1
|
van der Weg K, Merdivan E, Piraud M, Gohlke H. TopEC: prediction of Enzyme Commission classes by 3D graph neural networks and localized 3D protein descriptor. Nat Commun 2025; 16:2737. [PMID: 40108108 PMCID: PMC11923149 DOI: 10.1038/s41467-025-57324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Tools available for inferring enzyme function from general sequence, fold, or evolutionary information are generally successful. However, they can lead to misclassification if a deviation in local structural features influences the function. Here, we present TopEC, a 3D graph neural network based on a localized 3D descriptor to learn chemical reactions of enzymes from enzyme structures and predict Enzyme Commission (EC) classes. Using message-passing frameworks, we include distance and angle information to significantly improve the predictive performance for EC classification (F-score: 0.72) compared to regular 2D graph neural networks. We trained networks without fold bias that can classify enzyme structures for a vast functional space (>800 ECs). Our model is robust to uncertainties in binding site locations and similar functions in distinct binding sites. We observe that TopEC networks learn from an interplay between biochemical features and local shape-dependent features. TopEC is available as a repository on GitHub: https://github.com/IBG4-CBCLab/TopEC and https://doi.org/10.25838/d5p-66 .
Collapse
Affiliation(s)
- Karel van der Weg
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Erinc Merdivan
- Helmholtz AI Central Unit, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Marie Piraud
- Helmholtz AI Central Unit, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Holger Gohlke
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
2
|
Blattman SB, Jiang W, McGarrigle ER, Liu M, Oikonomou P, Tavazoie S. Identification and genetic dissection of convergent persister cell states. Nature 2024; 636:438-446. [PMID: 39506104 PMCID: PMC11634777 DOI: 10.1038/s41586-024-08124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Persister cells, rare phenotypic variants that survive normally lethal levels of antibiotics, present a major barrier to clearing bacterial infections1. However, understanding the precise physiological state and genetic basis of persister formation has been a longstanding challenge. Here we generated a high-resolution single-cell2 RNA atlas of Escherichia coli growth transitions, which revealed that persisters from diverse genetic and physiological models converge to transcriptional states that are distinct from standard growth phases and instead exhibit a dominant signature of translational deficiency. We then used ultra-dense CRISPR interference3 to determine how every E. coli gene contributes to persister formation across genetic models. Among critical genes with large effects, we found lon, which encodes a highly conserved protease4, and yqgE, a poorly characterized gene whose product strongly modulates the duration of post-starvation dormancy and persistence. Our work reveals key physiologic and genetic factors that underlie starvation-triggered persistence, a critical step towards targeting persisters in recalcitrant bacterial infections.
Collapse
Affiliation(s)
- Sydney B Blattman
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Wenyan Jiang
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E Riley McGarrigle
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Menghan Liu
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Panos Oikonomou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Kudzhaev AM, Andrianova AG, Gustchina AE, Smirnov IV, Rotanova TV. ATP-Dependent Lon Proteases in the Cellular Protein Quality Control System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Ye TJ, Huang KF, Ko TP, Wu SH. Synergic action of an inserted carbohydrate-binding module in a glycoside hydrolase family 5 endoglucanase. Acta Crystallogr D Struct Biol 2022; 78:633-646. [PMID: 35503211 PMCID: PMC9063844 DOI: 10.1107/s2059798322002601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Most known cellulase-associated carbohydrate-binding modules (CBMs) are attached to the N- or C-terminus of the enzyme or are expressed separately and assembled into multi-enzyme complexes (for example to form cellulosomes), rather than being an insertion into the catalytic domain. Here, by solving the crystal structure, it is shown that MtGlu5 from Meiothermus taiwanensis WR-220, a GH5-family endo-β-1,4-glucanase (EC 3.2.1.4), has a bipartite architecture consisting of a Cel5A-like catalytic domain with a (β/α)8 TIM-barrel fold and an inserted CBM29-like noncatalytic domain with a β-jelly-roll fold. Deletion of the CBM significantly reduced the catalytic efficiency of MtGlu5, as determined by isothermal titration calorimetry using inactive mutants of full-length and CBM-deleted MtGlu5 proteins. Conversely, insertion of the CBM from MtGlu5 into TmCel5A from Thermotoga maritima greatly enhanced the substrate affinity of TmCel5A. Bound sugars observed between two tryptophan side chains in the catalytic domains of active full-length and CBM-deleted MtGlu5 suggest an important stacking force. The synergistic action of the catalytic domain and CBM of MtGlu5 in binding to single-chain polysaccharides was visualized by substrate modeling, in which additional surface tryptophan residues were identified in a cross-domain groove. Subsequent site-specific mutagenesis results confirmed the pivotal role of several other tryptophan residues from both domains of MtGlu5 in substrate binding. These findings reveal a way to incorporate a CBM into the catalytic domain of an existing enzyme to make a robust cellulase.
