1
|
Huang W, Wan Y, Su H, Zhang Z, Liu Y, Sadeeq M, Xian M, Feng X, Xiong P, Hou F. Recent Advances in Phenazine Natural Products: Biosynthesis and Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21364-21379. [PMID: 39300971 DOI: 10.1021/acs.jafc.4c05294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Phenazine natural products are a class of nitrogen-containing heterocyclic compounds produced by microorganisms. The tricyclic ring molecules show various chemical structures and extensive pharmacological activities, such as antimicrobial, anticancer, antiparasitic, anti-inflammatory, and insecticidal activities, with low toxicity to the environment. Since phenazine-1-carboxylic acid has been developed as a registered biopesticide, the application of phenazine natural products will be promising in the field of agriculture pathogenic fungi control based on broad-spectrum antifungal activity, minimal toxicity to the environment, and improvement of crop production. Currently, there are still plenty of intriguing hidden biosynthetic pathways of phenazine natural products to be discovered, and the titer of naturally occurring phenazine natural products is insufficient for agricultural applications. In this review, we spotlight the progress regarding biosynthesis and metabolic engineering research of phenazine natural products in the past decade. The review provides useful insights concerning phenazine natural products production and more clues on new phenazine derivatives biosynthesis.
Collapse
Affiliation(s)
- Wei Huang
- Shandong Freda Biotech Co., Ltd, 250101 Jinan, China
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Huai Su
- Shandong Freda Biotech Co., Ltd, 250101 Jinan, China
| | - Zhe Zhang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Yingjie Liu
- Shandong Freda Biotech Co., Ltd, 250101 Jinan, China
| | - Mohd Sadeeq
- Shandong University of Technology, School of Life Sciences and Medicine, 255000 Zibo, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Xinjun Feng
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Peng Xiong
- Shandong University of Technology, School of Life Sciences and Medicine, 255000 Zibo, China
| | - Feifei Hou
- Shandong University of Technology, School of Life Sciences and Medicine, 255000 Zibo, China
| |
Collapse
|
2
|
Du Y, Wang T, Lv C, Yan B, Wan X, Wang S, Kang C, Guo L, Huang L. Whole Genome Sequencing Reveals Novel Insights about the Biocontrol Potential of Burkholderia ambifaria CF3 on Atractylodes lancea. Microorganisms 2024; 12:1043. [PMID: 38930425 PMCID: PMC11205678 DOI: 10.3390/microorganisms12061043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Root rot caused by Fusarium spp. is the most destructive disease on Atractylodes lancea, one of the large bulks and most common traditional herbal plants in China. In this study, we isolated a bacterial strain, CF3, from the rhizosphere soil of A. lancea and determined its inhibitory effects on F. oxysporum in both in vitro and in vivo conditions. To deeply explore the biocontrol potential of CF3, we sequenced the whole genome and investigated the key pathways for the biosynthesis of many antibiotic compounds. The results revealed that CF3 is a member of Burkholderia ambifaria, harboring two chromosomes and one plasmid as other strains in this species. Five antibiotic compounds were found that could be synthesized due to the existence of the bio-synthesis pathways in the genome. Furthermore, the synthesis of antibiotic compounds should be confirmed by in vitro experiments and novel compounds should be purified and characterized in further studies.
Collapse
Affiliation(s)
- Yongxi Du
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Tielin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Chaogeng Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Binbin Yan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Sheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Chuanzhi Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Luqi Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| |
Collapse
|
3
|
Serafim B, Bernardino AR, Freitas F, Torres CAV. Recent Developments in the Biological Activities, Bioproduction, and Applications of Pseudomonas spp. Phenazines. Molecules 2023; 28:molecules28031368. [PMID: 36771036 PMCID: PMC9919295 DOI: 10.3390/molecules28031368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Phenazines are a large group of heterocyclic nitrogen-containing compounds with demonstrated insecticidal, antimicrobial, antiparasitic, and anticancer activities. These natural compounds are synthesized by several microorganisms originating from diverse habitats, including marine and terrestrial sources. The most well-studied producers belong to the Pseudomonas genus, which has been extensively investigated over the years for its ability to synthesize phenazines. This review is focused on the research performed on pseudomonads' phenazines in recent years. Their biosynthetic pathways, mechanism of regulation, production processes, bioactivities, and applications are revised in this manuscript.
