1
|
Singh AK, Chinnasamy K, Pahelkar NR, Gopal B. A physicochemical rationale for the varied catalytic efficiency in RNase J paralogues. J Biol Chem 2024; 301:108152. [PMID: 39742998 DOI: 10.1016/j.jbc.2024.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
Paralogs of the bifunctional nuclease, Ribonuclease J (RNase J), demonstrate varied catalytic efficiencies despite extensive sequence and structural similarity. Of the two Staphylococcus aureus RNase J paralogues, RNase J1 is substantially more active than RNase J2. Mutational analysis of active site residues revealed that only H80 and E166 were critical for nuclease activity. Electronic properties of active site residues were further evaluated using density functional theory in conjunction with molecular mechanics. This analysis suggested that multiple residues at the active site can function as Lewis bases or acids in RNase J2. The bond dissociation energy, on the other hand, suggested that the Mn ion in RNase J2, located at a structurally identical location to that in RNase J1, is crucial for overall structural integrity. Structures of mutant enzymes lacking the metal ion were seen to adopt a different orientation between the substrate binding and catalytic domain than wild-type RNase J2. A surprising finding was that the RNase J2 H78 A mutant was five-fold more active than the wild-type enzyme. Structural and biochemical experiments performed in light of this observation revealed that the RNase J2 catalytic mechanism is distinct from both two-metal ion and one-metal ion reaction mechanisms proposed for RNase J nucleases. Different activity levels in RNase J paralogues can thus be ascribed to the diversity in catalytic mechanisms.
Collapse
Affiliation(s)
- Ankur Kumar Singh
- Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kalaiarasi Chinnasamy
- Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Balasubramanian Gopal
- Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
2
|
Moriarty NW, Moussa J, Adams PD. Protonation of histidine rings using quantum-mechanical methods. Acta Crystallogr D Struct Biol 2024; 80:639-646. [PMID: 39052316 DOI: 10.1107/s2059798324006314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Histidine can be protonated on either or both of the two N atoms of the imidazole moiety. Each of the three possible forms occurs as a result of the stereochemical environment of the histidine side chain. In an atomic model, comparing the possible protonation states in situ, looking at possible hydrogen bonding and metal coordination, it is possible to predict which is most likely to be correct. A more direct method is described that uses quantum-mechanical methods to calculate, also in situ, the minimum geometry and energy for comparison, and therefore to more accurately identify the most likely protonation state.
Collapse
Affiliation(s)
- Nigel W Moriarty
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jonathan Moussa
- Molecular Sciences Software Institute, Virginia Tech, Blacksburg, VA 24060, USA
| | - Paul D Adams
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Winiewska-Szajewska M, Paprocki D, Marzec E, Poznański J. Effect of histidine protonation state on ligand binding at the ATP-binding site of human protein kinase CK2. Sci Rep 2024; 14:1463. [PMID: 38233478 PMCID: PMC10794401 DOI: 10.1038/s41598-024-51905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Histidine residues contribute to numerous molecular interactions, owing to their structure with the ionizable aromatic side chain with pKa close to the physiological pH. Herein, we studied how the two histidine residues, His115 and His160 of the catalytic subunit of human protein kinase CK2, affect the binding of the halogenated heterocyclic ligands at the ATP-binding site. Thermodynamic studies on the interaction between five variants of hCK2α (WT protein and four histidine mutants) and three ionizable bromo-benzotriazoles and their conditionally non-ionizable benzimidazole counterparts were performed with nanoDSF, MST, and ITC. The results allowed us to identify the contribution of interactions involving the particular histidine residues to ligand binding. We showed that despite the well-documented hydrogen bonding/salt bridge formation dragging the anionic ligands towards Lys68, the protonated His160 also contributes to the binding of such ligands by long-range electrostatic interactions. Simultaneously, His 115 indirectly affects ligand binding, placing the hinge region in open/closed conformations.