Collapse
Affiliation(s)
- Ting-Juan Ye
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 115, Taiwan
| |
Collapse
|
5
|
Structural basis to repurpose boron-based proteasome inhibitors Bortezomib and Ixazomib as β-lactamase inhibitors. Sci Rep 2022; 12:5510. [PMID: 35365689 PMCID: PMC8976068 DOI: 10.1038/s41598-022-09392-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/21/2022] [Indexed: 12/23/2022] Open
Abstract
β-lactamases are a major cause of rapidly emerging and spreading antibiotic resistance. Currently β-lactamase inhibitors (BLIs) in clinical use act only on Ambler Class A, C and some class D lactamases. The urgent need to identify new BLIs recently lead to FDA approval of boron-based compounds BLIs, e.g. Vaborbactam. The boron-based proteasome inhibitors Bortezomib and Ixazomib are used in cancer therapy as multiple myeloma drugs but they also bind to Ser-/Thr- proteases. In this study we show the crystal structures of the β-lactamase CTX-M-14 with covalently bound Bortezomib and Ixazomib at high resolutions of 1.3 and 1.1 Å, respectively. Ixazomib is well defined in electron density whereas Bortezomib show some disorder which corresponds to weaker inhibition efficiency observed for Ixazomib. Both inhibitors mimic the deacylation transition state of β-lactam hydrolysis, because they replace the deacylating water molecule. We further investigate differences in binding of Bortezomib/Ixazomib to CTX-M-14 and its target proteases as well as known β-lactamase drugs. Our findings can help to use Bortezomib/Ixazomib as lead compounds for development of new BLIs.
Collapse
|
6
|
Lee J, Pandey AK, Venkatesh S, Thilagavathi J, Honda T, Singh K, Suzuki CK. Inhibition of mitochondrial LonP1 protease by allosteric blockade of ATP binding and hydrolysis via CDDO and its derivatives. J Biol Chem 2022; 298:101719. [PMID: 35151690 PMCID: PMC8921294 DOI: 10.1016/j.jbc.2022.101719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/01/2022] Open
Abstract
The mitochondrial protein LonP1 is an ATP-dependent protease that mitigates cell stress and calibrates mitochondrial metabolism and energetics. Biallelic mutations in the LONP1 gene are known to cause a broad spectrum of diseases, and LonP1 dysregulation is also implicated in cancer and age-related disorders. Despite the importance of LonP1 in health and disease, specific inhibitors of this protease are unknown. Here, we demonstrate that 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) and its -methyl and -imidazole derivatives reversibly inhibit LonP1 by a noncompetitive mechanism, blocking ATP-hydrolysis and thus proteolysis. By contrast, we found that CDDO-anhydride inhibits the LonP1 ATPase competitively. Docking of CDDO derivatives in the cryo-EM structure of LonP1 shows these compounds bind a hydrophobic pocket adjacent to the ATP-binding site. The binding site of CDDO derivatives was validated by amino acid substitutions that increased LonP1 inhibition and also by a pathogenic mutation that causes cerebral, ocular, dental, auricular and skeletal (CODAS) syndrome, which ablated inhibition. CDDO failed to inhibit the ATPase activity of the purified 26S proteasome, which like LonP1 belongs to the AAA+ superfamily of ATPases Associated with diverse cellular Activities, suggesting that CDDO shows selectivity within this family of ATPases. Furthermore, we show that noncytotoxic concentrations of CDDO derivatives in cultured cells inhibited LonP1, but not the 26S proteasome. Taken together, these findings provide insights for future development of LonP1-specific inhibitors with chemotherapeutic potential.