Collapse
Affiliation(s)
- Bruno Serafim
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Ana R. Bernardino
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Filomena Freitas
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Cristiana A. V. Torres
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- Correspondence:
| |
Collapse
|
4
|
Wan Y, Liu H, Xian M, Huang W. Biosynthetic Pathway Construction and Production Enhancement of 1-Hydroxyphenazine Derivatives in Pseudomonas chlororaphis H18. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1223-1231. [PMID: 35057615 DOI: 10.1021/acs.jafc.1c07760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
1-Hydroxyphenazine derivatives are phenazine family chemicals with broad-spectrum antibacterial and potential biological activities. However, the lack of variety and low titer hinder their applications. In this research, three enzymes PhzS (monooxygenase), NaphzNO1 (N-monooxygenase), and LaphzM (methyltransferase) were heterologously expressed in a phenazine-1-carboxylic acid generating strain Pseudomonas chlororaphis H18. Four phenazines, 1-hydroxyphenazine, 1-methoxyphenazine, 1-hydroxyphenazine N' 10-oxide, and a novel phenazine derivative 1-methoxyphenazine N' 10-oxide, were isolated, characterized in the genetically modified strains, and exhibited excellent antimicrobial activities. Next, we verified the hydroxyl methylation activity of LaphzM and elucidated the biosynthetic pathway of 1-methoxyphenazine N' 10-oxide in vitro. Moreover, the titer of 1-hydroxyphenazine derivatives was engineered. The three compounds 1-methoxyphenazine, 1-hydroxyphenazine N' 10-oxide, and 1-methoxyphenazine N' 10-oxide all reach the highest titer reported to date. This work provides a promising platform for phenazine derivatives' combinatorial biosynthesis and engineering.
Collapse
Affiliation(s)
- Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongchen Liu
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Wei Huang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Wan Y, Liu H, Xian M, Huang W. Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18. Microb Cell Fact 2021; 20:235. [PMID: 34965873 PMCID: PMC8717658 DOI: 10.1186/s12934-021-01731-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022] Open
Abstract
Background 1-Hydroxyphenazine (1-OH-PHZ) is a phenazine microbial metabolite with broad-spectrum antibacterial activities against a lot of plant pathogens. However, its use is hampered by the low yield all along. Metabolic engineering of microorganisms is an increasingly powerful method for the production of valuable organisms at high levels. Pseudomonas chlororaphis is recognized as a safe and effective plant rhizosphere growth-promoting bacterium, and faster growth rate using glycerol or glucose as a renewable carbon source. Therefore, Pseudomonas chlororaphis is particularly suitable as the chassis cell for the modification and engineering of phenazines. Results In this study, enzyme PhzS (monooxygenase) was heterologously expressed in a phenazine-1-carboxylic acid (PCA) generating strain Pseudomonas chlororaphis H18, and 1-hydroxyphenazine was isolated, characterized in the genetically modified strain. Next, the yield of 1-hydroxyphenazine was systematically engineered by the strategies including (1) semi-rational design remodeling of crucial protein PhzS, (2) blocking intermediate PCA consumption branch pathway, (3) enhancing the precursor pool, (4) engineering regulatory genes, etc. Finally, the titer of 1-hydroxyphenazine reached 3.6 g/L in 5 L fermenter in 54 h. Conclusions The 1-OH-PHZ production of Pseudomonas chlororaphis H18 was greatly improved through systematically engineering strategies, which is the highest, reported to date. This work provides a promising platform for 1-hydroxyphenazine engineering and production. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01731-y.