Collapse
Affiliation(s)
- Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland.
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089, Warsaw, Poland.
| | - Daniel Paprocki
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Ewa Marzec
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Villalaín J. Phospholipid binding of the dengue virus envelope E protein segment containing the conserved His residue. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184198. [PMID: 37437754 DOI: 10.1016/j.bbamem.2023.184198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Flaviviruses encompass many important human pathogens, including Dengue, Zika, West Nile, Yellow fever, Japanese encephalitis, and Tick-borne encephalitis viruses as well as several emerging viruses that affect millions of people worldwide. They enter cells by endocytosis, fusing their membrane with the late endosomal one in a pH-dependent manner, so membrane fusion is one of the main targets for obtaining new antiviral inhibitors. The envelope E protein, a class II membrane fusion protein, is responsible for fusion and contains different domains involved in the fusion mechanism, including the fusion peptide. However, other segments, apart from the fusion peptide, have been implicated in the mechanism of membrane fusion, in particular a segment containing a His residue supposed to act as a specific pH sensor. We have used atomistic molecular dynamics to study the binding of the envelope E protein segment containing the conserved His residue in its three different tautomer forms with a complex membrane mimicking the late-endosomal one. We show that this His-containing segment is capable of spontaneous membrane binding, preferentially binds electronegatively charged phospholipids and does not bind cholesterol. Since Flaviviruses have caused epidemics in the past, continue to do so and will undoubtedly continue to do so, this specific segment could characterise a new target that would allow finding effective antiviral molecules against DENV virus in particular and Flaviviruses in general.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche, Alicante, Spain.
| |
Collapse
|
5
|
Rheological and structural properties of acid-induced milk gels as a function of β-casein phenotype. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Banerjee S, Muderspach SJ, Tandrup T, Frandsen KEH, Singh RK, Ipsen JØ, Hernández-Rollán C, Nørholm MHH, Bjerrum MJ, Johansen KS, Lo Leggio L. Protonation State of an Important Histidine from High Resolution Structures of Lytic Polysaccharide Monooxygenases. Biomolecules 2022; 12:194. [PMID: 35204695 PMCID: PMC8961595 DOI: 10.3390/biom12020194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023] Open
Abstract
Lytic Polysaccharide Monooxygenases (LPMOs) oxidatively cleave recalcitrant polysaccharides. The mechanism involves (i) reduction of the Cu, (ii) polysaccharide binding, (iii) binding of different oxygen species, and (iv) glycosidic bond cleavage. However, the complete mechanism is poorly understood and may vary across different families and even within the same family. Here, we have investigated the protonation state of a secondary co-ordination sphere histidine, conserved across AA9 family LPMOs that has previously been proposed to be a potential proton donor. Partial unrestrained refinement of newly obtained higher resolution data for two AA9 LPMOs and re-refinement of four additional data sets deposited in the PDB were carried out, where the His was refined without restraints, followed by measurements of the His ring geometrical parameters. This allowed reliable assignment of the protonation state, as also validated by following the same procedure for the His brace, for which the protonation state is predictable. The study shows that this histidine is generally singly protonated at the Nε2 atom, which is close to the oxygen species binding site. Our results indicate robustness of the method. In view of this and other emerging evidence, a role as proton donor during catalysis is unlikely for this His.
Collapse
Affiliation(s)
- Sanchari Banerjee
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Sebastian J. Muderspach
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Tobias Tandrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Kristian Erik Høpfner Frandsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871 Copenhagen, Denmark;
| | - Raushan K. Singh
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Johan Ørskov Ipsen
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871 Copenhagen, Denmark;
- Department of Geoscience & Natural Resource Management, University of Copenhagen, Frederiksberg 5, DK-1958 Copenhagen, Denmark;
| | - Cristina Hernández-Rollán
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, DK-2800 Kongens Lyngby, Denmark; (C.H.-R.); (M.H.H.N.)