Collapse
Affiliation(s)
- Jae Lee
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA
| | - Ashutosh K Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA
| | - Jayapalraja Thilagavathi
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA
| | - Tadashi Honda
- Department of Chemistry and Institution of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, USA
| | - Kamal Singh
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA; Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA.
| |
Collapse
|
7
|
Li S, Hsieh KY, Kuo CI, Su SC, Huang KF, Zhang K, Chang CI. Processive cleavage of substrate at individual proteolytic active sites of the Lon protease complex. SCIENCE ADVANCES 2021; 7:eabj9537. [PMID: 34757797 PMCID: PMC8580320 DOI: 10.1126/sciadv.abj9537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The Lon protease is the prototype of a family of proteolytic machines with adenosine triphosphatase modules built into a substrate degradation chamber. Lon is known to degrade protein substrates in a processive fashion, cutting a protein chain processively into small peptides before commencing cleavages of another protein chain. Here, we present structural and biochemical evidence demonstrating that processive substrate degradation occurs at each of the six proteolytic active sites of Lon, which forms a deep groove that partially encloses the substrate polypeptide chain by accommodating only the unprimed residues and permits processive cleavage in the C-to-N direction. We identify a universally conserved acidic residue at the exit side of the binding groove indispensable for the proteolytic activity. This noncatalytic residue likely promotes processive proteolysis by carboxyl-carboxylate interactions with cleaved intermediates. Together, these results uncover a previously unrecognized mechanism for processive substrate degradation by the Lon protease.
Collapse
Affiliation(s)
- Shanshan Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chiao-I Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Chieh Su
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kaiming Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Li S, Hsieh KY, Kuo CI, Lee SH, Pintilie GD, Zhang K, Chang CI. Complete three-dimensional structures of the Lon protease translocating a protein substrate. SCIENCE ADVANCES 2021; 7:eabj7835. [PMID: 34652947 PMCID: PMC8519571 DOI: 10.1126/sciadv.abj7835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lon is an evolutionarily conserved proteolytic machine carrying out a wide spectrum of biological activities by degrading misfolded damaged proteins and specific cellular substrates. Lon contains a large N-terminal domain and forms a hexameric core of fused adenosine triphosphatase and protease domains. Here, we report two complete structures of Lon engaging a substrate, determined by cryo–electron microscopy to 2.4-angstrom resolution. These structures show a multilayered architecture featuring a tensegrity triangle complex, uniquely constructed by six long N-terminal helices. The interlocked helix triangle is assembled on the top of the hexameric core to spread a web of six globular substrate-binding domains. It serves as a multipurpose platform that controls the access of substrates to the AAA+ ring, provides a ruler-based mechanism for substrate selection, and acts as a pulley device to facilitate unfolding of the translocated substrate. This work provides a complete framework for understanding the structural mechanisms of Lon.
Collapse
Affiliation(s)
- Shanshan Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chiao-I Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Szu-Hui Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Grigore D. Pintilie
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Kaiming Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- Corresponding author. (K.Z.); (C.-I.C.)