Collapse
Affiliation(s)
- Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongchen Liu
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Wei Huang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Ke J, Zhao Z, Coates CR, Hadjithomas M, Kuftin A, Louie K, Weller D, Thomashow L, Mouncey NJ, Northen TR, Yoshikuni Y. Development of platforms for functional characterization and production of phenazines using a multi-chassis approach via CRAGE. Metab Eng 2021; 69:188-197. [PMID: 34890798 DOI: 10.1016/j.ymben.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023]
Abstract
Phenazines (Phzs), a family of chemicals with a phenazine backbone, are secondary metabolites with diverse properties such as antibacterial, anti-fungal, or anticancer activity. The core derivatives of phenazine, phenazine-1-carboxylic acid (PCA) and phenazine-1,6-dicarboxylic acid (PDC), are themselves precursors for various other derivatives. Recent advances in genome mining tools have enabled researchers to identify many biosynthetic gene clusters (BGCs) that might produce novel Phzs. To characterize the function of these BGCs efficiently, we performed modular construct assembly and subsequent multi-chassis heterologous expression using chassis-independent recombinase-assisted genome engineering (CRAGE). CRAGE allowed rapid integration of a PCA BGC into 23 diverse γ-proteobacteria species and allowed us to identify top PCA producers. We then used the top five chassis hosts to express four partially refactored PDC BGCs. A few of these platforms produced high levels of PDC. Specifically, Xenorhabdus doucetiae and Pseudomonas simiae produced PDC at a titer of 293 mg/L and 373 mg/L, respectively, in minimal media. These titers are significantly higher than those previously reported. Furthermore, selectivity toward PDC production over PCA production was improved by up to 9-fold. The results show that these strains are promising chassis for production of PCA, PDC, and their derivatives, as well as for function characterization of Phz BGCs identified via bioinformatics mining.
Collapse
Affiliation(s)
- Jing Ke
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhiying Zhao
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cameron R Coates
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michalis Hadjithomas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrea Kuftin
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine Louie
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Weller
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality, Washington State University, Pullman, WA, USA; Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Linda Thomashow
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality, Washington State University, Pullman, WA, USA; Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent R Northen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Global Center for Food, Land, and Water Resources, Hokkaido University, Hokkaido, 060-8589, Japan.
| |
Collapse
|
7
|
Advances in Phenazines over the Past Decade: Review of Their Pharmacological Activities, Mechanisms of Action, Biosynthetic Pathways and Synthetic Strategies. Mar Drugs 2021; 19:md19110610. [PMID: 34822481 PMCID: PMC8620606 DOI: 10.3390/md19110610] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/25/2023] Open
Abstract
Phenazines are a large group of nitrogen-containing heterocycles, providing diverse chemical structures and various biological activities. Natural phenazines are mainly isolated from marine and terrestrial microorganisms. So far, more than 100 different natural compounds and over 6000 synthetic derivatives have been found and investigated. Many phenazines show great pharmacological activity in various fields, such as antimicrobial, antiparasitic, neuroprotective, insecticidal, anti-inflammatory and anticancer activity. Researchers continued to investigate these compounds and hope to develop them as medicines. Cimmino et al. published a significant review about anticancer activity of phenazines, containing articles from 2000 to 2011. Here, we mainly summarize articles from 2012 to 2021. According to sources of compounds, phenazines were categorized into natural phenazines and synthetic phenazine derivatives in this review. Their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies were summarized. These may provide guidance for the investigation on phenazines in the future.
Collapse
|
8
|
Liu K, Li L, Yao W, Wang W, Huang Y, Wang R, Li P. Genetic engineering of Pseudomonas chlororaphis Lzh-T5 to enhance production of trans-2,3-dihydro-3-hydroxyanthranilic acid. Sci Rep 2021; 11:16451. [PMID: 34385485 PMCID: PMC8361184 DOI: 10.1038/s41598-021-94674-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) is a cyclic β-amino acid used for the synthesis of non-natural peptides and chiral materials. And it is an intermediate product of phenazine production in Pseudomonas spp. Lzh-T5 is a P. chlororaphis strain isolated from tomato rhizosphere found in China. It can synthesize three antifungal phenazine compounds. Disruption the phzF gene of P. chlororaphis Lzh-T5 results in DHHA accumulation. Several strategies were used to improve production of DHHA: enhancing the shikimate pathway by overexpression, knocking out negative regulatory genes, and adding metal ions to the medium. In this study, three regulatory genes (psrA, pykF, and rpeA) were disrupted in the genome of P. chlororaphis Lzh-T5, yielding 5.52 g/L of DHHA. When six key genes selected from the shikimate, pentose phosphate, and gluconeogenesis pathways were overexpressed, the yield of DHHA increased to 7.89 g/L. Lastly, a different concentration of Fe3+ was added to the medium for DHHA fermentation. This genetically engineered strain increased the DHHA production to 10.45 g/L. According to our result, P. chlororaphis Lzh-T5 could be modified as a microbial factory to produce DHHA. This study laid a good foundation for the future industrial production and application of DHHA.