| | - Morten H. H. Nørholm
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, DK-2800 Kongens Lyngby, Denmark; (C.H.-R.); (M.H.H.N.)
| | - Morten J. Bjerrum
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Katja Salomon Johansen
- Department of Geoscience & Natural Resource Management, University of Copenhagen, Frederiksberg 5, DK-1958 Copenhagen, Denmark;
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| |
Collapse
|
7
|
P G, M K K. Docking studies and molecular dynamics simulation of triazole benzene sulfonamide derivatives with human carbonic anhydrase IX inhibition activity. RSC Adv 2021; 11:38079-38093. [PMID: 35498092 PMCID: PMC9044052 DOI: 10.1039/d1ra07377j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
Carbonic anhydrase IX has been used as a hypoxia endogenous marker in a range of solid tumors including renal cell, lung, bladder and tumors of the head and neck. α-CA IX isozyme is over-expressive in hypoxic environment which becomes an attractive target for the design of inhibitors' targeting cancer particularly, tumor progression and invasion. In the process of designing new leads for the inhibition of tumor-associated hCA IX, the best triazole benzene sulfonamide derivatives were obtained from the QSAR model published in the research paper as cited. The statistically validated QSAR model was utilized for bioactivity prediction of novel leads. Further the designed molecules having good scores were subjected to molecular docking studies and molecular dynamic simulation studies. Designed compounds 1, 2, 20, 24 and 27 have shown predicted bioactivity of 9.13, 9.65, 10.05, 10.03 and 10.104 logarithmic units respectively using QSAR model 2. The low energy conformations of the above compounds exhibited good Autodock binding energy scores (-8.1, -8.2, -8.1, -8.3 and -9.2 K cal mol-1) and interactions with Gln92, Thr200, Asn66 and His68. Desmond's molecular dynamics simulations studies for 100 ns of compound 27 compared to reference SLC0111 provided useful structural insights of human carbonic anhydrase IX inhibition. Compound 27 with new chemical structure displayed both hydrophobic and hydrophilic stable interactions in the active site. RMSD, RMSF, RoG, H-bond and SASA analysis confirmed the stable binding of compound 27 with 5FL4 structure. In addition, MM-PBSA and MM-GBSA also affirm the docking results. We propose the designed compound 27 (predicted Ki = ∼0.07 nM) as the best theoretical lead which may further be experimentally studied for selective inhibition.
Collapse
Affiliation(s)
- Gopinath P
- Dr. A. P. J. Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST Kattankulathur Chennai Tamil Nadu - 603 203 India
| | - Kathiravan M K
- Dr. A. P. J. Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST Kattankulathur Chennai Tamil Nadu - 603 203 India
| |
Collapse
|
8
|
Jaskolski M, Dauter Z, Shabalin IG, Gilski M, Brzezinski D, Kowiel M, Rupp B, Wlodawer A. Crystallographic models of SARS-CoV-2 3CL pro: in-depth assessment of structure quality and validation. IUCRJ 2021; 8:238-256. [PMID: 33708401 PMCID: PMC7924243 DOI: 10.1107/s2052252521001159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 05/26/2023]
Abstract
The appearance at the end of 2019 of the new SARS-CoV-2 coronavirus led to an unprecedented response by the structural biology community, resulting in the rapid determination of many hundreds of structures of proteins encoded by the virus. As part of an effort to analyze and, if necessary, remediate these structures as deposited in the Protein Data Bank (PDB), this work presents a detailed analysis of 81 crystal structures of the main protease 3CLpro, an important target for the design of drugs against COVID-19. The structures of the unliganded enzyme and its complexes with a number of inhibitors were determined by multiple research groups using different experimental approaches and conditions; the resulting structures span 13 different polymorphs representing seven space groups. The structures of the enzyme itself, all determined by molecular replacement, are highly similar, with the exception of one polymorph with a different inter-domain orientation. However, a number of complexes with bound inhibitors were found to pose significant problems. Some of these could be traced to faulty definitions of geometrical restraints for ligands and to the general problem of a lack of such information in the PDB depositions. Several problems with ligand definition in the PDB itself were also noted. In several cases extensive corrections to the models were necessary to adhere to the evidence of the electron-density maps. Taken together, this analysis of a large number of structures of a single, medically important protein, all determined within less than a year using modern experimental tools, should be useful in future studies of other systems of high interest to the biomedical community.