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Corresponding author. (K.Z.); (C.-I.C.)
| |
Collapse
|
9
|
Li S, Hsieh KY, Su SC, Pintilie GD, Zhang K, Chang CI. Molecular basis for ATPase-powered substrate translocation by the Lon AAA+ protease. J Biol Chem 2021; 297:101239. [PMID: 34563541 PMCID: PMC8503904 DOI: 10.1016/j.jbc.2021.101239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022] Open
Abstract
The Lon AAA+ (adenosine triphosphatases associated with diverse cellular activities) protease (LonA) converts ATP-fuelled conformational changes into sufficient mechanical force to drive translocation of a substrate into a hexameric proteolytic chamber. To understand the structural basis for the substrate translocation process, we determined the cryo-electron microscopy (cryo-EM) structure of Meiothermus taiwanensis LonA (MtaLonA) in a substrate-engaged state at 3.6 Å resolution. Our data indicate that substrate interactions are mediated by the dual pore loops of the ATPase domains, organized in spiral staircase arrangement from four consecutive protomers in different ATP-binding and hydrolysis states. However, a closed AAA+ ring is maintained by two disengaged ADP-bound protomers transiting between the lowest and highest position. This structure reveals a processive rotary translocation mechanism mediated by LonA-specific nucleotide-dependent allosteric coordination among the ATPase domains, which is induced by substrate binding.
Collapse
Affiliation(s)
- Shanshan Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shih-Chieh Su
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Grigore D Pintilie
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, California, USA
| | - Kaiming Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Kingsley LJ, He X, McNeill M, Nelson J, Nikulin V, Ma Z, Lu W, Zhou VW, Manuia M, Kreusch A, Gao MY, Witmer D, Vaillancourt MT, Lu M, Greenblatt S, Lee C, Vashisht A, Bender S, Spraggon G, Michellys PY, Jia Y, Haling JR, Lelais G. Structure-Based Design of Selective LONP1 Inhibitors for Probing In Vitro Biology. J Med Chem 2021; 64:4857-4869. [PMID: 33821636 DOI: 10.1021/acs.jmedchem.0c02152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
LONP1 is an AAA+ protease that maintains mitochondrial homeostasis by removing damaged or misfolded proteins. Elevated activity and expression of LONP1 promotes cancer cell proliferation and resistance to apoptosis-inducing reagents. Despite the importance of LONP1 in human biology and disease, very few LONP1 inhibitors have been described in the literature. Herein, we report the development of selective boronic acid-based LONP1 inhibitors using structure-based drug design as well as the first structures of human LONP1 bound to various inhibitors. Our efforts led to several nanomolar LONP1 inhibitors with little to no activity against the 20S proteasome that serve as tool compounds to investigate LONP1 biology.
Collapse
Affiliation(s)
- Laura J Kingsley
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Xiaohui He
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Matthew McNeill
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - John Nelson
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Victor Nikulin
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Zhiwei Ma
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Wenshuo Lu
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Vicki W Zhou
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Mari Manuia
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Andreas Kreusch
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Mu-Yun Gao
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Darbi Witmer
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Mei-Ting Vaillancourt
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Min Lu
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Sarah Greenblatt
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Christian Lee
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Ajay Vashisht
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Steven Bender
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Glen Spraggon
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Pierre-Yves Michellys
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Yong Jia
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Jacob R Haling
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| | - Gérald Lelais
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, California 92121, United States
| |
Collapse
|
11
|
|
12
|
Li YH, Huang YF, Chen TH, Wu SS, Tang HC, Hsiao CY, Huang LC, Chang JC, Chiu KP, Nai YS. Comparison of gut microbiota of healthy and diseased walking sticks, Phasmotaenia lanyuhensis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21749. [PMID: 33075172 DOI: 10.1002/arch.21749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Research on gut microbiota of phytophagous insects has shown to be important for the physiological functions of insect hosts; however, little is known about the changes in gut microbiota when they are suffering from environmental stress or pathogen infections. During rearing of Phasmotaenia lanyuhensis (Phasmatodea: Phasmatidae), sluggish locomotion was usually followed by the death of the insect with a symptom of melanization in the front part of the abdomen. Therefore, the abnormal individuals were initially classified into moribund, light- and serious-symptom based on the level of abnormal physiological circumstances and melanization. The gut microbiota of these samples were further investigated by 16S metagenomic sequencing and the differences in bacterial abundance and structure of bacterial community were analyzed. A decrease in microbiota diversity was observed in the diseased P. lanyuhensis, with the abundance of phyla Proteobacteria and Firmicute relatively higher compared to those without symptom. Interestingly, principal component analysis based on the bacterial richness was correlated to the level of melanization symptom in the diseased P. lanyuhensis, suggested the change in bacterial microbiota involved in this abnormal circumstance. However, the factor that caused the initial alternation of microbiota remains to be identified. Additionally, the lack of bacterial diversity (i.e., absence of Meiothermus and Nubsella spp.) in P. lanyuhensis might reduce the fitness for surviving. This report provided the comprehensive microbiota analysis for P. lanyuhensis and concluded that either the relative abundance or the bacterial diversity of microbiota in the insect digestive system may influence the physiological functions of phytophagous insects.
