1
|
Raboni S, Faggiano S, Bettati S, Mozzarelli A. Methionine gamma lyase: Structure-activity relationships and therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140991. [PMID: 38147934 DOI: 10.1016/j.bbapap.2023.140991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Methionine gamma lyase (MGL) is a bacterial and plant enzyme that catalyzes the conversion of methionine in methanthiol, 2-oxobutanoate and ammonia. The enzyme belongs to fold type I of the pyridoxal 5'-dependent family. The catalytic mechanism and the structure of wild type MGL and variants were determined in the presence of the natural substrate as well as of many sulfur-containing derivatives. Structure-function relationship studies were pivotal for MGL exploitation in the treatment of cancer, bacterial infections, and other diseases. MGL administration to cancer cells leads to methionine starvation, thus decreasing cells viability and increasing their vulnerability towards other drugs. In antibiotic therapy, MGL acts by transforming prodrugs in powerful drugs. Numerous strategies have been pursued for the delivering of MGL in vivo to prolong its bioavailability and decrease its immunogenicity. These include conjugation with polyethylene glycol and encapsulation in synthetic or natural vesicles, eventually decorated with tumor targeting molecules, such as the natural phytoestrogens daidzein and genistein. The scientific achievements in studying MGL structure, function and perspective therapeutic applications came from the efforts of many talented scientists, among which late Tatyana Demidkina to whom we dedicate this review.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy.
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Pisa, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy; Department of Medicine, University of Parma, Parma, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| |
Collapse
|
2
|
Mizutani T, Hara R, Takeuchi M, Hibi M, Ueda M, Ogawa J. One-Pot Synthesis of Useful S-Substituted-l-cysteine Sulfoxides Using Genetically Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5339-5347. [PMID: 38417143 DOI: 10.1021/acs.jafc.3c08824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
S-Substituted-l-cysteine sulfoxides are valuable compounds that are contained in plants. Particularly, (+)-alliin and its degraded products have gained significant attention because of their human health benefits. However, (+)-alliin production has been limited to extraction from plants and chemical synthesis; both methods have drawbacks in terms of stability and safety. Here, we proposed the enzymatic cascade reaction for synthesizing (+)-alliin from readily available substrates. To achieve a one-pot (+)-alliin production, we constructed Escherichia coli coexpressing the genes encoding tryptophan synthase from Aeromonas hydrophila ssp. hydrophila NBRC 3820 and l-isoleucine hydroxylase from Bacillus thuringiensis 2e2 for the biocatalyst. Deletion of tryptophanase gene in E. coli increased the yield about 2-fold. Under optimized conditions, (+)-alliin accumulation reached 110 mM, which is the highest productivity thus far. Moreover, natural and unnatural S-substituted-l-cysteine sulfoxides were synthesized by applying various thiols to the cascade reaction. These results indicate that the developed bioprocess would enable the supply of diverse S-substituted-l-cysteine sulfoxides.
Collapse
Affiliation(s)
- Taku Mizutani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryotaro Hara
- Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Michiki Takeuchi
- Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Makoto Hibi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Makoto Ueda
- Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Kulikova VV, Morozova EA, Koval VS, Solyev PN, Demidkina TV, Revtovich SV. Thiosulfinates: Cytotoxic and Antitumor Activity. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:912-923. [PMID: 37751863 DOI: 10.1134/s0006297923070052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 09/28/2023]
Abstract
Pharmacological value of some natural compounds makes them attractive for use in oncology. The sulfur-containing thiosulfinates found in plants of the genus Allium have long been known as compounds with various therapeutic properties, including antitumor. Over the last few years, the effect of thiosulfinates on various stages of carcinogenesis has been actively investigated. In vitro and in vivo studies have shown that thiosulfinates inhibit proliferation of cancer cells, as well as they induce apoptosis. The purpose of this review is to summarize current data on the use of natural and synthetic thiosulfinates in cancer therapy. Antitumor mechanisms and molecular targets of these promising compounds are discussed. A significant part of the review is devoted to consideration of a new strategy for treatment of oncological diseases - use of the directed enzyme prodrug therapy approach aiming to obtain antitumor thiosulfinates in situ.