Collapse
Affiliation(s)
- Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Zbigniew Dauter
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Miroslaw Gilski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dariusz Brzezinski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Marcin Kowiel
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Bernhard Rupp
- k.-k Hofkristallamt, San Diego, CA 92084, USA
- Institute of Genetic Epidemiology, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
9
|
Rose SL, Antonyuk SV, Sasaki D, Yamashita K, Hirata K, Ueno G, Ago H, Eady RR, Tosha T, Yamamoto M, Hasnain SS. An unprecedented insight into the catalytic mechanism of copper nitrite reductase from atomic-resolution and damage-free structures. SCIENCE ADVANCES 2021; 7:eabd8523. [PMID: 33523860 PMCID: PMC7775769 DOI: 10.1126/sciadv.abd8523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/27/2020] [Indexed: 05/31/2023]
Abstract
Copper-containing nitrite reductases (CuNiRs), encoded by nirK gene, are found in all kingdoms of life with only 5% of CuNiR denitrifiers having two or more copies of nirK Recently, we have identified two copies of nirK genes in several α-proteobacteria of the order Rhizobiales including Bradyrhizobium sp. ORS 375, encoding a four-domain heme-CuNiR and the usual two-domain CuNiR (Br 2DNiR). Compared with two of the best-studied two-domain CuNiRs represented by the blue (AxNiR) and green (AcNiR) subclasses, Br 2DNiR, a blue CuNiR, shows a substantially lower catalytic efficiency despite a sequence identity of ~70%. Advanced synchrotron radiation and x-ray free-electron laser are used to obtain the most accurate (atomic resolution with unrestrained SHELX refinement) and damage-free (free from radiation-induced chemistry) structures, in as-isolated, substrate-bound, and product-bound states. This combination has shed light on the protonation states of essential catalytic residues, additional reaction intermediates, and how catalytic efficiency is modulated.
Collapse
Affiliation(s)
- Samuel L Rose
- Molecular Biophysics Group, Life Sciences Building and Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Svetlana V Antonyuk
- Molecular Biophysics Group, Life Sciences Building and Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Daisuke Sasaki
- Molecular Biophysics Group, Life Sciences Building and Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kunio Hirata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Go Ueno
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Robert R Eady
- Molecular Biophysics Group, Life Sciences Building and Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.
| | - S Samar Hasnain
- Molecular Biophysics Group, Life Sciences Building and Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
10
|
Grosu IG, Filip X, Miclăuș MO, Filip C. Hydrogen-Mediated Noncovalent Interactions in Solids: What Can NMR Crystallography Tell About? Molecules 2020; 25:E3757. [PMID: 32824749 PMCID: PMC7463941 DOI: 10.3390/molecules25163757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022] Open
Abstract
Hydrogen atoms play a crucial role in the aggregation of organic (bio)molecules through diverse number of noncovalent interactions that they mediate, such as electrostatic in proton transfer systems, hydrogen bonding, and CH-π interactions, to mention only the most prominent. To identify and adequately describe such low-energy interactions, increasingly sensitive methods have been developed over time, among which quantum chemical computations have witnessed impressive advances in recent years. For reaching the present state-of-the-art, computations had to rely on a pool of relevant experimental data, needed at least for validation, if not also for other purposes. In the case of molecular crystals, the best illustration for the synergy between computations and experiment is given by the so-called NMR crystallography approach. Originally designed to increase the confidence level in crystal structure determination of organic compounds from powders, NMR crystallography is able now to offer also a wealth of information regarding the noncovalent interactions that drive molecules to pack in a given crystalline pattern or another. This is particularly true for the noncovalent interactions which depend on the exact location of labile hydrogen atoms in the system: in such cases, NMR crystallography represents a valuable characterization tool, in some cases complementing even the standard single-crystal X-ray diffraction technique. A concise introduction in the field is made in this mini-review, which is aimed at providing a comprehensive picture with respect to the current accuracy level reached by NMR crystallography in the characterization of hydrogen-mediated noncovalent interactions in organic solids. Different types of practical applications are illustrated with the example of molecular crystals studied by our research group, but references to other representative developments reported in the literature are also made. By summarizing the major concepts and methodological progresses, the present work is also intended to be a guide to the practical potential of this relatively recent analytical tool for the scientists working in areas where crystal engineering represents the main approach for rational design of novel materials.
