1
|
Peruzzi N, Eckermann M, Frohn J, Salditt T, Ohlsson B, Bech M. Volumetric changes of the enteric nervous system under physiological and pathological conditions measured using x-ray phase-contrast tomography. JGH Open 2024; 8:e70027. [PMID: 39295850 PMCID: PMC11408747 DOI: 10.1002/jgh3.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Background and Aim Full-thickness biopsies of the intestinal wall may be used to study and assess damage to the neurons of the enteric nervous system (ENS), that is, enteric neuropathy. The ENS is difficult to examine due to its localization deep in the intestinal wall and its organization with several connections in diverging directions. Histological sections used in clinical practice only visualize the sample in a two-dimensional way. X-ray phase-contrast micro-computed tomography (PC-μCT) has shown potential to assess the cross-sectional thickness and volume of the ENS in three dimensions (3D). The aim of this study was to explore the potential of PC-μCT to evaluate its use to determine the size of the ENS. Methods Full-thickness biopsies of ileum obtained during surgery from five controls and six patients clinically diagnosed with enteric neuropathy and dysmotility were included. Punch biopsies of 1 mm in diameter and 1 cm in length, from an area containing myenteric plexus, were extracted from paraffin blocks, and scanned with synchrotron-based PC-μCT without any staining. Results The microscopic volumetric structure of the neural tissue (consisting of both ganglia and fascicles) could be determined in all samples. The ratio of neural tissue volume/total tissue volume was higher in controls than in patients with enteric neuropathy (P = 0.013). The patient with the longest disease duration had the lowest ratio. Conclusion The assessment of neural tissue can be performed in an objective, standardized way, to ensure reproducibility and comparison under physiological and pathological conditions. Further evaluation is needed to examine the role of this method in the diagnosis of enteric neuropathy.
Collapse
Affiliation(s)
- Niccolò Peruzzi
- Medical Radiation Physics, Department of Clinical Sciences Lund Lund University Lund Sweden
| | - Marina Eckermann
- ESRF, The European Synchrotron Grenoble France
- Institute for X-Ray Physics, University of Göttingen Göttingen Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen Göttingen Germany
| | - Jasper Frohn
- Institute for X-Ray Physics, University of Göttingen Göttingen Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen Göttingen Germany
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen Göttingen Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen Göttingen Germany
| | - Bodil Ohlsson
- Department of Clinical Sciences Malmö Lund University Lund Sweden
- Department of Internal Medicine Skåne University Hospital Malmö Sweden
| | - Martin Bech
- Medical Radiation Physics, Department of Clinical Sciences Lund Lund University Lund Sweden
- LINXS Institute of advanced Neutron and X-ray Science (LINXS) Lund Sweden
| |
Collapse
|
2
|
Jastrzębska I, Piwowarczyk A. Traditional vs. Automated Computer Image Analysis-A Comparative Assessment of Use for Analysis of Digital SEM Images of High-Temperature Ceramic Material. MATERIALS (BASEL, SWITZERLAND) 2023; 16:812. [PMID: 36676549 PMCID: PMC9863531 DOI: 10.3390/ma16020812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Image analysis is a powerful tool that can be applied in scientific research, industry, and everyday life, but still, there is more room to use it in materials science. The interdisciplinary cooperation between materials scientists and computer scientists can unlock the potential of digital image analysis. Traditional image analysis used in materials science, manual or computer-aided, permits for the quantitative assessment of the coexisting components at the cross-sections, based on stereological law. However, currently used cutting-edge tools for computer image analysis can greatly speed up the process of microstructure analysis, e.g., via simultaneous extraction of quantitative data of all phases in an SEM image. The dedicated digital image processing software Aphelion was applied to develop an algorithm for the automated image analysis of multi-phase high-temperature ceramic material. The algorithm recognizes each phase and simultaneously calculates its quantity. In this work, we compare the traditional stereology-based methods of image analysis (linear and planimetry) to the automated method using a developed algorithm. The analysis was performed on a digital SEM microstructural image of high-temperature ceramic material from the Cu-Al-Fe-O system, containing four different phase components. The results show the good agreement of data obtained by classical stereology-based methods and the developed automated method. This presents an opportunity for the fast extraction of both qualitative and quantitative from the SEM images.
