1
|
Stegmann DP, Steuber J, Fritz G, Wojdyla JA, Sharpe ME. Fast fragment and compound screening pipeline at the Swiss Light Source. Methods Enzymol 2023; 690:235-284. [PMID: 37858531 DOI: 10.1016/bs.mie.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Crystallography-based fragment screening is a highly effective technique employed in structure-based drug discovery to expand the range of lead development opportunities. It allows screening and sorting of weakly binding, low molecular mass fragments, which can be developed into larger high-affinity lead compounds. Technical improvements at synchrotron beamlines, design of innovative libraries mapping chemical space efficiently, effective soaking methods and enhanced data analysis have enabled the implementation of high-throughput fragment screening pipelines at multiple synchrotron facilities. This widened access to CBFS beyond the pharma industry has allowed academic users to rapidly screen large quantities of fragment-soaked protein crystals. The positive outcome of a CBFS campaign is a set of structures that present the three-dimensional arrangement of fragment-protein complexes in detail, thereby providing information on the location and the mode of interaction of bound fragments. Through this review, we provide users with a comprehensive guide that sets clear expectations before embarking on a crystallography-based fragment screening campaign. We present a list of essential pre-requirements that must be assessed, including the suitability of your current crystal system for a fragment screening campaign. Furthermore, we extensively discuss the available methodological options, addressing their limitations and providing strategies to overcome them. Additionally, we provide a brief perspective on how to proceed once hits are obtained. Notably, we emphasize the solutions we have implemented for instrumentation and software development within our Fast Fragment and Compound Screening pipeline. We also highlight third-party software options that can be utilized for rapid refinement and hit assessment.
Collapse
Affiliation(s)
| | - Julia Steuber
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Günter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, Germany.
| | | | | |
Collapse
|
2
|
Smithers L, Degtjarik O, Weichert D, Huang CY, Boland C, Bowen K, Oluwole A, Lutomski C, Robinson CV, Scanlan EM, Wang M, Olieric V, Shalev-Benami M, Caffrey M. Structure snapshots reveal the mechanism of a bacterial membrane lipoprotein N-acyltransferase. SCIENCE ADVANCES 2023; 9:eadf5799. [PMID: 37390210 PMCID: PMC10313180 DOI: 10.1126/sciadv.adf5799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Bacterial lipoproteins (BLPs) decorate the surface of membranes in the cell envelope. They function in membrane assembly and stability, as enzymes, and in transport. The final enzyme in the BLP synthesis pathway is the apolipoprotein N-acyltransferase, Lnt, which is proposed to act by a ping-pong mechanism. Here, we use x-ray crystallography and cryo-electron microscopy to chart the structural changes undergone during the progress of the enzyme through the reaction. We identify a single active site that has evolved to bind, individually and sequentially, substrates that satisfy structural and chemical criteria to position reactive parts next to the catalytic triad for reaction. This study validates the ping-pong mechanism, explains the molecular bases for Lnt's substrate promiscuity, and should facilitate the design of antibiotics with minimal off-target effects.
Collapse
Affiliation(s)
- Luke Smithers
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Oksana Degtjarik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dietmar Weichert
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Coilín Boland
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Katherine Bowen
- School of Chemistry, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Abraham Oluwole
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Corinne Lutomski
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Eoin M. Scanlan
- School of Chemistry, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Moran Shalev-Benami
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| |
Collapse
|
3
|
Healey RD, Basu S, Humm AS, Leyrat C, Cong X, Golebiowski J, Dupeux F, Pica A, Granier S, Márquez JA. An automated platform for structural analysis of membrane proteins through serial crystallography. CELL REPORTS METHODS 2021; 1:None. [PMID: 34723237 PMCID: PMC8545655 DOI: 10.1016/j.crmeth.2021.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 09/22/2021] [Indexed: 11/01/2022]
Abstract
Membrane proteins are central to many pathophysiological processes, yet remain very difficult to analyze structurally. Moreover, high-throughput structure-based drug discovery has not yet been exploited for membrane proteins because of lack of automation. Here, we present a facile and versatile platform for in meso membrane protein crystallization, enabling rapid atomic structure determination at both cryogenic and room temperatures. We apply this approach to human integral membrane proteins, which allowed us to identify different conformational states of intramembrane enzyme-product complexes and analyze by molecular dynamics simulations the structural dynamics of the ADIPOR2 integral membrane protein. Finally, we demonstrate an automated pipeline combining high-throughput microcrystal soaking, automated laser-based harvesting, and serial crystallography, enabling screening of small-molecule libraries with membrane protein crystals grown in meso. This approach brings needed automation to this important class of drug targets and enables high-throughput structure-based ligand discovery with membrane proteins.
Collapse
Affiliation(s)
- Robert D. Healey
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Shibom Basu
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Anne-Sophie Humm
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Cedric Leyrat
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Xiaojing Cong
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Jérôme Golebiowski
- Institute of Chemistry of Nice UMR7272, Université Côte d’Azur, CNRS, 28 Avenue Valrose, 06108 Nice, France
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Technology, 711-873 Daegu, South Korea
| | - Florine Dupeux
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
- Institut de Biologie Structurale, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Andrea Pica
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
- ALPX S.A.S. 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Sébastien Granier
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - José Antonio Márquez
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
- ALPX S.A.S. 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
4
|
Martiel I, Beale JH, Karpik A, Huang CY, Vera L, Olieric N, Wranik M, Tsai CJ, Mühle J, Aurelius O, John J, Högbom M, Wang M, Marsh M, Padeste C. Versatile microporous polymer-based supports for serial macromolecular crystallography. Acta Crystallogr D Struct Biol 2021; 77:1153-1167. [PMID: 34473086 PMCID: PMC8411977 DOI: 10.1107/s2059798321007324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
Serial data collection has emerged as a major tool for data collection at state-of-the-art light sources, such as microfocus beamlines at synchrotrons and X-ray free-electron lasers. Challenging targets, characterized by small crystal sizes, weak diffraction and stringent dose limits, benefit most from these methods. Here, the use of a thin support made of a polymer-based membrane for performing serial data collection or screening experiments is demonstrated. It is shown that these supports are suitable for a wide range of protein crystals suspended in liquids. The supports have also proved to be applicable to challenging cases such as membrane proteins growing in the sponge phase. The sample-deposition method is simple and robust, as well as flexible and adaptable to a variety of cases. It results in an optimally thin specimen providing low background while maintaining minute amounts of mother liquor around the crystals. The 2 × 2 mm area enables the deposition of up to several microlitres of liquid. Imaging and visualization of the crystals are straightforward on the highly transparent membrane. Thanks to their affordable fabrication, these supports have the potential to become an attractive option for serial experiments at synchrotrons and free-electron lasers.