Collapse
Affiliation(s)
| | | | | | - Claudiu Filip
- National Institute for R&D of Isotopic and Molecular Technologies, 400293 Cluj, Romania; (I.G.G.); (X.F.); (M.O.M.)
| |
Collapse
|
11
|
Nostadt R, Hilbert M, Nizam S, Rovenich H, Wawra S, Martin J, Küpper H, Mijovilovich A, Ursinus A, Langen G, Hartmann MD, Lupas AN, Zuccaro A. A secreted fungal histidine- and alanine-rich protein regulates metal ion homeostasis and oxidative stress. THE NEW PHYTOLOGIST 2020; 227:1174-1188. [PMID: 32285459 DOI: 10.1111/nph.16606] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/01/2020] [Indexed: 05/22/2023]
Abstract
Like pathogens, beneficial endophytic fungi secrete effector proteins to promote plant colonization, for example, through perturbation of host immunity. The genome of the root endophyte Serendipita indica encodes a novel family of highly similar, small alanine- and histidine-rich proteins, whose functions remain unknown. Members of this protein family carry an N-terminal signal peptide and a conserved C-terminal DELD motif. Here we report on the functional characterization of the plant-responsive DELD family protein Dld1 using a combination of structural, biochemical, biophysical and cytological analyses. The crystal structure of Dld1 shows an unusual, monomeric histidine zipper consisting of two antiparallel coiled-coil helices. Similar to other histidine-rich proteins, Dld1 displays varying affinity to different transition metal ions and undergoes metal ion- and pH-dependent unfolding. Transient expression of mCherry-tagged Dld1 in barley leaf and root tissue suggests that Dld1 localizes to the plant cell wall and accumulates at cell wall appositions during fungal penetration. Moreover, recombinant Dld1 enhances barley root colonization by S. indica, and inhibits H2 O2 -mediated radical polymerization of 3,3'-diaminobenzidine. Our data suggest that Dld1 has the potential to enhance micronutrient accessibility for the fungus and to interfere with oxidative stress and reactive oxygen species homeostasis to facilitate host colonization.