Collapse
Affiliation(s)
- Ilona Jastrzębska
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology in Cracow, al. A. Mickiewicza 30, 30-059 Cracow, Poland
| | - Adam Piwowarczyk
- Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Cracow, Poland
| |
Collapse
|
3
|
Mettivier G, Sarno A, Varallo A, Russo P. Attenuation coefficient in the energy range 14–36 keV of 3D printing materials for physical breast phantoms. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. To measure the monoenergetic x-ray linear attenuation coefficient, μ, of fused deposition modeling (FDM) colored 3D printing materials (ABS, PLAwhite, PLAorange, PET and NYLON), used as adipose, glandular or skin tissue substitutes for manufacturing physical breast phantoms. Approach. Attenuation data (at 14, 18, 20, 24, 28, 30 and 36 keV) were acquired at Elettra synchrotron radiation facility, with step-wedge objects, using the Lambert–Beer law and a CCD imaging detector. Test objects were 3D printed using the Ultimaker 3 FDM printer. PMMA, Nylon-6 and high-density polyethylene step objects were also investigated for the validation of the proposed methodology. Printing uniformity was assessed via monoenergetic and polyenergetic imaging (32 kV, W/Rh). Main results. Maximum absolute deviation of μ for PMMA, Nylon-6 and HD-PE was 5.0%, with reference to literature data. For ABS and NYLON, μ differed by less than 6.1% and 7.1% from that of adipose tissue, respectively; for PET and PLAorange the difference was less than 11.3% and 6.3% from glandular tissue, respectively. PLAorange is a good substitute of skin (differences from −9.4% to +1.2%). Hence, ABS and NYLON filaments are suitable adipose tissue substitutes, while PET and PLAorange mimick the glandular tissue. PLAwhite could be printed at less than 100% infill density for matching the attenuation of glandular tissue, using the measured density calibration curve. The printing mesh was observed for sample thicknesses less than 60 mm, imaged in the direction normal to the printing layers. Printing dimensional repeatability and reproducibility was less 1%. Significance. For the first time an experimental determination was provided of the linear attenuation coefficient of common 3D printing filament materials with estimates of μ at all energies in the range 14–36 keV, for their use in mammography, breast tomosynthesis and breast computed tomography investigations.
Collapse
|
4
|
Synchrotron X-ray Radiation (SXR) in Medical Imaging: Current Status and Future Prospects. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synchrotron X-ray radiation (SXR) has been widely studied to explore the structure of matter. Recently, there has been an intense focus on the medical application of SXR in imaging. This review is intended to explore the latest applications of SXR in medical imaging and to shed light on the advantages and drawbacks of this modality. The article highlights the latest developments in other fields that can greatly enhance the capability and applicability of SXR. The potentials of using machine and deep learning (DL)-based methods to generate synthetic images to use in regular clinics along with the use of photon counting X-ray detectors for spectral medical imaging with SXR are also discussed.
Collapse
|
5
|
Zhu Y, O'Connell AM, Ma Y, Liu A, Li H, Zhang Y, Zhang X, Ye Z. Dedicated breast CT: state of the art-Part II. Clinical application and future outlook. Eur Radiol 2021; 32:2286-2300. [PMID: 34476564 DOI: 10.1007/s00330-021-08178-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Dedicated breast CT is being increasingly used for breast imaging. This technique provides images with no compression, removal of tissue overlap, rapid acquisition, and available simultaneous assessment of microcalcifications and contrast enhancement. In this second installment in a 2-part review, the current status of clinical applications and ongoing efforts to develop new imaging systems are discussed, with particular emphasis on how to achieve optimized practice including lesion detection and characterization, response to therapy monitoring, density assessment, intervention, and implant evaluation. The potential for future screening with breast CT is also addressed. KEY POINTS: • Dedicated breast CT is an emerging modality with enormous potential in the future of breast imaging by addressing numerous clinical needs from diagnosis to treatment. • Breast CT shows either noninferiority or superiority with mammography and numerical comparability to MRI after contrast administration in diagnostic statistics, demonstrates excellent performance in lesion characterization, density assessment, and intervention, and exhibits promise in implant evaluation, while potential application to breast cancer screening is still controversial. • New imaging modalities such as phase-contrast breast CT, spectral breast CT, and hybrid imaging are in the progress of R & D.