Collapse
Affiliation(s)
- Isabelle Martiel
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - John H. Beale
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Agnieszka Karpik
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
- Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Sciences and Arts Northwestern Switzerland, 5210 Windisch, Switzerland
| | - Chia-Ying Huang
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Laura Vera
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Natacha Olieric
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Maximilian Wranik
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Ching-Ju Tsai
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Jonas Mühle
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Oskar Aurelius
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Juliane John
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Meitian Wang
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - May Marsh
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Celestino Padeste
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
5
|
Agonists and allosteric modulators promote signaling from different metabotropic glutamate receptor 5 conformations. Cell Rep 2021; 36:109648. [PMID: 34469715 PMCID: PMC8424648 DOI: 10.1016/j.celrep.2021.109648] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are dimeric G-protein-coupled receptors activated by the main excitatory neurotransmitter, L-glutamate. mGluR activation by agonists binding in the venus flytrap domain is regulated by positive (PAM) or negative (NAM) allosteric modulators binding to the 7-transmembrane domain (7TM). We report the cryo-electron microscopy structures of fully inactive and intermediate-active conformations of mGlu5 receptor bound to an antagonist and a NAM or an agonist and a PAM, respectively, as well as the crystal structure of the 7TM bound to a photoswitchable NAM. The agonist induces a large movement between the subunits, bringing the 7TMs together and stabilizing a 7TM conformation structurally similar to the inactive state. Using functional approaches, we demonstrate that the PAM stabilizes a 7TM active conformation independent of the conformational changes induced by agonists, representing an alternative mode of mGlu activation. These findings provide a structural basis for different mGluR activation modes. Cryo-EM analysis of thermostabilized mGlu5 receptor bound to inhibitors or activators X-ray structure of trans-Alloswitch-1 bound to thermostable mGlu5 7TMs Photopharmacology provides insight into allosteric regulation of mGlu5 7TMs Multiple conformations of mGlu5 receptor activate G protein
Collapse
|
6
|
Jeong JH, Eo C, Kim HY, Kim JH, Lee CS, Choi HJ, Kim YG. Upgrade of BL-5C as a highly automated macromolecular crystallography beamline at Pohang Light Source II. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:602-608. [PMID: 33650572 DOI: 10.1107/s1600577521000588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
BL-5C is an in-vacuum undulator beamline dedicated to macromolecular crystallography (MX) at the 3 GeV Pohang Light Source II in Korea. The beamline delivers X-ray beams with a focal spot size of 200 µm × 40 µm (FWHM, H × V) over the energy range 6.5-16.5 keV. The measured flux is 7 × 1011 photons s-1 at 12.659 keV through an aperture size of 50 µm. The experimental station is newly equipped with the photon-counting detector EIGER 9M, the multi-axis micro-diffractometer MD2, and a robotic sample changer with a high-capacity dewar. These instruments enable the operation of this beamline as an automated MX beamline specialized in X-ray fragment screening. This beamline can collect more than 400 data sets a day without human intervention, and a difference map can be automatically calculated by using the data processing pipeline for ligand or fragment identification.
Collapse
Affiliation(s)
- Jae Hee Jeong
- Beamline Science, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Pohang, Kyungbuk 37673, Republic of Korea
| | - Cheolsoo Eo
- Beamline Science, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Pohang, Kyungbuk 37673, Republic of Korea
| | - Hyo Yun Kim
- Beamline Science, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jin Hong Kim
- Beamline Science, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Pohang, Kyungbuk 37673, Republic of Korea
| | - Chae Soon Lee
- Beamline Science, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Pohang, Kyungbuk 37673, Republic of Korea
| | - Hyeong Joo Choi
- Beamline Science, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Pohang, Kyungbuk 37673, Republic of Korea
| | - Yeon Gil Kim
- Beamline Science, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Pohang, Kyungbuk 37673, Republic of Korea
| |
Collapse
|
7
|
Sun T, Zhang X, Xu Z, Wang Y, Guo Z, Wang J, Tai R. A bidirectional scanning method for scanning transmission X-ray microscopy. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:512-517. [PMID: 33650564 DOI: 10.1107/s1600577520016112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Scanning mode is a key factor for the comprehensive performance, including imaging efficiency, of scanning transmission X-ray microscopy (STXM). Herein is presented a bidirectional scanning method designed for STXM with an S-shaped moving track. In this method, artificially designed ramp waves are generated by a piezo-stage controller to control the two-dimensional scanning of the sample. The sample position information is measured using laser interferometric sensors and sent to a field-programmable gate array (FPGA) board which also acquires the X-ray signals simultaneously from the detector. Since the data recorded by the FPGA contain the real position of each scanned point, the influence of the backlash caused by the back-turning movement on the STXM image can be eliminated. By employing an adapted post-processing program, a re-meshed high-resolution STXM image can be obtained. This S-track bidirectional scanning method in fly-scan mode has been implemented on the STXM endstation at the Shanghai Synchrotron Radiation Facility (SSRF), and successfully resolved the ∼30 nm interval between the innermost strips of a Siemens star. This work removes the limitation on bidirectional scanning caused by motor backlash and vibration, and significantly improves the efficiency of STXM experiments.