Collapse
Affiliation(s)
- Robin Nostadt
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Magdalena Hilbert
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Shadab Nizam
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Hanna Rovenich
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Stephan Wawra
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Jörg Martin
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Hendrik Küpper
- Department of Plant Biophysics & Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Ana Mijovilovich
- Department of Plant Biophysics & Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Astrid Ursinus
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Gregor Langen
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Marcus D Hartmann
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Andrei N Lupas
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Alga Zuccaro
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| |
Collapse
|
12
|
Vugmeyster L, Au DF, Ostrovsky D, Fu R. Deuteron Solid-State NMR Relaxation Measurements Reveal Two Distinct Conformational Exchange Processes in the Disordered N-Terminal Domain of Amyloid-β Fibrils. Chemphyschem 2019; 20:1680-1689. [PMID: 31087613 PMCID: PMC6663588 DOI: 10.1002/cphc.201900363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/12/2019] [Indexed: 12/26/2022]
Abstract
We employed deuterium solid-state NMR techniques under static conditions to discern the details of the μs-ms timescale motions in the flexible N-terminal subdomain of Aβ1-40 amyloid fibrils, which spans residues 1-16. In particular, we utilized a rotating frame (R1ρ ) and the newly developed time domain quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) relaxation measurements at the selectively deuterated side chains of A2, H6, and G9. The two experiments are complementary in terms of probing somewhat different timescales of motions, governed by the tensor parameters and the sampling window of the magnetization decay curves. The results indicated two mobile "free" states of the N-terminal domain undergoing global diffusive motions, with isotropic diffusion coefficients of 0.7-1 ⋅ 108 and 0.3-3 ⋅ 106 ad2 s-1 . The free states are also involved in the conformational exchange with a single bound state, in which the diffusive motions are quenched, likely due to transient interactions with the structured hydrophobic core. The conformational exchange rate constants are 2-3 ⋅ 105 s-1 and 2-3 ⋅ 104 s-1 for the fast and slow diffusion free states, respectively.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO, USA, 80204
| | - Dan Fai Au
- Department of Chemistry, University of Colorado Denver, Denver CO, USA, 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO, USA, 80204
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, FL, 32310
| |
Collapse
|
13
|
Si W, Zhang Y, Wu G, Kan Y, Zhang Y, Sha J, Chen Y. Discrimination of Protein Amino Acid or Its Protonated State at Single-Residue Resolution by Graphene Nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900036. [PMID: 30848871 DOI: 10.1002/smll.201900036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/24/2019] [Indexed: 05/03/2023]
Abstract
The function of a protein is determined by the composition of amino acids and is essential to proteomics. However, protein sequencing remains challenging due to the protein's irregular charge state and its high-order structure. Here, a proof of principle study on the capability of protein sequencing by graphene nanopores integrated with atomic force microscopy is performed using molecular dynamics simulations. It is found that nanopores can discriminate a protein sequence and even its protonation state at single-residue resolution. Both the pulling forces and current blockades induced by the permeation of protein residues are found to be highly correlated with the type of amino acids, which makes the residues identifiable. It is also found that aside from the dimension, both the conformation and charge state of the residue can significantly influence the force and current signal during its permeation through the nanopore. In particular, due to the electro-osmotic flow effect, the blockade current for the double-protonated histidine is slightly smaller than that for single-protonated histidine, which makes it possible for discrimination of different protonation states of amino acids. The results reported here present a novel protein sequencing scheme using graphene nanopores combined with nanomanipulation technology.
Collapse
Affiliation(s)
- Wei Si
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yin Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yajing Kan
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yan Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jingjie Sha
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yunfei Chen
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|
14
|
Au DF, Ostrovsky D, Fu R, Vugmeyster L. Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-β fibrils. J Biol Chem 2019; 294:5840-5853. [PMID: 30737281 DOI: 10.1074/jbc.ra118.006559] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/08/2019] [Indexed: 11/06/2022] Open
Abstract
Amyloid fibril deposits observed in Alzheimer's disease comprise amyloid-β (Aβ) protein possessing a structured hydrophobic core and a disordered N-terminal domain (residues 1-16). The internal flexibility of the disordered domain is likely essential for Aβ aggregation. Here, we used 2H static solid-state NMR methods to probe the dynamics of selected side chains of the N-terminal domain of Aβ1-40 fibrils. Line shape and relaxation data suggested a two-state model in which the domain's free state undergoes a diffusive motion that is quenched in the bound state, likely because of transient interactions with the structured C-terminal domain. At 37 °C, we observed freezing of the dynamics progressively along the Aβ sequence, with the fraction of the bound state increasing and the rate of diffusion decreasing. We also found that without solvation, the diffusive motion is quenched. The solvent acted as a plasticizer reminiscent of its role in the onset of global dynamics in globular proteins. As the temperature was lowered, the fraction of the bound state exhibited sigmoidal behavior. The midpoint of the freezing curve coincided with the bulk solvent freezing for the N-terminal residues and increased further along the sequence. Using 2H R 1ρ measurements, we determined the conformational exchange rate constant between the free and bound states under physiological conditions. Zinc-induced aggregation leads to the enhancement of the dynamics, manifested by the faster conformational exchange, faster diffusion, and lower freezing-curve midpoints.