Collapse
Affiliation(s)
- Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Ling Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, People's Republic of China.
| | - Wentao Yao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Yujie Huang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| |
Collapse
|
9
|
Xu Z, Wang M, Du J, Huang T, Liu J, Dong T, Chen Y. Isolation of Burkholderia sp. HQB-1, A Promising Biocontrol Bacteria to Protect Banana Against Fusarium Wilt Through Phenazine-1-Carboxylic Acid Secretion. Front Microbiol 2020; 11:605152. [PMID: 33362750 PMCID: PMC7758292 DOI: 10.3389/fmicb.2020.605152] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Fusarium wilt is a devastating soil-borne fungal disease caused by Fusarium oxysporum f.sp. cubense (Foc). In recent years, some antifungal bacteria have been applied for the prevention and biocontrol of pathogenic fungi. In our study, a bacterial strain HQB-1, isolated from banana rhizosphere soil, was cultured for investigation. It showed broad-spectrum antifungal activities against representative phytopathogenic fungi including Fusarium oxysporum, Colletotrichum gloeosporioides, Botrytis cinerea, and Curvularia fallax. The strain HQB-1 was identified as Burkholderia sp. by morphological, physiological, and biochemical examinations, confirmed by 16S rRNA gene sequence analysis. Among the metabolites produced by the strain, we identified an antifungal compound which was identified phenazine-1-carboxylic acid (PCA) (C13H8N2O2) through ultraviolet, liquid chromatography quadrupole-time of flight mass spectrometer, and nuclear magnetic response. Furthermore, PCA exhibited the lowest minimum inhibitory concentration (MIC) against F. oxysporum (1.56 μg/ml) and yielded the highest MIC against C. gloeosporioides. Pot experiments showed that application of 5 μg/ml or more of PCA efficiently controlled banana wilt and promoted the growth of banana plants. These results suggested that Burkholderia sp. HQB-1, as an important microbial resource of PCA, could be a promising biological agent against wilt diseases and promoting banana growth.
Collapse
Affiliation(s)
- Zhizhou Xu
- Research Center of Horticultural Science and Engineering, Huaqiao University, Xiamen, China.,College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Mingyuan Wang
- Research Center of Horticultural Science and Engineering, Huaqiao University, Xiamen, China
| | - Jinpeng Du
- Research Center of Horticultural Science and Engineering, Huaqiao University, Xiamen, China
| | - Ting Huang
- Research Center of Horticultural Science and Engineering, Huaqiao University, Xiamen, China
| | - Jianfu Liu
- Research Center of Horticultural Science and Engineering, Huaqiao University, Xiamen, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yinglong Chen
- UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Guo S, Wang Y, Bilal M, Hu H, Wang W, Zhang X. Microbial Synthesis of Antibacterial Phenazine-1,6-dicarboxylic Acid and the Role of PhzG in Pseudomonas chlororaphis GP72AN. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2373-2380. [PMID: 32013409 DOI: 10.1021/acs.jafc.9b07657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pseudomonas chlororaphis have been demonstrated to be environmentally friendly biocontrol strains, and most of them can produce phenazine compounds. Phenazine-1,6-dicarboxylic acid (PDC), with a potential antibacterial activity, is generally found in Streptomyces but not in Pseudomonas. The present study aimed to explore the feasibility of PDC synthesis and the function of PhzG in Pseudomonas. A PDC producer was constructed by replacing phzG in P. chlororaphis with lphzG from Streptomyces lomondensis. Through gene deletion, common start codon changing, gene silence, and in vitro assay, our result revealed that the yield of PDC in P. chlororaphis is associated with the relative expression of phzG to phzA and phzB. In addition, it is found that PDC can be spontaneously synthesized without PhzG. This study provides an efficient way for PDC production and promotes a better understanding of PhzG function in PDC biosynthesis. Moreover, this study gives an alternative opportunity for developing new antibacterial biopesticides.