Collapse
Affiliation(s)
- Yi-Hsuan Li
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Feng Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tzu-Han Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shin-Shan Wu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Chieh Tang
- Conservation and Research Center, Taipei Zoo, Taipei, Taiwan
| | - Chung-Yi Hsiao
- Conservation and Research Center, Taipei Zoo, Taipei, Taiwan
| | - Lung-Chun Huang
- Conservation and Research Center, Taipei Zoo, Taipei, Taiwan
| | - Ju-Chun Chang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Ping Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
13
|
Andrianova AG, Kudzhaev AM, Abrikosova VA, Gustchina AE, Smirnov IV, Rotanova TV. Involvement of the N Domain Residues E34, K35, and R38 in the Functionally Active Structure of Escherichia coli Lon Protease. Acta Naturae 2020; 12:86-97. [PMID: 33456980 PMCID: PMC7800598 DOI: 10.32607/actanaturae.11197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 11/20/2022] Open
Abstract
ATP-dependent Lon protease of Escherichia coli (EcLon), which belongs to the superfamily of AAA+ proteins, is a key component of the cellular proteome quality control system. It is responsible for the cleavage of mutant, damaged, and short-lived regulatory proteins that are potentially dangerous for the cell. EcLon functions as a homooligomer whose subunits contain a central characteristic AAA+ module, a C-terminal protease domain, and an N-terminal non-catalytic region composed of the actual N-terminal domain and the inserted α-helical domain. An analysis of the N domain crystal structure suggested a potential involvement of residues E34, K35, and R38 in the formation of stable and active EcLon. We prepared and studied a triple mutant LonEKR in which these residues were replaced with alanine. The introduced substitutions were shown to affect the conformational stability and nucleotide-induced intercenter allosteric interactions, as well as the formation of the proper protein binding site.
Collapse
Affiliation(s)
- A. G. Andrianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. M. Kudzhaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - V. A. Abrikosova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. E. Gustchina
- Macromolecular Crystallography Laboratory, NCI-Frederick, P.O. Box B, Frederick, MD 21702, USA
| | - I. V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - T. V. Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
14
|
Babin BM, Kasperkiewicz P, Janiszewski T, Yoo E, Drąg M, Bogyo M. Leveraging Peptide Substrate Libraries to Design Inhibitors of Bacterial Lon Protease. ACS Chem Biol 2019; 14:2453-2462. [PMID: 31464417 PMCID: PMC6858493 DOI: 10.1021/acschembio.9b00529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lon is a widely conserved housekeeping protease found in all domains of life. Bacterial Lon is involved in recovery from various types of stress, including tolerance to fluoroquinolone antibiotics, and is linked to pathogenesis in a number of organisms. However, detailed functional studies of Lon have been limited by the lack of selective, cell-permeant inhibitors. Here, we describe the use of positional scanning libraries of hybrid peptide substrates to profile the primary sequence specificity of bacterial Lon. In addition to identifying optimal natural amino acid binding preferences, we identified several non-natural residues that were leveraged to develop optimal peptide substrates as well as a potent peptidic boronic acid inhibitor of Lon. Treatment of Escherichia coli with this inhibitor promotes UV-induced filamentation and reduces tolerance to ciprofloxacin, phenocopying established lon-deletion phenotypes. It is also nontoxic to mammalian cells due to its selectivity for Lon over the proteasome. Our results provide new insight into the primary substrate specificity of Lon and identify substrates and an inhibitor that will serve as useful tools for dissecting the diverse cellular functions of Lon.