Collapse
Affiliation(s)
- Dan Fai Au
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado, Denver, Colorado 80204
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, Florida 32310
| | - Liliya Vugmeyster
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204.
| |
Collapse
|
15
|
Eslami M, Nezafat N, Negahdaripour M, Ghasemi Y. Computational approach to suggest a new multi-target-directed ligand as a potential medication for Alzheimer’s disease. J Biomol Struct Dyn 2019; 37:4825-4839. [DOI: 10.1080/07391102.2018.1564701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mahboobeh Eslami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Abstract
X-Ray diffraction data at atomic resolution, i.e., beyond 1.2 Å, provide the most detailed and reliable information we have about the structure of macromolecules, which is especially important for validating new discoveries and resolving subtle issues of molecular mechanisms. Refinement at atomic resolution allows reliable interpretation of static disorder and solvent structure, as well as modeling of anisotropic atomic vibrations and even of H atoms. Stereochemical restraints can be relaxed or removed, providing unbiased information about macromolecular stereochemistry, which in turn can be used to define improved conformation-dependent libraries, and the surplus of data allows estimation of least-squares uncertainties in the derived parameters. At ultrahigh resolution it is possible to study charge density distribution by multipolar refinement of electrons in non-spherical orbitals.
Collapse
|
17
|
Hiromoto T, Meilleur F, Shimizu R, Shibazaki C, Adachi M, Tamada T, Kuroki R. Neutron structure of the T26H mutant of T4 phage lysozyme provides insight into the catalytic activity of the mutant enzyme and how it differs from that of wild type. Protein Sci 2017; 26:1953-1963. [PMID: 28707339 PMCID: PMC5606550 DOI: 10.1002/pro.3230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 11/23/2022]
Abstract
T4 phage lysozyme is an inverting glycoside hydrolase that degrades the murein of bacterial cell walls by cleaving the β‐1,4‐glycosidic bond. The substitution of the catalytic Thr26 residue to a histidine converts the wild type from an inverting to a retaining enzyme, which implies that the original general acid Glu11 can also act as an acid/base catalyst in the hydrolysis. Here, we have determined the neutron structure of the perdeuterated T26H mutant to clarify the protonation states of Glu11 and the substituted His26, which are key in the retaining reaction. The 2.09‐Å resolution structure shows that the imidazole group of His26 is in its singly protonated form in the active site, suggesting that the deprotonated Nɛ2 atom of His26 can attack the anomeric carbon of bound substrate as a nucleophile. The carboxyl group of Glu11 is partially protonated and interacts with the unusual neutral state of the guanidine moiety of Arg145, as well as two heavy water molecules. Considering that one of the water‐binding sites has the potential to be occupied by a hydronium ion, the bulk solvent could be the source for the protonation of Glu11. The respective protonation states of Glu11 and His26 are consistent with the bond lengths determined by an unrestrained refinement of the high‐resolution X‐ray structure of T26H at 1.04‐Å resolution. The detail structural information, including the coordinates of the deuterium atoms in the active site, provides insight into the distinctively different catalytic activities of the mutant and wild type enzymes. PDB Code(s): 5XPE; 5XPF
Collapse
Affiliation(s)
- Takeshi Hiromoto
- Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
| | - Flora Meilleur
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831.,Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, 27695
| | - Rumi Shimizu
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki, 319-1106, Japan
| | - Chie Shibazaki
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki, 319-1106, Japan
| | - Motoyasu Adachi
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki, 319-1106, Japan
| | - Taro Tamada
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki, 319-1106, Japan
| | - Ryota Kuroki
- Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
| |
Collapse
|
18
|
Abstract
Macromolecular structure is governed by the strict rules of stereochemistry. Several approaches to the validation of the correctness of the interpretation of crystallographic and NMR data that underlie the models deposited in the PDB are utilized in practice. The stereochemical rules applicable to macromolecular structures are discussed in this chapter. Practical, computer-based methods and tools of verification of how well the models adhere to those established structural principles to assure their quality are summarized.