Collapse
Affiliation(s)
- Vitalia V Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Elena A Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vasiliy S Koval
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Svetlana V Revtovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
4
|
Anufrieva NV, Morozova EA, Revtovich SV, Bazhulina NP, Timofeev V, Tkachev YV, Faleev N, Nikulin AD, Demidkina TV. Serine 339 in the Catalysis of γ- and β-Elimination Reactions. Acta Naturae 2022; 14:50-61. [PMID: 35923564 PMCID: PMC9307983 DOI: 10.32607/actanaturae.11242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Serine 339 of the active site of Citrobacter freundii
methionine γ-lyase (MGL) is a conserved amino acid in most
pyridoxal 5’-phosphate-dependent enzymes of the cystathionine
β-lyase subclass, to which MGL belongs. The reaction mechanism of the
MGL-catalyzed γ-elimination reaction is poorly explored. We replaced
serine 339 with alanine using site-directed mutagenesis. The replacement of
serine 339 with alanine led to a significant (by two orders of magnitude)
decrease in efficiency in the catalysis of the γ- and β-elimination
reactions by the mutant form of the enzyme. The exchange rates of the C-α-
and C-β-protons in the amino acids in complexes consisting of the enzyme
and competitive inhibitors decreased by one-two orders of magnitude. The
spectral characteristics of the mutant form indicated that the replacement did
not lead to significant changes in the conformation and tautomerism of MGL
internal aldimine. We crystallized the holoenzyme and determined its spatial
structure at 1.7 E resolution. The replacement of serine 339 with alanine did
not affect the overall course of the polypeptide chain of the MGL subunit and
the tetrameric enzyme structure. An analysis of the obtained kinetic and
spectral data, as well as the known spatial structures of C. freundii
MGL, indicates that serine 339 is necessary for efficient catalysis of
γ- and β-elimination reactions at the stage of C-α-proton
abstraction from the external aldimine, the γ-elimination reaction at the
stages of coenzyme C4’-atom protonation, and C-β-proton abstraction
from a ketimine intermediate.
Collapse
Affiliation(s)
- N. V. Anufrieva
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - E. A. Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - S. V. Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - N. P. Bazhulina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - V.P. Timofeev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - Ya. V. Tkachev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - N.G. Faleev
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - A. D. Nikulin
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - T. V. Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| |
Collapse
|
5
|
Morozova E, Anufrieva N, Koval V, Lesnova E, Kushch A, Timofeeva V, Solovieva A, Kulikova V, Revtovich S, Demidkina T. Conjugates of methionine γ-lyase with polysialic acid: Two approaches to antitumor therapy. Int J Biol Macromol 2021; 182:394-401. [PMID: 33839182 DOI: 10.1016/j.ijbiomac.2021.03.201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
The methionine dependence is a well known phenomenon in metabolism of cancer cells. Methionine γ-lyase (EC 4.4.1.11, MGL) catalyzes the γ-elimination reaction of L-methionine and thus could effectively inhibit the growth of malignant cells. Recently we have demonstrated that the mutant form of the enzyme C115H MGL can be used as a component of the pharmacological pair enzyme/S-(allyl/alkyl)-L-cysteine sulfoxides to yield thiosulfinates in situ. Thiosulfinates were shown to be toxic to various cancer cell lines. Therefore the application of the enzyme in enzyme pro-drug therapy may be promising. The conjugates of MGL and C115H MGL with polysialic acid were obtained and their kinetic and pharmacokinetic parameters were determined. The formation of polysialic shell around the enzyme was confirmed by atomic force microscopy. The half-life of conjugated enzymes increased 3-6 times compared to the native enzyme. The cytotoxic effect of conjugated MGL against methionine dependent cancer cell lines was increased two times compared to the values for the native enzymes. The anticancer efficiency of thiosulfinates produced by pharmacological pair C115H MGL/S-(allyl/alkyl)-L-cysteine sulfoxides was demonstrated in vitro. The results indicate that the conjugates of MGL with polysialic acid could be new antitumor drugs.