Collapse
Affiliation(s)
- Tianxiao Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Xiangzhi Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Zijian Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Yong Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Zhi Guo
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Renzhong Tai
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| |
Collapse
|
8
|
Thompson AJ, Worthy A, Grosjean A, Price JR, McMurtrie JC, Clegg JK. Determining the mechanisms of deformation in flexible crystals using micro-focus X-ray diffraction. CrystEngComm 2021. [DOI: 10.1039/d1ce00401h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A newly developed methodology allows for the determination of the mechanisms of deformation in flexible crystals with atomic precision. With broader applications, mapping experiments have wide reaching potential within the field of materials science.
Collapse
Affiliation(s)
- Amy J. Thompson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Anna Worthy
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| | - Arnaud Grosjean
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- National Synchrotron Radiation Research Centre, Hsinchu 30076, Taiwan
| | - Jason R. Price
- Australian Synchrotron, ANSTO – Melbourne, 800 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - John C. McMurtrie
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
- Centre for Materials Science, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 2001, Australia
| | - Jack K. Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
9
|
Abstract
Formation of highly symmetric skeletal elements in demosponges, called spicules, follows a unique biomineralization mechanism in which polycondensation of an inherently disordered amorphous silica is guided by a highly ordered proteinaceous scaffold, the axial filament. The enzymatically active proteins, silicateins, are assembled into a slender hybrid silica/protein crystalline superstructure that directs the morphogenesis of the spicules. Furthermore, silicateins are known to catalyze the formation of a large variety of other technologically relevant organic and inorganic materials. However, despite the biological and biotechnological importance of this macromolecule, its tertiary structure was never determined. Here we report the atomic structure of silicatein and the entire mineral/organic hybrid assembly with a resolution of 2.4 Å. In this work, the serial X-ray crystallography method was successfully adopted to probe the 2-µm-thick filaments in situ, being embedded inside the skeletal elements. In combination with imaging and chemical analysis using high-resolution transmission electron microscopy, we provide detailed information on the enzymatic activity of silicatein, its crystallization, and the emergence of a functional three-dimensional silica/protein superstructure in vivo. Ultimately, we describe a naturally occurring mineral/protein crystalline assembly at atomic resolution.
Collapse
|
10
|
Martiel I, Huang CY, Villanueva-Perez P, Panepucci E, Basu S, Caffrey M, Pedrini B, Bunk O, Stampanoni M, Wang M. Low-dose in situ prelocation of protein microcrystals by 2D X-ray phase-contrast imaging for serial crystallography. IUCRJ 2020; 7:1131-1141. [PMID: 33209324 PMCID: PMC7642777 DOI: 10.1107/s2052252520013238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Serial protein crystallography has emerged as a powerful method of data collection on small crystals from challenging targets, such as membrane proteins. Multiple microcrystals need to be located on large and often flat mounts while exposing them to an X-ray dose that is as low as possible. A crystal-prelocation method is demonstrated here using low-dose 2D full-field propagation-based X-ray phase-contrast imaging at the X-ray imaging beamline TOMCAT at the Swiss Light Source (SLS). This imaging step provides microcrystal coordinates for automated serial data collection at a microfocus macromolecular crystallography beamline on samples with an essentially flat geometry. This prelocation method was applied to microcrystals of a soluble protein and a membrane protein, grown in a commonly used double-sandwich in situ crystallization plate. The inner sandwiches of thin plastic film enclosing the microcrystals in lipid cubic phase were flash cooled and imaged at TOMCAT. Based on the obtained crystal coordinates, both still and rotation wedge serial data were collected automatically at the SLS PXI beamline, yielding in both cases a high indexing rate. This workflow can be easily implemented at many synchrotron facilities using existing equipment, or potentially integrated as an online technique in the next-generation macromolecular crystallography beamline, and thus benefit a number of dose-sensitive challenging protein targets.
Collapse
Affiliation(s)
- Isabelle Martiel
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Chia-Ying Huang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Pablo Villanueva-Perez
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden
| | - Ezequiel Panepucci
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Shibom Basu
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
- EMBL Grenoble, 71 avenue des Martyrs, Grenoble, 38042, France
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity College, Dublin 2, D02 R590, Ireland
| | - Bill Pedrini
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Oliver Bunk
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Marco Stampanoni
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
- Institute of Biomedical Engineering, University and ETH Zurich, Zurich, 8092, Switzerland
| | - Meitian Wang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| |
Collapse
|
11
|
Jaeger K, Bruenle S, Weinert T, Guba W, Muehle J, Miyazaki T, Weber M, Furrer A, Haenggi N, Tetaz T, Huang CY, Mattle D, Vonach JM, Gast A, Kuglstatter A, Rudolph MG, Nogly P, Benz J, Dawson RJP, Standfuss J. Structural Basis for Allosteric Ligand Recognition in the Human CC Chemokine Receptor 7. Cell 2020; 178:1222-1230.e10. [PMID: 31442409 PMCID: PMC6709783 DOI: 10.1016/j.cell.2019.07.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 11/15/2022]
Abstract
The CC chemokine receptor 7 (CCR7) balances immunity and tolerance by homeostatic trafficking of immune cells. In cancer, CCR7-mediated trafficking leads to lymph node metastasis, suggesting the receptor as a promising therapeutic target. Here, we present the crystal structure of human CCR7 fused to the protein Sialidase NanA by using data up to 2.1 Å resolution. The structure shows the ligand Cmp2105 bound to an intracellular allosteric binding pocket. A sulfonamide group, characteristic for various chemokine receptor ligands, binds to a patch of conserved residues in the Gi protein binding region between transmembrane helix 7 and helix 8. We demonstrate how structural data can be used in combination with a compound repository and automated thermal stability screening to identify and modulate allosteric chemokine receptor antagonists. We detect both novel (CS-1 and CS-2) and clinically relevant (CXCR1-CXCR2 phase-II antagonist Navarixin) CCR7 modulators with implications for multi-target strategies against cancer.