Collapse
|
19
|
Sohn WY, Habka S, Gloaguen E, Mons M. Unifying the microscopic picture of His-containing turns: from gas phase model peptides to crystallized proteins. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp03058d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence in crystallized proteins of a local anchoring between the side chain of a His residue, located in the central position of a γ- or β-turn, and its local main chain environment, is assessed by the comparison of protein structures with relevant isolated model peptides.
Collapse
Affiliation(s)
- Woon Yong Sohn
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| | - Sana Habka
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| | - Eric Gloaguen
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| | - Michel Mons
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| |
Collapse
|
20
|
Malinska M, Dauter M, Dauter Z. Geometry of guanidinium groups in arginines. Protein Sci 2016; 25:1753-6. [PMID: 27326702 DOI: 10.1002/pro.2970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/16/2016] [Indexed: 11/09/2022]
Abstract
The restraints in common usage today have been obtained based on small molecule X-ray crystal structures available 25 years ago and recent reports have shown that the values of bond lengths and valence angles can be, in fact, significantly different from those stored in libraries, for example for the peptide bond or the histidine ring geometry. We showed that almost 50% of outliers found in protein validation reports released in the Protein Data Bank on 23 March 2016 come from geometry of guanidine groups in arginines. Therefore, structures of small molecules and atomic resolution protein crystal structures have been used to derive new target values for the geometry of this group. The most significant difference was found for NE-CZ-NH1 and NE-CZ-NH2 angles, showing that the guanidinium group is not symmetric. The NE-CZ-NH1 angle is larger, 121.5(10)˚, than NE-CZ-NH2, 119.2(10)˚, due to the repulsive interaction between NH1 and CD1 atom.
Collapse
Affiliation(s)
- Maura Malinska
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, Illinois, 60439.,Faculty of Chemistry, University of Warsaw, Warsaw, 02-093, Poland
| | - Miroslawa Dauter
- Leidos Biomedical Research, Inc., Basic Science Program, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, Illinois, 60439
| |
Collapse
|
21
|
Malinska M, Dauter Z. Transferable aspherical atom model refinement of protein and DNA structures against ultrahigh-resolution X-ray data. Acta Crystallogr D Struct Biol 2016; 72:770-9. [PMID: 27303797 PMCID: PMC4908868 DOI: 10.1107/s2059798316006355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/14/2016] [Indexed: 11/10/2022] Open
Abstract
In contrast to the independent-atom model (IAM), in which all atoms are assumed to be spherical and neutral, the transferable aspherical atom model (TAAM) takes into account the deformed valence charge density resulting from chemical bond formation and the presence of lone electron pairs. Both models can be used to refine small and large molecules, e.g. proteins and nucleic acids, against ultrahigh-resolution X-ray diffraction data. The University at Buffalo theoretical databank of aspherical pseudo-atoms has been used in the refinement of an oligopeptide, of Z-DNA hexamer and dodecamer duplexes, and of bovine trypsin. The application of the TAAM to these data improves the quality of the electron-density maps and the visibility of H atoms. It also lowers the conventional R factors and improves the atomic displacement parameters and the results of the Hirshfeld rigid-bond test. An additional advantage is that the transferred charge density allows the estimation of Coulombic interaction energy and electrostatic potential.
Collapse
Affiliation(s)
- Maura Malinska
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|