Collapse
Affiliation(s)
- Shuqi Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yining Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
- National Experimental Teaching Center for Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
11
|
Simoska O, Sans M, Eberlin LS, Shear JB, Stevenson KJ. Electrochemical monitoring of the impact of polymicrobial infections on Pseudomonas aeruginosa and growth dependent medium. Biosens Bioelectron 2019; 142:111538. [DOI: 10.1016/j.bios.2019.111538] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023]
|
12
|
Si D, Xiong Y, Yang Z, Zhang J, Ma L, Li J, Wang Y. Whole genome sequencing analysis of a dexamethasone-degrading Burkholderia strain CQ001. Medicine (Baltimore) 2019; 98:e16749. [PMID: 31415371 PMCID: PMC6831421 DOI: 10.1097/md.0000000000016749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study is to analyze the functional genes and metabolic pathways of dexamethasone degradation in Burkholderia through genome sequencing.A new Burkholderia sp. CQQ001 (B. CQ001) with dexamethasone degrading activity was isolated from the hospital wastewater and sequenced using Illumina Hiseq4000 combined with the third-generation sequencing technology. The genomes were assembled, annotated, and genomically mapped. Compared with six Burkholderia strains with typical features and four Burkholderia strains with special metabolic ability, the functional genes and metabolic pathways of dexamethasone degradation were analyzed and confirmed by RT-qPCR.Genome of B. CQ001 was 7,660,596 bp long with 6 ring chromosomes. The genes related to material metabolism accounted for 80.15%. These metabolism related genes could participate in 117 metabolic pathways and cover various microbial metabolic pathways in different environments and decomposition pathways of secondary metabolites, especially the degradation of aromatic compounds. The steroidal metabolic pathway containing 1 ABC transporter and 9 key metabolic enzymes related genes were scattered in the genome. Among them, the ABC transporter, KshA, and KshB increased significantly under the culture conditions of dexamethasone sodium phosphate as carbon source.B. CQ001 is a bacterium with strong metabolic function and rich metabolic pathways. It has the potential to degrade aromatics and other exogenous chemicals and contains genes for steroid metabolism. Our study enriches the genetic information of Burkholderia and provides information for the application of Burkholderia in bioremediation and steroid medicine production.
Collapse
Affiliation(s)
- Dan Si
- The Third People's Hospital of Suining, Suining,
| | - Yuxia Xiong
- Department of Pathogenic Biology, Basic Medical College, Chongqing Medical University,
| | - Zhibang Yang
- Department of Pathogenic Biology, Basic Medical College, Chongqing Medical University,
| | - Jin Zhang
- Department of Pathogenic Biology, Basic Medical College, Chongqing Medical University,
| | - Lianju Ma
- Pharmaceutical Experimental Teaching Center, Chongqing Medical University,
| | - Jinyang Li
- Class of 2016, Clinical Medicine, Chongqing Medical University,
| | - Yi Wang
- Department of Immunology, Basic Medical College, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
13
|
Liu S, Du MZ, Wen QF, Kang J, Dong C, Xiong L, Huang J, Guo FB. Comprehensive exploration of the enzymes catalysing oxygen-involved reactions and COGs relevant to bacterial oxygen utilization. Environ Microbiol 2018; 20:3836-3850. [PMID: 30187624 DOI: 10.1111/1462-2920.14399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
To better understand the mechanisms of bacterial adaptation in oxygen environments, we explored the aerobic living-associated genes in bacteria by comparing Clusters of Orthologous Groups of proteins' (COGs) frequencies and gene expression analyses and 38 COGs were detected at significantly higher frequencies (p-value less than 1e-6) in aerobes than in anaerobes. Differential expression analyses between two conditions further narrowed the prediction to 27 aerobe-specific COGs. Then, we annotated the enzymes associated with these COGs. Literature review revealed that 14 COGs contained enzymes catalysing oxygen-involved reactions or products involved in aerobic pathways, suggesting their important roles for survival in aerobic environments. Additionally, protein-protein interaction analyses and step length comparisons of metabolic networks suggested that the other 13 COGs may function relevantly with the 14 enzymes-corresponding COGs, indicating that these genes may be highly associated with oxygen utilization. Phylogenetic and evolutionary analyses showed that the 27 COGs did not have similar trees, and all suffered purifying selection pressures. The divergent times of species containing or lacking aerobic COGs validated that the appearing time of oxygen-utilizing gene was approximately 2.80 Gyr ago. In addition to help better understand oxygen adaption, our method may be extended to identify genes relevant to other living environments.