Collapse
Affiliation(s)
- E Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - N Anufrieva
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - V Koval
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - E Lesnova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - A Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - V Timofeeva
- N. N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - A Solovieva
- N. N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - V Kulikova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - S Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - T Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Cheng B, Li T. Discovery of alliin as a putative inhibitor of the main protease of SARS-CoV-2 by molecular docking. Biotechniques 2020; 69:108-112. [PMID: 32459144 PMCID: PMC7273901 DOI: 10.2144/btn-2020-0038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 01/24/2023] Open
Abstract
The outbreak of viral pneumonia caused by the novel coronavirus SARS-CoV-2 that began in December 2019 caused high mortality. It has been suggested that the main protease (Mpro) of SARS-CoV-2 may be an important target to discover pharmaceutical compounds for the therapy of this life-threatening disease. Remdesivir, ritonavir and chloroquine have all been reported to play a role in suppressing SARS-CoV-2. Here, we applied a molecular docking method to study the binding stability of these drugs with SARS-CoV-2 Mpro. It appeared that the ligand-protein binding stability of the alliin and SARS-CoV-2 Mpro complex was better than others. The results suggested that alliin may serve as a good candidate as an inhibitor of SARS-CoV-2 Mpro. Therefore, the present research may provide some meaningful guidance for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Bijun Cheng
- College of Food Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin Province 132101, People’s Republic of China
| | - Tianjiao Li
- College of Food Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin Province 132101, People’s Republic of China
| |
Collapse
|
7
|
Morozova E, Kulikova V, Koval V, Anufrieva N, Chernukha M, Avetisyan L, Lebedeva L, Medvedeva O, Burmistrov E, Shaginyan I, Revtovich S, Demidkina T. Encapsulated Methionine γ-Lyase: Application in Enzyme Prodrug Therapy of Pseudomonas aeruginosa Infection. ACS OMEGA 2020; 5:7782-7786. [PMID: 32309686 PMCID: PMC7160827 DOI: 10.1021/acsomega.9b03555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/24/2020] [Indexed: 05/29/2023]
Abstract
Lung disease caused by Pseudomonas aeruginosa is the leading reason for death in cystic fibrosis patients. Therapeutic efficacy of the pharmacological pairs, the naked/encapsulated mutant form of Citrobacter freundii methionine γ-lyase and the substrates, sulfoxides of S-substituted l-cysteine, generating thiosulfinates, was evaluated on the murine model of experimental sepsis caused by the multidrug-resistant P. aeruginosa 203-2 strain. The pairs containing the naked enzyme and substrates did not have antibacterial activity. The treatment of mice with the pair encapsulated enzyme and S-methyl-l-cysteine sulfoxide, generating dimethyl thiosulfinate, led to a complete recovery of the animals of the model, with the infecting dose equal to LD50. The pair generating diallyl thiosulfinate (allicin) proved to be less effective. So, the substituents, attached to the thiosulfinate moiety, affect the antibacterial activity of thiosulfinates against P. aeruginosa.