Collapse
Affiliation(s)
- Kathrin Jaeger
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI
| | - Steffen Bruenle
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI
| | - Wolfgang Guba
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Jonas Muehle
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI; Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Takuya Miyazaki
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland; Chugai Pharmaceutical Co., Ltd., Research Division, Kamakura Research Labs, Kamakura, Kanagawa, Japan
| | - Martin Weber
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Antonia Furrer
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI
| | - Noemi Haenggi
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Tim Tetaz
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Chia-Ying Huang
- Macromolecular Crystallography, Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Daniel Mattle
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI; Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Jean-Marie Vonach
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Alain Gast
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Andreas Kuglstatter
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Markus G Rudolph
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Przemyslaw Nogly
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI
| | - Joerg Benz
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Roger J P Dawson
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland.
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI.
| |
Collapse
|
12
|
Martiel I, Mozzanica A, Opara NL, Panepucci E, Leonarski F, Redford S, Mohacsi I, Guzenko V, Ozerov D, Padeste C, Schmitt B, Pedrini B, Wang M. X-ray fluorescence detection for serial macromolecular crystallography using a JUNGFRAU pixel detector. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:329-339. [PMID: 32153271 PMCID: PMC7064105 DOI: 10.1107/s1600577519016758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/14/2019] [Indexed: 05/06/2023]
Abstract
Detection of heavy elements, such as metals, in macromolecular crystallography (MX) samples by X-ray fluorescence is a function traditionally covered at synchrotron MX beamlines by silicon drift detectors, which cannot be used at X-ray free-electron lasers because of the very short duration of the X-ray pulses. Here it is shown that the hybrid pixel charge-integrating detector JUNGFRAU can fulfill this function when operating in a low-flux regime. The feasibility of precise position determination of micrometre-sized metal marks is also demonstrated, to be used as fiducials for offline prelocation in serial crystallography experiments, based on the specific fluorescence signal measured with JUNGFRAU, both at the synchrotron and at SwissFEL. Finally, the measurement of elemental absorption edges at a synchrotron beamline using JUNGFRAU is also demonstrated.
Collapse
Affiliation(s)
- Isabelle Martiel
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Aldo Mozzanica
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Nadia L. Opara
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel 4058, Switzerland
- SwissNanoscience Institute, University of Basel, Basel 4056, Switzerland
| | - Ezequiel Panepucci
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Filip Leonarski
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Sophie Redford
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Istvan Mohacsi
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Vitaliy Guzenko
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Dmitry Ozerov
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Celestino Padeste
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Bernd Schmitt
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Bill Pedrini
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Meitian Wang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| |
Collapse
|
13
|
Olatunji S, Yu X, Bailey J, Huang CY, Zapotoczna M, Bowen K, Remškar M, Müller R, Scanlan EM, Geoghegan JA, Olieric V, Caffrey M. Structures of lipoprotein signal peptidase II from Staphylococcus aureus complexed with antibiotics globomycin and myxovirescin. Nat Commun 2020; 11:140. [PMID: 31919415 PMCID: PMC6952399 DOI: 10.1038/s41467-019-13724-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
Antimicrobial resistance is a major global threat that calls for new antibiotics. Globomycin and myxovirescin are two natural antibiotics that target the lipoprotein-processing enzyme, LspA, thereby compromising the integrity of the bacterial cell envelope. As part of a project aimed at understanding their mechanism of action and for drug development, we provide high-resolution crystal structures of the enzyme from the human pathogen methicillin-resistant Staphylococcus aureus (MRSA) complexed with globomycin and with myxovirescin. Our results reveal an instance of convergent evolution. The two antibiotics possess different molecular structures. Yet, they appear to inhibit identically as non-cleavable tetrahedral intermediate analogs. Remarkably, the two antibiotics superpose along nineteen contiguous atoms that interact similarly with LspA. This 19-atom motif recapitulates a part of the substrate lipoprotein in its proposed binding mode. Incorporating this motif into a scaffold with suitable pharmacokinetic properties should enable the development of effective antibiotics with built-in resistance hardiness. The enzyme LspA from the human pathogen Staphylococcus aureus (MRSA) contributes to the integrity and function of the bacterial cell envelope. Here, authors provide crystal structures of LspA in complex with two natural antibiotics, which have profoundly different structures but inhibit LspA in an identical way.
Collapse
Affiliation(s)
- Samir Olatunji
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, D02 R590, Ireland
| | - Xiaoxiao Yu
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, D02 R590, Ireland
| | - Jonathan Bailey
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, D02 R590, Ireland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Marta Zapotoczna
- Moyne Institute of Preventive Medicine, Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, D02, Ireland
| | - Katherine Bowen
- School of Chemistry, Trinity College Dublin, Dublin, D02 R590, Ireland
| | - Maja Remškar
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University Campus E8 1, D-66123, Saarbrücken, Germany
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University Campus E8 1, D-66123, Saarbrücken, Germany
| | - Eoin M Scanlan
- School of Chemistry, Trinity College Dublin, Dublin, D02 R590, Ireland
| | - Joan A Geoghegan
- Moyne Institute of Preventive Medicine, Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, D02, Ireland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, D02 R590, Ireland.
| |
Collapse
|
14
|
Zhang B, Perez C. Stabilization and Crystallization of a Membrane Protein Involved in Lipid Transport. Methods Mol Biol 2020; 2127:283-292. [PMID: 32112329 DOI: 10.1007/978-1-0716-0373-4_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipoteichoic acids (LTA) are ubiquitous cell wall components of Gram-positive bacteria. In Staphylococcus aureus LTA are composed of a polymer with 1,3-linked glycerol phosphate repeating units anchored to the plasma membrane. The anchor molecule is a lipid-linked disaccharide (anchor-LLD) synthesized at the cytoplasmic leaflet of the membrane. The anchor lipid becomes accessible at the outer leaflet of the membrane after the flippase LtaA catalyzes translocation. Recently we have elucidated the structure of LtaA using vapor diffusion X-ray crystallography and in situ annealing. We were able to obtain LtaA crystals after optimization of purification protocols that led to stabilization of LtaA isolated in detergent micelles. Here we report a protocol that describes the purification, stabilization, crystallization, and data collection strategies carried out to determine the structure of LtaA. We highlight key points that can be used to determine crystal structures of other membrane proteins.