Collapse
Affiliation(s)
- Brett M. Babin
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Tomasz Janiszewski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Euna Yoo
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA
| | - Marcin Drąg
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Matthew Bogyo
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Towards Selective Mycobacterial ClpP1P2 Inhibitors with Reduced Activity against the Human Proteasome. Antimicrob Agents Chemother 2017; 61:AAC.02307-16. [PMID: 28193668 PMCID: PMC5404560 DOI: 10.1128/aac.02307-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/28/2017] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis is responsible for the greatest number of deaths worldwide due to a bacterial agent. We recently identified bortezomib (Velcade; compound 1) as a promising antituberculosis (anti-TB) compound. We showed that compound 1 inhibits the mycobacterial caseinolytic proteases P1 and P2 (ClpP1P2) and exhibits bactericidal activity, and we established compound 1 and ClpP1P2 as an attractive lead/target couple. However, compound 1 is a human-proteasome inhibitor currently approved for cancer therapy and, as such, exhibits significant toxicity. Selective inhibition of the bacterial protease over the human proteasome is desirable in order to maintain antibacterial activity while reducing toxicity. We made use of structural data in order to design a series of dipeptidyl-boronate derivatives of compound 1. We tested these derivatives for whole-cell ClpP1P2 and human-proteasome inhibition as well as bacterial-growth inhibition and identified compounds that were up to 100-fold-less active against the human proteasome but that retained ClpP1P2 and mycobacterial-growth inhibition as well as bactericidal potency. The lead compound, compound 58, had low micromolar ClpP1P2 and anti-M. tuberculosis activity, good aqueous solubility, no cytochrome P450 liabilities, moderate plasma protein binding, and low toxicity in two human liver cell lines, and despite high clearance in microsomes, this compound was only moderately cleared when administered intravenously or orally to mice. Higher-dose oral pharmacokinetics indicated good dose linearity. Furthermore, compound 58 was inhibitory to only 11% of a panel of 62 proteases. Our work suggests that selectivity over the human proteasome can be achieved with a drug-like template while retaining potency against ClpP1P2 and, crucially, anti-M. tuberculosis activity.
Collapse
|
16
|
Su MY, Peng WH, Ho MR, Su SC, Chang YC, Chen GC, Chang CI. Structure of yeast Ape1 and its role in autophagic vesicle formation. Autophagy 2016. [PMID: 26208681 DOI: 10.1080/15548627.2015.1067363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In Saccharomyces cerevisiae, a constitutive biosynthetic transport pathway, termed the cytoplasm-to-vacuole targeting (Cvt) pathway, sequesters precursor aminopeptidase I (prApe1) dodecamers in the form of a large complex into a Cvt vesicle using autophagic machinery, targeting it into the vacuole (the yeast lysosome) where it is proteolytically processed into its mature form, Ape1, by removal of an amino-terminal 45-amino acid propeptide. prApe1 is thought to serve as a scaffolding cargo critical for the assembly of the Cvt vesicle by presenting the propeptide to mediate higher-ordered complex formation and autophagic receptor recognition. Here we report the X-ray crystal structure of Ape1 at 2.5 Å resolution and reveal its dodecameric architecture consisting of dimeric and trimeric units, which associate to form a large tetrahedron. The propeptide of prApe1 exhibits concentration-dependent oligomerization and forms a stable tetramer. Structure-based mutagenesis demonstrates that disruption of the inter-subunit interface prevents dodecameric assembly and vacuolar targeting in vivo despite the presence of the propeptide. Furthermore, by examining the vacuolar import of propeptide-fused exogenous protein assemblies with different quaternary structures, we found that 3-dimensional spatial distribution of propeptides presented by a scaffolding cargo is essential for the assembly of the Cvt vesicle for vacuolar delivery. This study describes a molecular framework for understanding the mechanism of Cvt or autophagosomal biogenesis in selective macroautophagy.