Collapse
Affiliation(s)
- Elena Morozova
- Engelhardt
Institute of Molecular Biology of the Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Vitalia Kulikova
- Engelhardt
Institute of Molecular Biology of the Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Vasily Koval
- Engelhardt
Institute of Molecular Biology of the Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Natalya Anufrieva
- Engelhardt
Institute of Molecular Biology of the Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Marina Chernukha
- National
Research Center for Epidemiology and Microbiology Named after the
Honorary Academician N. F. Gamaleya, Healthcare
Ministry of Russia, Gamalei
st. 18, Moscow 123098, Russia
| | - Lusine Avetisyan
- National
Research Center for Epidemiology and Microbiology Named after the
Honorary Academician N. F. Gamaleya, Healthcare
Ministry of Russia, Gamalei
st. 18, Moscow 123098, Russia
| | - Lada Lebedeva
- Engelhardt
Institute of Molecular Biology of the Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Olga Medvedeva
- National
Research Center for Epidemiology and Microbiology Named after the
Honorary Academician N. F. Gamaleya, Healthcare
Ministry of Russia, Gamalei
st. 18, Moscow 123098, Russia
| | - Egor Burmistrov
- National
Research Center for Epidemiology and Microbiology Named after the
Honorary Academician N. F. Gamaleya, Healthcare
Ministry of Russia, Gamalei
st. 18, Moscow 123098, Russia
| | - Igor Shaginyan
- National
Research Center for Epidemiology and Microbiology Named after the
Honorary Academician N. F. Gamaleya, Healthcare
Ministry of Russia, Gamalei
st. 18, Moscow 123098, Russia
| | - Svetlana Revtovich
- Engelhardt
Institute of Molecular Biology of the Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Tatyana Demidkina
- Engelhardt
Institute of Molecular Biology of the Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| |
Collapse
|
8
|
Raboni S, Revtovich S, Demitri N, Giabbai B, Storici P, Cocconcelli C, Faggiano S, Rosini E, Pollegioni L, Galati S, Buschini A, Morozova E, Kulikova V, Nikulin A, Gabellieri E, Cioni P, Demidkina T, Mozzarelli A. Engineering methionine γ-lyase from Citrobacter freundii for anticancer activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1260-1270. [PMID: 30268810 DOI: 10.1016/j.bbapap.2018.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
Methionine deprivation of cancer cells, which are deficient in methionine biosynthesis, has been envisioned as a therapeutic strategy to reduce cancer cell viability. Methionine γ-lyase (MGL), an enzyme that degrades methionine, has been exploited to selectively remove the amino acid from cancer cell environment. In order to increase MGL catalytic activity, we performed sequence and structure conservation analysis of MGLs from various microorganisms. Whereas most of the residues in the active site and at the dimer interface were found to be conserved, residues located in the C-terminal flexible loop, forming a wall of the active site entry channel, were found to be variable. Therefore, we carried out site-saturation mutagenesis at four independent positions of the C-terminal flexible loop, P357, V358, P360 and A366 of MGL from Citrobacter freundii, generating libraries that were screened for activity. Among the active variants, V358Y exhibits a 1.9-fold increase in the catalytic rate and a 3-fold increase in KM, resulting in a catalytic efficiency similar to wild type MGL. V358Y cytotoxic activity was assessed towards a panel of cancer and nonmalignant cell lines and found to exhibit IC50 lower than the wild type. The comparison of the 3D-structure of V358Y MGL with other MGL available structures indicates that the C-terminal loop is either in an open or closed conformation that does not depend on the amino acid at position 358. Nevertheless, mutations at this position allosterically affects catalysis.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Svetlana Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Serena Galati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vitalia Kulikova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Edi Gabellieri
- Institute of Biophysics, National Research Council, Pisa, Italy
| | - Patrizia Cioni
- Institute of Biophysics, National Research Council, Pisa, Italy
| | - Tatyana Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia.
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy; National Institute of Biostructures and Biosystems, Rome, Italy.