Collapse
Affiliation(s)
- Bing Zhang
- Biozentrum, University of Basel, Basel, Switzerland
| | - Camilo Perez
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Huang CY, Olieric V, Caffrey M, Wang M. In Meso In Situ Serial X-Ray Crystallography (IMISX): A Protocol for Membrane Protein Structure Determination at the Swiss Light Source. Methods Mol Biol 2020; 2127:293-319. [PMID: 32112330 DOI: 10.1007/978-1-0716-0373-4_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The lipid cubic phases (LCP) have enabled the determination of many important high-resolution structures of membrane proteins such as G-protein-coupled receptors, photosensitive proteins, enzymes, channels, and transporters. However, harvesting the crystals from the glass or plastic plates in which crystals grow is challenging. The in meso in situ serial X-ray crystallography (IMISX) method uses thin plastic windowed plates that minimize LCP crystal manipulation. The method, which is compatible with high-throughput in situ measurements, allows systematic diffraction screening and rapid data collection from hundreds of microcrystals in in meso crystallization wells without direct crystal harvesting. In this chapter, we describe an IMISX protocol for in situ serial X-ray data collection of LCP-grown crystals at both cryogenic and room temperatures which includes the crystallization setup, sample delivery, automated serial diffraction data collection, and experimental phasing. We also detail how the IMISX method was applied successfully for the structure determination of two novel targets-the undecaprenyl-pyrophosphate phosphatase BacA and the chemokine G-protein-coupled receptor CCR2A.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland.
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Martin Caffrey
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| |
Collapse
|
16
|
Cheng R, Huang C, Hennig M, Nar H, Schnapp G. In situ
crystallography as an emerging method for structure solution of membrane proteins: the case of CCR2A. FEBS J 2019; 287:866-873. [DOI: 10.1111/febs.15098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/10/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022]
Affiliation(s)
| | - Chia‐Ying Huang
- Swiss Light Source Paul Scherrer Institute Villigen Switzerland
| | | | - Herbert Nar
- Boehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Gisela Schnapp
- Boehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| |
Collapse
|
17
|
Förster A, Brandstetter S, Schulze-Briese C. Transforming X-ray detection with hybrid photon counting detectors. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180241. [PMID: 31030653 PMCID: PMC6501887 DOI: 10.1098/rsta.2018.0241] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 05/22/2023]
Abstract
Hybrid photon counting (HPC) detectors have radically transformed basic research at synchrotron light sources since 2006. They excel at X-ray diffraction applications in the energy range from 2 to 100 keV. The main reasons for their superiority are the direct detection of individual photons and the accurate determination of scattering and diffraction intensities over an extremely high dynamic range. The detectors were first adopted in macromolecular crystallography where they revolutionized data collection. They were soon also used for small-angle scattering, coherent scattering, powder X-ray diffraction, spectroscopy and increasingly high-energy applications. Here, we will briefly survey the history of HPC detectors, explain their technology and then show in detail how improved detection has transformed a wide range of experimental techniques. We will end with an outlook to the future, which will probably see HPC technology find even broader use, for example, in electron microscopy and medical applications. This article is part of the theme issue 'Fifty years of synchrotron science: achievements and opportunities'.
Collapse
|
18
|
Basu S, Finke A, Vera L, Wang M, Olieric V. Making routine native SAD a reality: lessons from beamline X06DA at the Swiss Light Source. Acta Crystallogr D Struct Biol 2019; 75:262-271. [PMID: 30950397 PMCID: PMC6450063 DOI: 10.1107/s2059798319003103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/01/2019] [Indexed: 01/19/2023] Open
Abstract
Native single-wavelength anomalous dispersion (SAD) is the most attractive de novo phasing method in macromolecular crystallography, as it directly utilizes intrinsic anomalous scattering from native crystals. However, the success of such an experiment depends on accurate measurements of the reflection intensities and therefore on careful data-collection protocols. Here, the low-dose, multiple-orientation data-collection protocol for native SAD phasing developed at beamline X06DA (PXIII) at the Swiss Light Source is reviewed, and its usage over the last four years on conventional crystals (>50 µm) is reported. Being experimentally very simple and fast, this method has gained popularity and has delivered 45 de novo structures to date (13 of which have been published). Native SAD is currently the primary choice for experimental phasing among X06DA users. The method can address challenging cases: here, native SAD phasing performed on a streptavidin-biotin crystal with P21 symmetry and a low Bijvoet ratio of 0.6% is highlighted. The use of intrinsic anomalous signals as sequence markers for model building and the assignment of ions is also briefly described.
Collapse
Affiliation(s)
- Shibom Basu
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Aaron Finke
- MacCHESS, Cornell University, Ithaca, New York, USA
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| |
Collapse
|
19
|
Apel AK, Cheng RK, Tautermann CS, Brauchle M, Huang CY, Pautsch A, Hennig M, Nar H, Schnapp G. Crystal Structure of CC Chemokine Receptor 2A in Complex with an Orthosteric Antagonist Provides Insights for the Design of Selective Antagonists. Structure 2019; 27:427-438.e5. [DOI: 10.1016/j.str.2018.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/08/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022]
|
20
|
Hirata K, Yamashita K, Ueno G, Kawano Y, Hasegawa K, Kumasaka T, Yamamoto M. ZOO: an automatic data-collection system for high-throughput structure analysis in protein microcrystallography. Acta Crystallogr D Struct Biol 2019; 75:138-150. [PMID: 30821703 PMCID: PMC6400253 DOI: 10.1107/s2059798318017795] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 12/17/2018] [Indexed: 11/10/2022] Open
Abstract
Owing to the development of brilliant microfocus beamlines, rapid-readout detectors and sample changers, protein microcrystallography is rapidly becoming a popular technique for accessing structural information from complex biological samples. However, the method is time-consuming and labor-intensive and requires technical expertise to obtain high-resolution protein crystal structures. At SPring-8, an automated data-collection system named ZOO has been developed. This system enables faster data collection, facilitates advanced data-collection and data-processing techniques, and permits the collection of higher quality data. In this paper, the key features of the functionality put in place on the SPring-8 microbeam beamline BL32XU are described and the major advantages of this system are outlined. The ZOO system will be a major driving force in the evolution of the macromolecular crystallography beamlines at SPring-8.