Collapse
Affiliation(s)
- Shuo Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Meng-Ze Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qing-Feng Wen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Juanjuan Kang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chuan Dong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lifeng Xiong
- Department of Microbiology, University of Hong Kong, Special Administrative Region, Hong Kong, 999077, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Feng-Biao Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
14
|
Mechanisms and Specificity of Phenazine Biosynthesis Protein PhzF. Sci Rep 2017; 7:6272. [PMID: 28740244 PMCID: PMC5524880 DOI: 10.1038/s41598-017-06278-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/12/2017] [Indexed: 11/08/2022] Open
Abstract
Phenazines are bacterial virulence and survival factors with important roles in infectious disease. PhzF catalyzes a key reaction in their biosynthesis by isomerizing (2 S,3 S)-2,3-dihydro-3-hydroxy anthranilate (DHHA) in two steps, a [1,5]-hydrogen shift followed by tautomerization to an aminoketone. While the [1,5]-hydrogen shift requires the conserved glutamate E45, suggesting acid/base catalysis, it also shows hallmarks of a sigmatropic rearrangement, namely the suprafacial migration of a non-acidic proton. To discriminate these mechanistic alternatives, we employed enzyme kinetic measurements and computational methods. Quantum mechanics/molecular mechanics (QM/MM) calculations revealed that the activation barrier of a proton shuttle mechanism involving E45 is significantly lower than that of a sigmatropic [1,5]-hydrogen shift. QM/MM also predicted a large kinetic isotope effect, which was indeed observed with deuterated substrate. For the tautomerization, QM/MM calculations suggested involvement of E45 and an active site water molecule, explaining the observed stereochemistry. Because these findings imply that PhzF can act only on a limited substrate spectrum, we also investigated the turnover of DHHA derivatives, of which only O-methyl and O-ethyl DHHA were converted. Together, these data reveal how PhzF orchestrates a water-free with a water-dependent step. Its unique mechanism, specificity and essential role in phenazine biosynthesis may offer opportunities for inhibitor development.
Collapse
|
15
|
Guttenberger N, Blankenfeldt W, Breinbauer R. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg Med Chem 2017; 25:6149-6166. [PMID: 28094222 DOI: 10.1016/j.bmc.2017.01.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/24/2022]
Abstract
Phenazines are natural products which are produced by bacteria or by archaeal Methanosarcina species. The tricyclic ring system enables redox processes, which producing organisms use for oxidation of NADH or for the generation of reactive oxygen species (ROS), giving them advantages over other microorganisms. In this review we summarize the progress in the field since 2005 regarding the isolation of new phenazine natural products, new insights in their biological function, and particularly the now almost completely understood biosynthesis. The review is complemented by a description of new synthetic methods and total syntheses of phenazines.
Collapse
Affiliation(s)
- Nikolaus Guttenberger
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Institute of Chemistry-Analytical Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| |
Collapse
|
16
|
The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Proc Natl Acad Sci U S A 2016; 113:E3538-47. [PMID: 27274079 DOI: 10.1073/pnas.1600424113] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples. Here, we apply electrochemical methods to directly detect 5-Me-PCA and find that it is transported by MexGHI-OpmD in P. aeruginosa strain PA14 planktonic and biofilm cells. We also show that 5-Me-PCA is sufficient to fully induce MexGHI-OpmD expression and that it is required for wild-type colony biofilm morphogenesis. These physiological effects are consistent with the high redox potential of 5-Me-PCA, which distinguishes it from other well-studied P. aeruginosa phenazines. Our observations highlight the importance of this compound, which was previously overlooked due to the challenges associated with its detection, in the context of P. aeruginosa gene expression and multicellular behavior. This study constitutes a unique demonstration of efflux-based self-resistance, controlled by a simple circuit, in a Gram-negative pathogen.
Collapse
|
17
|
Zhao Y, Qian G, Ye Y, Wright S, Chen H, Shen Y, Liu F, Du L. Heterocyclic Aromatic N-Oxidation in the Biosynthesis of Phenazine Antibiotics from Lysobacter antibioticus. Org Lett 2016; 18:2495-8. [PMID: 27145204 DOI: 10.1021/acs.orglett.6b01089] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Heterocyclic aromatic N-oxides often have potent biological activities, but the mechanism for aromatic N-oxidation is unclear. Six phenazine antibiotics were isolated from Lysobacter antibioticus OH13. A 10 gene cluster was identified for phenazine biosynthesis. Mutation of LaPhzNO1 abolished all N-oxides, while non-oxides markedly increased. LaPhzNO1 is homologous to Baeyer-Villiger flavoproteins but was shown to catazlye phenazine N-oxidation. LaPhzNO1 and LaPhzS together converted phenazine 1,6-dicarboxylic acid to 1,6-dihydroxyphenazine N5,N10-dioxide. LaPhzNO1 also catalyzed N-oxidation of 8-hydroxyquinoline.