| |
Collapse
|
9
|
Kulikova VV, Morozova EA, Revtovich SV, Kotlov MI, Anufrieva NV, Bazhulina NP, Raboni S, Faggiano S, Gabellieri E, Cioni P, Belyi YF, Mozzarelli A, Demidkina TV. Gene cloning, characterization, and cytotoxic activity of methionine γ-lyase fromClostridium novyi. IUBMB Life 2017; 69:668-676. [DOI: 10.1002/iub.1649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/07/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Vitalia V. Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| | - Elena A. Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| | - Svetlana V. Revtovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| | - Mikhail I. Kotlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| | - Natalya V. Anufrieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| | - Natalya P. Bazhulina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| | - Samanta Raboni
- Department of Food and Drug; University of Parma; Parma Italy
- Institute of Biophysics, National Research Council; Pisa Italy
| | - Serena Faggiano
- Department of Food and Drug; University of Parma; Parma Italy
- Institute of Biophysics, National Research Council; Pisa Italy
| | - Edi Gabellieri
- Institute of Biophysics, National Research Council; Pisa Italy
| | - Patrizia Cioni
- Institute of Biophysics, National Research Council; Pisa Italy
| | - Yury F. Belyi
- Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Public Health; Moscow Russia
| | - Andrea Mozzarelli
- Department of Food and Drug; University of Parma; Parma Italy
- Institute of Biophysics, National Research Council; Pisa Italy
- National Institute of Biostructures and Biosystems; Rome Italy
| | - Tatyana V. Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
10
|
Sato D, Shiba T, Yunoto S, Furutani K, Fukumoto M, Kudou D, Tamura T, Inagaki K, Harada S. Structural and mechanistic insights into homocysteine degradation by a mutant of methionine γ-lyase based on substrate-assisted catalysis. Protein Sci 2017; 26:1224-1230. [PMID: 28329912 DOI: 10.1002/pro.3158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 01/26/2023]
Abstract
Methionine γ-lyse (MGL) catalyzes the α, γ-elimination of l-methionine and its derivatives as well as the α, β-elimination of l-cysteine and its derivatives to produce α-keto acids, volatile thiols, and ammonia. The reaction mechanism of MGL has been characterized by enzymological studies using several site-directed mutants. The Pseudomonas putida MGL C116H mutant showed drastically reduced degradation activity toward methionine while retaining activity toward homocysteine. To understand the underlying mechanism and to discern the subtle differences between these substrates, we analyzed the crystal structures of the reaction intermediates. The complex formed between the C116H mutant and methionine demonstrated that a loop structure (Ala51-Asn64) in the adjacent subunit of the catalytic dimer cannot approach the cofactor pyridoxal 5'-phosphate (PLP) because His116 disrupts the interaction of Asp241 with Lys240, and the liberated side chain of Lys240 causes steric hindrance with this loop. Conversely, in the complex formed between C116H mutant and homocysteine, the thiol moiety of the substrate conjugated with PLP offsets the imidazole ring of His116 via a water molecule, disrupting the interaction of His116 and Asp241 and restoring the interaction of Asp241 with Lys240. These structural data suggest that the Cys116 to His mutation renders the enzyme inactive toward the original substrate, but activity is restored when the substrate is homocysteine due to substrate-assisted catalysis.
Collapse
Affiliation(s)
- Dan Sato
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Shunsuke Yunoto
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Kazuo Furutani
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Mitsuki Fukumoto
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Daizou Kudou
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| |
Collapse
|
11
|
Engineered Citrobacter freundii methionine γ-lyase effectively produces antimicrobial thiosulfinates. Biochimie 2016; 128-129:92-8. [DOI: 10.1016/j.biochi.2016.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/13/2016] [Indexed: 11/20/2022]
|
12
|
Role of p38 MAPK activation and mitochondrial cytochrome-c release in allicin-induced apoptosis in SK-N-SH cells. Anticancer Drugs 2016; 27:312-7. [DOI: 10.1097/cad.0000000000000340] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Revtovich S, Anufrieva N, Morozova E, Kulikova V, Nikulin A, Demidkina T. Structure of methionine γ-lyase from Clostridium sporogenes. Acta Crystallogr F Struct Biol Commun 2016; 72:65-71. [PMID: 26750487 PMCID: PMC4708053 DOI: 10.1107/s2053230x15023869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/11/2015] [Indexed: 11/10/2022] Open
Abstract
Methionine γ-lyase (MGL) is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the γ-elimination reaction of L-methionine. The enzyme is a promising target for therapeutic intervention in some anaerobic pathogens and has attracted interest as a potential cancer treatment. The crystal structure of MGL from Clostridium sporogenes has been determined at 2.37 Å resolution. The fold of the protein is similar to those of homologous enzymes from Citrobacter freundii, Entamoeba histolytica, Pseudomonas putida and Trichomonas vaginalis. A comparison of these structures revealed differences in the conformation of two flexible regions of the N- and C-terminal domains involved in the active-site architecture.
Collapse
Affiliation(s)
- Svetlana Revtovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russian Federation
| | - Natalya Anufrieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russian Federation
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russian Federation
| | - Vitalia Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russian Federation
| | - Alexey Nikulin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russian Federation
| | - Tatyana Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russian Federation
| |
Collapse
|