staphylococcus aureus MgrA, dissociates from DNA in the presence of oxidants, enabling transcription. MosR senses oxidation through a pair of cysteines near the N terminus (Cys-10 and Cys-12) that upon oxidation forms a disulfide bond. Disulfide formation rearranges a network of hydrogen bonds, which leads to a large conformational change of the protein and dissociation from DNA. MosR has been shown previously to play an important role in survival of the bacterium in the macrophage. In this study, we show that the main role of MosR is to up-regulate expression of rv1050 (a putative exported oxidoreductase that has not yet been characterized) in response to oxidants and propose that it is through this role that MosR contributes to the bacterium survival in the macrophage.
Collapse
Affiliation(s)
- Pedro Brugarolas
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Aryal BP, Brugarolas P, He C. Binding of ReO4(-) with an engineered MoO4(2-)-binding protein: towards a new approach in radiopharmaceutical applications. J Biol Inorg Chem 2011; 17:97-106. [PMID: 21861186 DOI: 10.1007/s00775-011-0833-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/09/2011] [Indexed: 12/28/2022]
Abstract
Radiolabeled biomolecules are routinely used for clinical diagnostics. (99m)Tc is the most commonly used radioactive tracer in radiopharmaceuticals. (188)Re and (186)Re are also commonly used as radioactive tracers in medicine. However, currently available methods for radiolabeling are lengthy and involve several steps in bioconjugation processes. In this work we present a strategy to engineer proteins that may selectively recognize the perrhenate (ReO(4)(-)) ion as a new way to label proteins. We found that a molybdate (MoO(4)(2-))-binding protein (ModA) from Escherichia coli can bind perrhenate with high affinity. Using fluorescence and isothermal titration calorimetry measurements, we determined the dissociation constant of ModA for ReO(4)(-) to be 541 nM and we solved a crystal structure of ModA with a bound ReO(4)(-). On the basis of the structure we created a mutant protein containing a disulfide linkage, which exhibited increased affinity for perrhenate (K(d) = 104 nM). High-resolution crystal structures of ModA (1.7 Å) and A11C/R153C mutant (2.0 Å) were solved with bound perrhenate. Both structures show that a perrhenate ion occupies the molybdate binding site using the same amino acid residues that are involved in molybdate binding. The overall structure of the perrhenate-bound ModA is unchanged compared with that of the molybdate-bound form. In the mutant protein, the bound perrhenate is further stabilized by the engineered disulfide bond.
Collapse
Affiliation(s)
- Baikuntha P Aryal
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
14
|
Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition. Proc Natl Acad Sci U S A 2011; 108:9361-6. [PMID: 21593407 DOI: 10.1073/pnas.1105687108] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lactose permease of Escherichia coli (LacY) with a single-Cys residue in place of A122 (helix IV) transports galactopyranosides and is specifically inactivated by methanethiosulfonyl-galactopyranosides (MTS-gal), which behave as unique suicide substrates. In order to study the mechanism of inactivation more precisely, we solved the structure of single-Cys122 LacY in complex with covalently bound MTS-gal. This structure exhibits an inward-facing conformation similar to that observed previously with a slight narrowing of the cytoplasmic cavity. MTS-gal is bound covalently, forming a disulfide bond with C122 and positioned between R144 and W151. E269, a residue essential for binding, coordinates the C-4 hydroxyl of the galactopyranoside moiety. The location of the sugar is in accord with many biochemical studies.
Collapse
|
15
|
Juers DH, Weik M. Similarities and differences in radiation damage at 100 K versus 160 K in a crystal of thermolysin. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:329-337. [PMID: 21525640 DOI: 10.1107/s0909049511007631] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 03/01/2011] [Indexed: 05/30/2023]
Abstract
The temperature-dependence of radiation damage in macromolecular X-ray crystallography is currently much debated. Most protein crystallographic studies are based on data collected at 100 K. Data collection at temperatures below 100 K has been proposed to reduce radiation damage and above 100 K to be useful for kinetic crystallography that is aimed at the generation and trapping of protein intermediate states. Here the global and specific synchrotron-radiation sensitivity of crystalline thermolysin at 100 and 160 K are compared. Both types of damage are higher at 160 K than at 100 K. At 160 K more residue types are affected (Lys, Asp, Gln, Pro, Thr, Met, Asn) than at 100 K (Met, Asp, Glu, Lys). The X-ray-induced relative atomic B-factor increase is shown to correlate with the proximity of the atom to the nearest solvent channel at 160 K. Two models may explain the observed correlation: either an increase in static disorder or an increased attack of hydroxyl radicals from the solvent area of the crystal.
Collapse
Affiliation(s)
- Douglas H Juers
- Department of Physics, Whitman College, Walla Walla, WA 99362, USA
| | | |
Collapse
|
16
|
Garman EF, Weik M. Macromolecular crystallography radiation damage research: what's new? JOURNAL OF SYNCHROTRON RADIATION 2011; 18:313-7. [PMID: 21525638 PMCID: PMC3083910 DOI: 10.1107/s0909049511013859] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 05/05/2023]
Abstract
Radiation damage in macromolecular crystallography has become a mainstream concern over the last ten years. The current status of research into this area is briefly assessed, and the ten new papers published in this issue are set into the context of previous work in the field. Some novel and exciting developments emerging over the last two years are also summarized.
Collapse
Affiliation(s)
- Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin Weik
- Comissariat à l’Energie Atomique, Institut de Biologie Structurale, F-38054 Grenoble, France
- CNRS, UMR5075, F-38027 Grenoble, France
- Université Joseph Fourier, F-38000 Grenoble, France
- ESRF, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex, France
| |
Collapse
|