Collapse
Affiliation(s)
- Kunio Hirata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | - Go Ueno
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yoshiaki Kawano
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kazuya Hasegawa
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo 679-5198, Hyogo, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo 679-5198, Hyogo, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
21
|
Hrubiak R, Smith JS, Shen G. Multimode scanning X-ray diffraction microscopy for diamond anvil cell experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:025109. [PMID: 30831723 DOI: 10.1063/1.5057518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
We have designed and implemented a new experimental system for fast mapping of crystal structures and other structural features of materials under high pressure at the High Pressure Collaborative Access Team, Sector 16 of the Advanced Photon Source. The system utilizes scanning X-ray diffraction microscopy (SXDM) and is optimized for use with diamond anvil cell devices. In SXDM, the X-ray diffraction (XRD) is collected in a forward scattering geometry from points on a two-dimensional grid by fly-scanning the sample with respect to a micro-focused X-ray beam. The recording of XRD is made during the continuous motion of the sample using a fast (millisecond) X-ray area detector in synchrony with the sample positioners, resulting in a highly efficient data collection for SXDM. A new computer program, X-ray Diffractive Imaging (XDI), has been developed with the SXDM system. The XDI program provides a graphical interface for constructing and displaying the SXDM images in several modes: (1) phase mapping based on structural information, (2) pressure visualization based on the equation of state, (3) microstructural features mapping based on peak shape parameters, and (4) grain size and preferred-orientation based on peak shape parameters. The XDI is a standalone program and can be generally used for displaying SXDM images. Two examples of iron and zirconium samples under high pressure are presented to demonstrate the applications of SXDM.
Collapse
Affiliation(s)
- Rostislav Hrubiak
- High Pressure Collaborative Access Team (HPCAT), X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Jesse S Smith
- High Pressure Collaborative Access Team (HPCAT), X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Guoyin Shen
- High Pressure Collaborative Access Team (HPCAT), X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
22
|
Li H, Huang CY, Govorunova EG, Schafer CT, Sineshchekov OA, Wang M, Zheng L, Spudich JL. Crystal structure of a natural light-gated anion channelrhodopsin. eLife 2019; 8:41741. [PMID: 30614787 PMCID: PMC6336409 DOI: 10.7554/elife.41741] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/04/2019] [Indexed: 12/28/2022] Open
Abstract
The anion channelrhodopsin GtACR1 from the alga Guillardia theta is a potent neuron-inhibiting optogenetics tool. Presented here, its X-ray structure at 2.9 Å reveals a tunnel traversing the protein from its extracellular surface to a large cytoplasmic cavity. The tunnel is lined primarily by small polar and aliphatic residues essential for anion conductance. A disulfide-immobilized extracellular cap facilitates channel closing and the ion path is blocked mid-membrane by its photoactive retinylidene chromophore and further by a cytoplasmic side constriction. The structure also reveals a novel photoactive site configuration that maintains the retinylidene Schiff base protonated when the channel is open. These findings suggest a new channelrhodopsin mechanism, in which the Schiff base not only controls gating, but also serves as a direct mediator for anion flux.
Collapse
Affiliation(s)
- Hai Li
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Elena G Govorunova
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Christopher T Schafer
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Oleg A Sineshchekov
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - John L Spudich
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| |
Collapse
|
23
|
Basu S, Kaminski JW, Panepucci E, Huang CY, Warshamanage R, Wang M, Wojdyla JA. Automated data collection and real-time data analysis suite for serial synchrotron crystallography. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:244-252. [PMID: 30655492 PMCID: PMC6337882 DOI: 10.1107/s1600577518016570] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/21/2018] [Indexed: 05/03/2023]
Abstract
At the Swiss Light Source macromolecular crystallography (MX) beamlines the collection of serial synchrotron crystallography (SSX) diffraction data is facilitated by the recent DA+ data acquisition and analysis software developments. The SSX suite allows easy, efficient and high-throughput measurements on a large number of crystals. The fast continuous diffraction-based two-dimensional grid scan method allows initial location of microcrystals. The CY+ GUI utility enables efficient assessment of a grid scan's analysis output and subsequent collection of multiple wedges of data (so-called minisets) from automatically selected positions in a serial and automated way. The automated data processing (adp) routines adapted to the SSX data collection mode provide near real time analysis for data in both CBF and HDF5 formats. The automatic data merging (adm) is the latest extension of the DA+ data analysis software routines. It utilizes the sxdm (SSX data merging) package, which provides automatic online scaling and merging of minisets and allows identification of a minisets subset resulting in the best quality of the final merged data. The results of both adp and adm are sent to the MX MongoDB database and displayed in the web-based tracker, which provides the user with on-the-fly feedback about the experiment.
Collapse
Affiliation(s)
- Shibom Basu
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jakub W. Kaminski
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Ezequiel Panepucci
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | |
Collapse
|
24
|
Vasiliauskaité-Brooks I, Healey RD, Rochaix P, Saint-Paul J, Sounier R, Grison C, Waltrich-Augusto T, Fortier M, Hoh F, Saied EM, Arenz C, Basu S, Leyrat C, Granier S. Structure of a human intramembrane ceramidase explains enzymatic dysfunction found in leukodystrophy. Nat Commun 2018; 9:5437. [PMID: 30575723 PMCID: PMC6303388 DOI: 10.1038/s41467-018-07864-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/03/2018] [Indexed: 02/02/2023] Open
Abstract
Alkaline ceramidases (ACERs) are a class of poorly understood transmembrane enzymes controlling the homeostasis of ceramides. They are implicated in human pathophysiology, including progressive leukodystrophy, colon cancer as well as acute myeloid leukemia. We report here the crystal structure of the human ACER type 3 (ACER3). Together with computational studies, the structure reveals that ACER3 is an intramembrane enzyme with a seven transmembrane domain architecture and a catalytic Zn2+ binding site in its core, similar to adiponectin receptors. Interestingly, we uncover a Ca2+ binding site physically and functionally connected to the Zn2+ providing a structural explanation for the known regulatory role of Ca2+ on ACER3 enzymatic activity and for the loss of function in E33G-ACER3 mutant found in leukodystrophic patients. Alkaline ceramidases (ACERs) are a class of poorly understood transmembrane enzymes controlling the homeostasis of ceramides. Here authors solve the Xray structure of human ACER3 and uncover a Ca2+ binding site providing an explanation for the known regulatory role of Ca2+ on ACER3 activity.