Collapse
Affiliation(s)
- Yueqiang Zhu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Avice M O'Connell
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY, 14642, USA
| | - Yue Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Aidi Liu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Haijie Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Yuwei Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Xiaohua Zhang
- Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive, Suite 112, West Henrietta, NY, 14586, USA
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China.
| |
Collapse
|
6
|
Wan S, Arhatari BD, Nesterets YI, Mayo SC, Thompson D, Fox J, Kumar B, Prodanovic Z, Hausermann D, Maksimenko A, Hall C, Dimmock M, Pavlov KM, Lockie D, Rickard M, Gadomkar Z, Aminzadeh A, Vafa E, Peele A, Quiney HM, Lewis S, Gureyev TE, Brennan PC, Taba ST. Effect of x-ray energy on the radiological image quality in propagation-based phase-contrast computed tomography of the breast. J Med Imaging (Bellingham) 2021; 8:052108. [PMID: 34268442 DOI: 10.1117/1.jmi.8.5.052108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose: Breast cancer is the most common cancer in women in developing and developed countries and is responsible for 15% of women's cancer deaths worldwide. Conventional absorption-based breast imaging techniques lack sufficient contrast for comprehensive diagnosis. Propagation-based phase-contrast computed tomography (PB-CT) is a developing technique that exploits a more contrast-sensitive property of x-rays: x-ray refraction. X-ray absorption, refraction, and contrast-to-noise in the corresponding images depend on the x-ray energy used, for the same/fixed radiation dose. The aim of this paper is to explore the relationship between x-ray energy and radiological image quality in PB-CT imaging. Approach: Thirty-nine mastectomy samples were scanned at the imaging and medical beamline at the Australian Synchrotron. Samples were scanned at various x-ray energies of 26, 28, 30, 32, 34, and 60 keV using a Hamamatsu Flat Panel detector at the same object-to-detector distance of 6 m and mean glandular dose of 4 mGy. A total of 132 image sets were produced for analysis. Seven observers rated PB-CT images against absorption-based CT (AB-CT) images of the same samples on a five-point scale. A visual grading characteristics (VGC) study was used to determine the difference in image quality. Results: PB-CT images produced at 28, 30, 32, and 34 keV x-ray energies demonstrated statistically significant higher image quality than reference AB-CT images. The optimum x-ray energy, 30 keV, displayed the largest area under the curve ( AUC VGC ) of 0.754 ( p = 0.009 ). This was followed by 32 keV ( AUC VGC = 0.731 , p ≤ 0.001 ), 34 keV ( AUC VGC = 0.723 , p ≤ 0.001 ), and 28 keV ( AUC VGC = 0.654 , p = 0.015 ). Conclusions: An optimum energy range (around 30 keV) in the PB-CT technique allows for higher image quality at a dose comparable to conventional mammographic techniques. This results in improved radiological image quality compared with conventional techniques, which may ultimately lead to higher diagnostic efficacy and a reduction in breast cancer mortalities.