Collapse
Affiliation(s)
- Yangyang Zhao
- College of Plant Protection, Nanjing Agricultural University , Nanjing 210095, China.,Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University , Nanjing 210095, China
| | - Yonghao Ye
- College of Plant Protection, Nanjing Agricultural University , Nanjing 210095, China
| | - Stephen Wright
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Haotong Chen
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Yuemao Shen
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University , Jinan 250100, China
| | - Fengquan Liu
- College of Plant Protection, Nanjing Agricultural University , Nanjing 210095, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Science , Nanjing 210014, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| |
Collapse
|
18
|
Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms. Nat Commun 2016; 7:10535. [PMID: 26813638 PMCID: PMC4737866 DOI: 10.1038/ncomms10535] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/23/2015] [Indexed: 12/12/2022] Open
Abstract
Monitoring spatial distribution of metabolites in multicellular structures can enhance understanding of the biochemical processes and regulation involved in cellular community development. Here we report on an electrochemical camera chip capable of simultaneous spatial imaging of multiple redox-active phenazine metabolites produced by Pseudomonas aeruginosa PA14 colony biofilms. The chip features an 8 mm × 8 mm array of 1,824 electrodes multiplexed to 38 parallel output channels. Using this chip, we demonstrate potential-sweep-based electrochemical imaging of whole-biofilms at measurement rates in excess of 0.2 s per electrode. Analysis of mutants with various capacities for phenazine production reveals distribution of phenazine-1-carboxylic acid (PCA) throughout the colony, with 5-methylphenazine-1-carboxylic acid (5-MCA) and pyocyanin (PYO) localized to the colony edge. Anaerobic growth on nitrate confirms the O2-dependence of PYO production and indicates an effect of O2 availability on 5-MCA synthesis. This integrated-circuit-based technique promises wide applicability in detecting redox-active species from diverse biological samples.
Collapse
|
19
|
Ahmed FH, Carr PD, Lee BM, Afriat-Jurnou L, Mohamed AE, Hong NS, Flanagan J, Taylor MC, Greening C, Jackson CJ. Sequence-Structure-Function Classification of a Catalytically Diverse Oxidoreductase Superfamily in Mycobacteria. J Mol Biol 2015; 427:3554-3571. [PMID: 26434506 DOI: 10.1016/j.jmb.2015.09.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022]
Abstract
The deazaflavin cofactor F420 enhances the persistence of mycobacteria during hypoxia, oxidative stress, and antibiotic treatment. However, the identities and functions of the mycobacterial enzymes that utilize F420 under these conditions have yet to be resolved. In this work, we used sequence similarity networks to analyze the distribution of the largest F420-dependent protein family in mycobacteria. We show that these enzymes are part of a larger split β-barrel enzyme superfamily (flavin/deazaflavin oxidoreductases, FDORs) that include previously characterized pyridoxamine/pyridoxine-5'-phosphate oxidases and heme oxygenases. We show that these proteins variously utilize F420, flavin mononucleotide, flavin adenine dinucleotide, and heme cofactors. Functional annotation using phylogenetic, structural, and spectroscopic methods revealed their involvement in heme degradation, biliverdin reduction, fatty acid modification, and quinone reduction. Four novel crystal structures show that plasticity in substrate binding pockets and modifications to cofactor binding motifs enabled FDORs to carry out a variety of functions. This systematic classification and analysis provides a framework for further functional analysis of the roles of FDORs in mycobacterial pathogenesis and persistence.