Collapse
Affiliation(s)
| | - Robert D Healey
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Pascal Rochaix
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Julie Saint-Paul
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Rémy Sounier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Claire Grison
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | | | - Mathieu Fortier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - François Hoh
- CBS, University of Montpellier, CNRS, INSERM, Montpellier, 34090, France
| | - Essa M Saied
- Institute for chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.,Chemistry Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
| | - Christoph Arenz
- Institute for chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Shibom Basu
- Macromolecular Crystallography, Swiss Light Source, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Cédric Leyrat
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France.
| | - Sébastien Granier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France.
| |
Collapse
|
25
|
Leonarski F, Redford S, Mozzanica A, Lopez-Cuenca C, Panepucci E, Nass K, Ozerov D, Vera L, Olieric V, Buntschu D, Schneider R, Tinti G, Froejdh E, Diederichs K, Bunk O, Schmitt B, Wang M. Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector. Nat Methods 2018; 15:799-804. [PMID: 30275593 DOI: 10.1038/s41592-018-0143-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/25/2018] [Indexed: 11/09/2022]
Abstract
The accuracy of X-ray diffraction data is directly related to how the X-ray detector records photons. Here we describe the application of a direct-detection charge-integrating pixel-array detector (JUNGFRAU) in macromolecular crystallography (MX). JUNGFRAU features a uniform response on the subpixel level, linear behavior toward high photon rates, and low-noise performance across the whole dynamic range. We demonstrate that these features allow accurate MX data to be recorded at unprecedented speed. We also demonstrate improvements over previous-generation detectors in terms of data quality, using native single-wavelength anomalous diffraction (SAD) phasing, for thaumatin, lysozyme, and aminopeptidase N. Our results suggest that the JUNGFRAU detector will substantially improve the performance of synchrotron MX beamlines and equip them for future synchrotron light sources.
Collapse
Affiliation(s)
- Filip Leonarski
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Sophie Redford
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Aldo Mozzanica
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | | | | | - Karol Nass
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Dmitry Ozerov
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Dominik Buntschu
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Roman Schneider
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Gemma Tinti
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Erik Froejdh
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Kay Diederichs
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Oliver Bunk
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Bernd Schmitt
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
26
|
Huang CY, Olieric V, Howe N, Warshamanage R, Weinert T, Panepucci E, Vogeley L, Basu S, Diederichs K, Caffrey M, Wang M. In situ serial crystallography for rapid de novo membrane protein structure determination. Commun Biol 2018; 1:124. [PMID: 30272004 PMCID: PMC6123769 DOI: 10.1038/s42003-018-0123-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/19/2018] [Indexed: 11/30/2022] Open
Abstract
De novo membrane protein structure determination is often limited by the availability of large crystals and the difficulties in obtaining accurate diffraction data for experimental phasing. Here we present a method that combines in situ serial crystallography with de novo phasing for fast, efficient membrane protein structure determination. The method enables systematic diffraction screening and rapid data collection from hundreds of microcrystals in in meso crystallization wells without the need for direct crystal harvesting. The requisite data quality for experimental phasing is achieved by accumulating diffraction signals from isomorphous crystals identified post-data collection. The method works in all experimental phasing scenarios and is particularly attractive with fragile, weakly diffracting microcrystals. The automated serial data collection approach can be readily adopted at most microfocus macromolecular crystallography beamlines.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Nicole Howe
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | | | - Tobias Weinert
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Ezequiel Panepucci
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Lutz Vogeley
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | - Shibom Basu
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Kay Diederichs
- Fachbereich Biologie, Universität Konstanz, M647, D-78457, Konstanz, Germany
| | - Martin Caffrey
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, D02 R590, Ireland.
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland.
| |
Collapse
|
27
|
Melnikov I, Svensson O, Bourenkov G, Leonard G, Popov A. The complex analysis of X-ray mesh scans for macromolecular crystallography. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:355-365. [PMID: 29652262 PMCID: PMC6343787 DOI: 10.1107/s2059798318002735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/15/2018] [Indexed: 12/05/2022]
Abstract
A method and software program, MeshBest, for the detection of individual crystals based on two-dimensional X-ray mesh scans are presented. In macromolecular crystallography, mesh (raster) scans are carried out either as part of X-ray-based crystal-centring routines or to identify positions on the sample holder from which diffraction images can be collected. Here, the methods used in MeshBest, software which automatically analyses diffraction images collected during a mesh scan and produces a two-dimensional crystal map showing estimates of the dimensions, centre positions and diffraction qualities of each crystal contained in the mesh area, are presented. Sample regions producing diffraction images resulting from the superposition of more than one crystal are also distinguished from regions with single-crystal diffraction. The applicability of the method is demonstrated using several cases.