Collapse
Affiliation(s)
- Sarina Wan
- University of Sydney, Faculty of Medicine and Health, Department of Medical Radiation Sciences, Lidcombe, Australia
| | - Benedicta D Arhatari
- Australian Synchrotron, ANSTO, Clayton, Australia.,University of Melbourne, School of Physics, Parkville, Australia
| | - Yakov I Nesterets
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia.,University of New England, School of Science and Technology, Armidale, Australia
| | - Sheridan C Mayo
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia
| | - Darren Thompson
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia.,University of New England, School of Science and Technology, Armidale, Australia
| | - Jane Fox
- Monash University, Faculty of Medicine, Nursing and Health Sciences, Clayton, Australia.,Monash Health, Department of Pathology, Clayton, Australia
| | - Beena Kumar
- Monash Health, Department of Pathology, Clayton, Australia
| | | | | | | | | | - Matthew Dimmock
- Monash University, Faculty of Medicine, Nursing and Health Sciences, Clayton, Australia
| | - Konstantin M Pavlov
- University of New England, School of Science and Technology, Armidale, Australia.,University of Canterbury, School of Physical and Chemical Sciences, Christchurch, New Zealand.,Monash University, School of Physics and Astronomy, Clayton, Australia
| | - Darren Lockie
- Maroondah BreastScreen, Eastern Health, Ringwood, Australia
| | - Mary Rickard
- University of Sydney, Faculty of Medicine and Health, Department of Medical Radiation Sciences, Lidcombe, Australia
| | - Ziba Gadomkar
- University of Sydney, Faculty of Medicine and Health, Department of Medical Radiation Sciences, Lidcombe, Australia
| | - Alaleh Aminzadeh
- University of Melbourne, School of Physics, Parkville, Australia
| | - Elham Vafa
- University of Sydney, Faculty of Medicine and Health, Department of Medical Radiation Sciences, Lidcombe, Australia
| | - Andrew Peele
- Australian Synchrotron, ANSTO, Clayton, Australia
| | - Harry M Quiney
- University of Melbourne, School of Physics, Parkville, Australia
| | - Sarah Lewis
- University of Sydney, Faculty of Medicine and Health, Department of Medical Radiation Sciences, Lidcombe, Australia
| | - Timur E Gureyev
- University of Sydney, Faculty of Medicine and Health, Department of Medical Radiation Sciences, Lidcombe, Australia.,University of Melbourne, School of Physics, Parkville, Australia.,University of New England, School of Science and Technology, Armidale, Australia.,Monash University, School of Physics and Astronomy, Clayton, Australia
| | - Patrick C Brennan
- University of Sydney, Faculty of Medicine and Health, Department of Medical Radiation Sciences, Lidcombe, Australia
| | - Seyedamir Tavakoli Taba
- University of Sydney, Faculty of Medicine and Health, Department of Medical Radiation Sciences, Lidcombe, Australia
| |
Collapse
|
7
|
Morrison JL, Ayonrinde OT, Care AS, Clarke GD, Darby JRT, David AL, Dean JM, Hooper SB, Kitchen MJ, Macgowan CK, Melbourne A, McGillick EV, McKenzie CA, Michael N, Mohammed N, Sadananthan SA, Schrauben E, Regnault TRH, Velan SS. Seeing the fetus from a DOHaD perspective: discussion paper from the advanced imaging techniques of DOHaD applications workshop held at the 2019 DOHaD World Congress. J Dev Orig Health Dis 2021; 12:153-167. [PMID: 32955011 DOI: 10.1017/s2040174420000884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced imaging techniques are enhancing research capacity focussed on the developmental origins of adult health and disease (DOHaD) hypothesis, and consequently increasing awareness of future health risks across various subareas of DOHaD research themes. Understanding how these advanced imaging techniques in animal models and human population studies can be both additively and synergistically used alongside traditional techniques in DOHaD-focussed laboratories is therefore of great interest. Global experts in advanced imaging techniques congregated at the advanced imaging workshop at the 2019 DOHaD World Congress in Melbourne, Australia. This review summarizes the presentations of new imaging modalities and novel applications to DOHaD research and discussions had by DOHaD researchers that are currently utilizing advanced imaging techniques including MRI, hyperpolarized MRI, ultrasound, and synchrotron-based techniques to aid their DOHaD research focus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Oyekoya T Ayonrinde
- Fiona Stanley Hospital, Murdoch, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Alison S Care
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Marcus J Kitchen
- School of Physics and Astronomy, Monash University, Melbourne, Victoria, Australia
| | | | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Erin V McGillick
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Nuruddin Mohammed
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Aga Khan University Hospital, Karachi, Pakistan
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Eric Schrauben
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Timothy R H Regnault
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
- Department of Obstetrics and Gynecology, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - S Sendhil Velan
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
8
|