Collapse
Affiliation(s)
- F Hafna Ahmed
- Australian National University Research School of Chemistry, Sullivans Creek Road, Acton, ACT 2601, Australia
| | - Paul D Carr
- Australian National University Research School of Chemistry, Sullivans Creek Road, Acton, ACT 2601, Australia
| | - Brendon M Lee
- Australian National University Research School of Chemistry, Sullivans Creek Road, Acton, ACT 2601, Australia
| | - Livnat Afriat-Jurnou
- Australian National University Research School of Chemistry, Sullivans Creek Road, Acton, ACT 2601, Australia
| | - A Elaaf Mohamed
- Australian National University Research School of Chemistry, Sullivans Creek Road, Acton, ACT 2601, Australia
| | - Nan-Sook Hong
- Australian National University Research School of Chemistry, Sullivans Creek Road, Acton, ACT 2601, Australia
| | - Jack Flanagan
- University of Auckland Faculty of Medical and Health Sciences, 85 Park Road, Grafton, Auckland 2013, New Zealand
| | - Matthew C Taylor
- Commonwealth Scientific and Industrial Research Organisation Land and Water Flagship, Clunies Ross Street, Acton, ACT 2060, Australia
| | - Chris Greening
- Commonwealth Scientific and Industrial Research Organisation Land and Water Flagship, Clunies Ross Street, Acton, ACT 2060, Australia
| | - Colin J Jackson
- Australian National University Research School of Chemistry, Sullivans Creek Road, Acton, ACT 2601, Australia.
| |
Collapse
|
20
|
Experimental Evidence for a Revision in the Annotation of Putative Pyridoxamine 5'-Phosphate Oxidases P(N/M)P from Fungi. PLoS One 2015; 10:e0136761. [PMID: 26327315 PMCID: PMC4556617 DOI: 10.1371/journal.pone.0136761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/08/2015] [Indexed: 11/19/2022] Open
Abstract
Pyridoxinamine 5'-phosphate oxidases (P(N/M)P oxidases) that bind flavin mononucleotide (FMN) and oxidize pyridoxine 5'-phosphate or pyridoxamine 5'-phosphate to form pyridoxal 5'-phosphate (PLP) are an important class of enzymes that play a central role in cell metabolism. Failure to generate an adequate supply of PLP is very detrimental to most organisms and is often clinically manifested as a neurological disorder in mammals. In this study, we analyzed the function of YLR456W and YPR172W, two homologous genes of unknown function from S. cerevisiae that have been annotated as putative P(N/M)P oxidases based on sequence homology. Different experimental approaches indicated that neither protein catalyzes PLP formation nor binds FMN. On the other hand, our analysis confirmed the enzymatic activity of Pdx3, the S. cerevisiae protein previously implicated in PLP biosynthesis by genetic and structural characterization. After a careful sequence analysis comparing the putative and confirmed P(N/M)P oxidases, we found that the protein domain (PF01243) that led to the YLR456W and YPR172W annotation is a poor indicator of P(N/M)P oxidase activity. We suggest that a combination of two Pfam domains (PF01243 and PF10590) present in Pdx3 and other confirmed P(N/M)P oxidases would be a stronger predictor of this molecular function. This work exemplifies the importance of experimental validation to rectify genome annotation and proposes a revision in the annotation of at least 400 sequences from a wide variety of fungal species that are homologous to YLR456W and are currently misrepresented as putative P(N/M)P oxidases.
Collapse
|
21
|
Diederich C, Leypold M, Breinbauer R, Blankenfeldt W. Biosynthese der Phenazine. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/nadc.201490357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Blankenfeldt W, Parsons JF. The structural biology of phenazine biosynthesis. Curr Opin Struct Biol 2014; 29:26-33. [PMID: 25215885 DOI: 10.1016/j.sbi.2014.08.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/25/2014] [Indexed: 01/28/2023]
Abstract
The phenazines are a class of over 150 nitrogen-containing aromatic compounds of bacterial and archeal origin. Their redox properties not only explain their activity as broad-specificity antibiotics and virulence factors but also enable them to function as respiratory pigments, thus extending their importance to the primary metabolism of phenazine-producing species. Despite their discovery in the mid-19th century, the molecular mechanisms behind their biosynthesis have only been unraveled in the last decade. Here, we review the contribution of structural biology that has led to our current understanding of phenazine biosynthesis.
Collapse
Affiliation(s)
- Wulf Blankenfeldt
- Helmholtz Centre for Infection Research, Structure and Function of Proteins, Inhoffenstr. 7, 38124 Braunschweig, Germany.
| | - James F Parsons
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| |
Collapse
|