Collapse
Affiliation(s)
- Igor Melnikov
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | - Olof Svensson
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gordon Leonard
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | - Alexander Popov
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| |
Collapse
|
28
|
Abstract
As a protective envelope surrounding the bacterial cell, the peptidoglycan sacculus is a site of vulnerability and an antibiotic target. Peptidoglycan components, assembled in the cytoplasm, are shuttled across the membrane in a cycle that uses undecaprenyl-phosphate. A product of peptidoglycan synthesis, undecaprenyl-pyrophosphate, is converted to undecaprenyl-phosphate for reuse in the cycle by the membrane integral pyrophosphatase, BacA. To understand how BacA functions, we determine its crystal structure at 2.6 Å resolution. The enzyme is open to the periplasm and to the periplasmic leaflet via a pocket that extends into the membrane. Conserved residues map to the pocket where pyrophosphorolysis occurs. BacA incorporates an interdigitated inverted topology repeat, a topology type thus far only reported in transporters and channels. This unique topology raises issues regarding the ancestry of BacA, the possibility that BacA has alternate active sites on either side of the membrane and its possible function as a flippase. Bacterial cell wall components are assembled in a transmembrane cycle that involves the membrane integral pyrophosphorylase, BacA. Here the authors solve the crystal structure of BacA which shows an interdigitated inverted topology repeat that hints towards a flippase function for BacA.
Collapse
|
29
|
Design of ultra-swollen lipidic mesophases for the crystallization of membrane proteins with large extracellular domains. Nat Commun 2018; 9:544. [PMID: 29416037 PMCID: PMC5803273 DOI: 10.1038/s41467-018-02996-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/12/2018] [Indexed: 02/05/2023] Open
Abstract
In meso crystallization of membrane proteins from lipidic mesophases is central to protein structural biology but limited to membrane proteins with small extracellular domains (ECDs), comparable to the water channels (3–5 nm) of the mesophase. Here we present a strategy expanding the scope of in meso crystallization to membrane proteins with very large ECDs. We combine monoacylglycerols and phospholipids to design thermodynamically stable ultra-swollen bicontinuous cubic phases of double-gyroid (Ia3d), double-diamond (Pn3m), and double-primitive (Im3m) space groups, with water channels five times larger than traditional lipidic mesophases, and showing re-entrant behavior upon increasing hydration, of sequences Ia3d→Pn3m→Ia3d and Pn3m→Im3m→Pn3m, unknown in lipid self-assembly. We use these mesophases to crystallize membrane proteins with ECDs inaccessible to conventional in meso crystallization, demonstrating the methodology on the Gloeobacter ligand-gated ion channel (GLIC) protein, and show substantial modulation of packing, molecular contacts and activation state of the ensued proteins crystals, illuminating a general strategy in protein structural biology. In meso crystallization of membrane proteins is limited to proteins with small extracellular domains (ECDs). Here, authors combine monoacylglycerols and phospholipids to design stable ultra-swollen bicontinuous cubic phases that allow in meso crystallization of proteins with large ECDs.
Collapse
|
30
|
Wojdyla JA, Kaminski JW, Panepucci E, Ebner S, Wang X, Gabadinho J, Wang M. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:293-303. [PMID: 29271779 PMCID: PMC5741135 DOI: 10.1107/s1600577517014503] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/08/2017] [Indexed: 05/19/2023]
Abstract
Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods.
Collapse
Affiliation(s)
| | - Jakub W. Kaminski
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | | - Simon Ebner
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Xiaoqiang Wang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jose Gabadinho
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
31
|
Yamamoto M, Hirata K, Yamashita K, Hasegawa K, Ueno G, Ago H, Kumasaka T. Protein microcrystallography using synchrotron radiation. IUCRJ 2017; 4:529-539. [PMID: 28989710 PMCID: PMC5619846 DOI: 10.1107/s2052252517008193] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
The progress in X-ray microbeam applications using synchrotron radiation is beneficial to structure determination from macromolecular microcrystals such as small in meso crystals. However, the high intensity of microbeams causes severe radiation damage, which worsens both the statistical quality of diffraction data and their resolution, and in the worst cases results in the failure of structure determination. Even in the event of successful structure determination, site-specific damage can lead to the misinterpretation of structural features. In order to overcome this issue, technological developments in sample handling and delivery, data-collection strategy and data processing have been made. For a few crystals with dimensions of the order of 10 µm, an elegant two-step scanning strategy works well. For smaller samples, the development of a novel method to analyze multiple isomorphous microcrystals was motivated by the success of serial femtosecond crystallography with X-ray free-electron lasers. This method overcame the radiation-dose limit in diffraction data collection by using a sufficient number of crystals. Here, important technologies and the future prospects for microcrystallography are discussed.
Collapse
Affiliation(s)
- Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kunio Hirata
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Keitaro Yamashita
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kazuya Hasegawa
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Go Ueno
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hideo Ago
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Kumasaka
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
32
|
Casanas A, Warshamanage R, Finke AD, Panepucci E, Olieric V, Nöll A, Tampé R, Brandstetter S, Förster A, Mueller M, Schulze-Briese C, Bunk O, Wang M. EIGER detector: application in macromolecular crystallography. Acta Crystallogr D Struct Biol 2016; 72:1036-48. [PMID: 27599736 PMCID: PMC5013597 DOI: 10.1107/s2059798316012304] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/29/2016] [Indexed: 11/24/2022] Open
Abstract
The development of single-photon-counting detectors, such as the PILATUS, has been a major recent breakthrough in macromolecular crystallography, enabling noise-free detection and novel data-acquisition modes. The new EIGER detector features a pixel size of 75 × 75 µm, frame rates of up to 3000 Hz and a dead time as low as 3.8 µs. An EIGER 1M and EIGER 16M were tested on Swiss Light Source beamlines X10SA and X06SA for their application in macromolecular crystallography. The combination of fast frame rates and a very short dead time allows high-quality data acquisition in a shorter time. The ultrafine ϕ-slicing data-collection method is introduced and validated and its application in finding the optimal rotation angle, a suitable rotation speed and a sufficient X-ray dose are presented. An improvement of the data quality up to slicing at one tenth of the mosaicity has been observed, which is much finer than expected based on previous findings. The influence of key data-collection parameters on data quality is discussed.
Collapse
Affiliation(s)
- Arnau Casanas
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | | - Aaron D. Finke
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Anne Nöll
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | | | | | - Marcus Mueller
- DECTRIS Ltd, Taefernweg 1, 5405 Baden-Dättwil, Switzerland
| | | | - Oliver Bunk
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|