Tavakoli Taba S, Arhatari BD, Nesterets YI, Gadomkar Z, Mayo SC, Thompson D, Fox J, Kumar B, Prodanovic Z, Hausermann D, Maksimenko A, Hall C, Dimmock M, Pavlov KM, Lockie D, Gity M, Peele A, Quiney HM, Lewis S, Gureyev TE, Brennan PC. Propagation-Based Phase-Contrast CT of the Breast Demonstrates Higher Quality Than Conventional Absorption-Based CT Even at Lower Radiation Dose. Acad Radiol 2021; 28:e20-e26. [PMID: 32035759 DOI: 10.1016/j.acra.2020.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 01/07/2023]
Abstract
RATIONALE AND OBJECTIVES Propagation-based phase-contrast CT (PB-CT) is an advanced X-ray imaging technology that exploits both refraction and absorption of the transmitted X-ray beam. This study was aimed at optimizing the experimental conditions of PB-CT for breast cancer imaging and examined its performance relative to conventional absorption-based CT (AB-CT) in terms of image quality and radiation dose. MATERIALS AND METHODS Surgically excised breast mastectomy specimens (n = 12) were scanned using both PB-CT and AB-CT techniques under varying imaging conditions. To evaluate the radiological image quality, visual grading characteristics (VGC) analysis was used in which 11 breast specialist radiologists compared the overall image quality of PB-CT images with respect to the corresponding AB-CT images. The area under the VGC curve was calculated to measure the differences between PB-CT and AB-CT images. RESULTS The highest radiological quality was obtained for PB-CT images using a 32 keV energy X-ray beam and by applying the Homogeneous Transport of Intensity Equation phase retrieval with the value of its parameter γ set to one-half of the theoretically optimal value for the given materials. Using these optimized conditions, the image quality of PB-CT images obtained at 4 mGy and 2 mGy mean glandular dose was significantly higher than AB-CT images at 4 mGy (AUCVGC = 0.901, p = 0.001 and AUCVGC = 0.819, p = 0.011, respectively). CONCLUSION PB-CT achieves a higher radiological image quality compared to AB-CT even at a considerably lower mean glandular dose. Successful translation of the PB-CT technique for breast cancer imaging can potentially result in improved breast cancer diagnosis.
Collapse
|
9
|
X-ray dark-field phase-contrast imaging: Origins of the concept to practical implementation and applications. Phys Med 2020; 79:188-208. [PMID: 33342666 DOI: 10.1016/j.ejmp.2020.11.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/13/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
The basic idea of X-ray dark-field imaging (XDFI), first presented in 2000, was based on the concepts used in an X-ray interferometer. In this article, we review 20 years of developments in our theoretical understanding, scientific instrumentation, and experimental demonstration of XDFI and its applications to medical imaging. We first describe the concepts underlying XDFI that are responsible for imparting phase contrast information in projection X-ray images. We then review the algorithms that can convert these projection phase images into three-dimensional tomographic slices. Various implementations of computed tomography reconstructions algorithms for XDFI data are discussed. The next four sections describe and illustrate potential applications of XDFI in pathology, musculoskeletal imaging, oncologic imaging, and neuroimaging. The sample applications that are presented illustrate potential use scenarios for XDFI in histopathology and other clinical applications. Finally, the last section presents future perspectives and potential technical developments that can make XDFI an even more powerful tool.
Collapse
|
10
|
Recent advances in X-ray imaging of breast tissue: From two- to three-dimensional imaging. Phys Med 2020; 79:69-79. [PMID: 33171371 DOI: 10.1016/j.ejmp.2020.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 11/20/2022] Open
Abstract
Breast cancer is a globally widespread disease whose detection has already been significantly improved by the introduction of screening programs. Nevertheless, mammography suffers from low soft tissue contrast and the superposition of diagnostically relevant anatomical structures as well as from low values for sensitivity and specificity especially for dense breast tissue. In recent years, two techniques for X-ray breast imaging have been developed that bring advances for the early detection of breast cancer. Grating-based phase-contrast mammography is a new imaging technique that is able to provide three image modalities simultaneously (absorption-contrast, phase-contrast and dark-field signal). Thus, an enhanced detection and delineation of cancerous structures in the phase-contrast image and an improved visualization and characterization of microcalcifications in the dark-field image is possible. Furthermore, latest studies about this approach show that dose-compatible imaging with polychromatic X-ray sources is feasible. In order to additionally overcome the limitations of projection-based imaging, efforts were also made towards the development of breast computed tomography (BCT), which recently led to the first clinical installation of an absorption-based BCT system. Further research combining the benefits of both imaging technologies is currently in progress. This review article summarizes the latest advances in phase-contrast imaging for the female breast (projection-based and three-dimensional view) with special focus on possible clinical implementations in the future.