Collapse
Affiliation(s)
- Ming-Yuan Su
- a Institute of Biological Chemistry; Academia Sinica ; Taipei , Taiwan.,b Institute of Biochemical Sciences; College of Life Science; National Taiwan University ; Taipei , Taiwan
| | - Wen-Hsin Peng
- a Institute of Biological Chemistry; Academia Sinica ; Taipei , Taiwan
| | - Meng-Ru Ho
- a Institute of Biological Chemistry; Academia Sinica ; Taipei , Taiwan
| | - Shih-Chieh Su
- a Institute of Biological Chemistry; Academia Sinica ; Taipei , Taiwan.,b Institute of Biochemical Sciences; College of Life Science; National Taiwan University ; Taipei , Taiwan
| | - Yuan-Chih Chang
- c Institute of Cellular and Organismic Biology; Academia Sinica ; Taipei , Taiwan
| | - Guang-Chao Chen
- a Institute of Biological Chemistry; Academia Sinica ; Taipei , Taiwan.,b Institute of Biochemical Sciences; College of Life Science; National Taiwan University ; Taipei , Taiwan
| | - Chung-I Chang
- a Institute of Biological Chemistry; Academia Sinica ; Taipei , Taiwan.,b Institute of Biochemical Sciences; College of Life Science; National Taiwan University ; Taipei , Taiwan
| |
Collapse
|
17
|
Lin CC, Su SC, Su MY, Liang PH, Feng CC, Wu SH, Chang CI. Structural Insights into the Allosteric Operation of the Lon AAA+ Protease. Structure 2016; 24:667-675. [PMID: 27041592 DOI: 10.1016/j.str.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/21/2016] [Accepted: 03/04/2016] [Indexed: 11/28/2022]
Abstract
The Lon AAA+ protease (LonA) is an evolutionarily conserved protease that couples the ATPase cycle into motion to drive substrate translocation and degradation. A hallmark feature shared by AAA+ proteases is the stimulation of ATPase activity by substrates. Here we report the structure of LonA bound to three ADPs, revealing the first AAA+ protease assembly where the six protomers are arranged alternately in nucleotide-free and bound states. Nucleotide binding induces large coordinated movements of conserved pore loops from two pairs of three non-adjacent protomers and shuttling of the proteolytic groove between the ATPase site and a previously unknown Arg paddle. Structural and biochemical evidence supports the roles of the substrate-bound proteolytic groove in allosteric stimulation of ATPase activity and the conserved Arg paddle in driving substrate degradation. Altogether, this work provides a molecular framework for understanding how ATP-dependent chemomechanical movements drive allosteric processes for substrate degradation in a major protein-destruction machine.
Collapse
Affiliation(s)
- Chien-Chu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | - Shih-Chieh Su
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Ming-Yuan Su
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Pi-Hui Liang
- School of Pharmacy, National Taiwan University, Taipei, Taiwan 10051, ROC
| | - Chia-Cheng Feng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan 10617, ROC.
| |
Collapse
|
18
|
Su SC, Lin CC, Tai HC, Chang MY, Ho MR, Babu CS, Liao JH, Wu SH, Chang YC, Lim C, Chang CI. Structural Basis for the Magnesium-Dependent Activation and Hexamerization of the Lon AAA+ Protease. Structure 2016; 24:676-686. [PMID: 27041593 DOI: 10.1016/j.str.2016.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/21/2015] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
Abstract
The Lon AAA+ protease (LonA) plays important roles in protein homeostasis and regulation of diverse biological processes. LonA behaves as a homomeric hexamer in the presence of magnesium (Mg(2+)) and performs ATP-dependent proteolysis. However, it is also found that LonA can carry out Mg(2+)-dependent degradation of unfolded protein substrate in an ATP-independent manner. Here we show that in the presence of Mg(2+) LonA forms a non-secluded hexameric barrel with prominent openings, which explains why Mg(2+)-activated LonA can operate as a diffusion-based chambered protease to degrade unstructured protein and peptide substrates efficiently in the absence of ATP. A 1.85 Å crystal structure of Mg(2+)-activated protease domain reveals Mg(2+)-dependent remodeling of a substrate-binding loop and a potential metal-binding site near the Ser-Lys catalytic dyad, supported by biophysical binding assays and molecular dynamics simulations. Together, these findings reveal the specific roles of Mg(2+) in the molecular assembly and activation of LonA.
Collapse
Affiliation(s)
- Shih-Chieh Su
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Chien-Chu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | - Hui-Chung Tai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Mu-Yueh Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - C Satheesan Babu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 11529, ROC; Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan 10617, ROC.
| |
Collapse
|
19
|
An YJ, Na JH, Kim MI, Cha SS. Structural basis for the ATP-independent proteolytic activity of LonB proteases and reclassification of their AAA+ modules. J Microbiol 2015; 53:711-7. [PMID: 26428922 DOI: 10.1007/s12275-015-5417-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 11/24/2022]
Abstract
Lon proteases degrade defective or denature proteins as well as some folded proteins for the control of cellular protein quality. There are two types of Lon proteases, LonA and LonB. Each consists of two functional components: a protease component and an ATPase associated with various cellular activities (AAA+ module). Here, we report the 2.03 -resolution crystal structure of the isolated AAA+ module (iAAA+ module) of LonB from Thermococcus onnurineus NA1 (TonLonB). The iAAA+ module, having no bound nucleotide, adopts a conformation virtually identical to the ADP-bound conformation of AAA+ modules in the hexameric structure of TonLonB; this provides insights into the ATP-independent proteolytic activity observed in a LonB protease. Structural comparison of AAA+ modules between LonA and LonB revealed that the AAA+ modules of Lon proteases are separated into two distinct clades depending on their structural features. The AAA+ module of LonB belongs to the -H2 & Ins1 insert clade (HINS clade)- defined for the first time in this study, while the AAA+ module of LonA is a member of the HCLR clade.
Collapse
Affiliation(s)
- Young Jun An
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Jung-Hyun Na
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Myung-Il Kim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Sun-Shin Cha
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea. .,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea. .,Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University, Pusan, 49112, Republic of Korea.
| |
Collapse
|
20
|
Li JK, Liao JH, Li H, Kuo CI, Huang KF, Yang LW, Wu SH, Chang CI. The N-terminal substrate-recognition domain of a LonC protease exhibits structural and functional similarity to cytosolic chaperones. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1789-97. [PMID: 23999302 DOI: 10.1107/s090744491301500x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/31/2013] [Indexed: 11/10/2022]
Abstract
The Lon protease is ubiquitous in nature. Its proteolytic activity is associated with diverse cellular functions ranging from maintaining proteostasis under normal and stress conditions to regulating cell metabolism. Although Lon was originally identified as an ATP-dependent protease with fused AAA+ (ATPases associated with diverse cellular activities) and protease domains, analyses have recently identified LonC as a class of Lon-like proteases with no intrinsic ATPase activity. In contrast to the canonical ATP-dependent Lon present in eukaryotic organelles and prokaryotes, LonC contains an AAA-like domain that lacks the conserved ATPase motifs. Moreover, the LonC AAA-like domain is inserted with a large domain predicted to be largely α-helical; intriguingly, this unique Lon-insertion domain (LID) was disordered in the recently determined full-length crystal structure of Meiothermus taiwanensis LonC (MtaLonC). Here, the crystal structure of the N-terminal AAA-like α/β subdomain of MtaLonC containing an intact LID, which forms a large α-helical hairpin protruding from the AAA-like domain, is reported. The structure of the LID is remarkably similar to the tentacle-like prong of the periplasmic chaperone Skp. It is shown that the LID of LonC is involved both in Skp-like chaperone activity and in recognition of unfolded protein substrates. The structure allows the construction of a complete model of LonC with six helical hairpin extensions defining a basket-like structure atop the AAA ring and encircling the entry portal to the barrel-like degradation chamber of Lon.
Collapse
Affiliation(s)
- Jhen-Kai Li
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|