Collapse
|
11
|
Oliva P, Di Trapani V, Arfelli F, Brombal L, Donato S, Golosio B, Longo R, Mettivier G, Rigon L, Taibi A, Tromba G, Zanconati F, Delogu P. Experimental optimization of the energy for breast-CT with synchrotron radiation. Sci Rep 2020; 10:17430. [PMID: 33060795 PMCID: PMC7567093 DOI: 10.1038/s41598-020-74607-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
Breast Computed Tomography (bCT) is a three-dimensional imaging technique that is raising interest among radiologists as a viable alternative to mammographic planar imaging. In X-rays imaging it would be desirable to maximize the capability of discriminating different tissues, described by the Contrast to Noise Ratio (CNR), while minimizing the dose (i.e. the radiological risk). Both dose and CNR are functions of the X-ray energy. This work aims at experimentally investigating the optimal energy that, at fixed dose, maximizes the CNR between glandular and adipose tissues. Acquisitions of both tissue-equivalent phantoms and actual breast specimens have been performed with the bCT system implemented within the Syrma-3D collaboration at the Syrmep beamline of the Elettra synchrotron (Trieste). The experimental data have been also compared with analytical simulations and the results are in agreement. The CNR is maximized at energies around 26–28 keV. These results are in line with the outcomes of a previously presented simulation study which determined an optimal energy of 28 keV for a large set of breast phantoms with different diameters and glandular fractions. Finally, a study on photon starvation has been carried out to investigate how far the dose can be reduced still having suitable images for diagnostics.
Collapse
Affiliation(s)
- Piernicola Oliva
- Dipartimento Di Chimica E Farmacia, Università Di Sassari, Sassari, Italy.,I.N.F.N. Sezione Di Cagliari, Cagliari, Italy
| | - Vittorio Di Trapani
- Dipartimento Di Scienze Fisiche, Della Terra E Dell'Ambiente, Università Di Siena, Siena, Italy. .,I.N.F.N. Sezione Di Pisa, Pisa, Italy.
| | - Fulvia Arfelli
- Dipartimento Di Fisica, Università Di Trieste, Trieste, Italy.,I.N.F.N. Sezione Di Trieste, Trieste, Italy
| | - Luca Brombal
- Dipartimento Di Fisica, Università Di Trieste, Trieste, Italy.,I.N.F.N. Sezione Di Trieste, Trieste, Italy
| | - Sandro Donato
- Dipartimento Di Fisica, Università Della Calabria, Cosenza, Italy.,I.N.F.N. Laboratori Nazionali Di Frascati, Frascati, Italy.,Elettra-Sincrotrone Trieste SCpA, Basovizza, Italy
| | - Bruno Golosio
- I.N.F.N. Sezione Di Cagliari, Cagliari, Italy.,Dipartimento Di Fisica, Università Di Cagliari, Cagliari, Italy
| | - Renata Longo
- Dipartimento Di Fisica, Università Di Trieste, Trieste, Italy.,I.N.F.N. Sezione Di Trieste, Trieste, Italy
| | - Giovanni Mettivier
- Dipartimento Di Fisica, Università Di Napoli Federico II, Napoli, Italy.,I.N.F.N. Sezione Di Napoli, Napoli, Italy
| | - Luigi Rigon
- Dipartimento Di Fisica, Università Di Trieste, Trieste, Italy.,I.N.F.N. Sezione Di Trieste, Trieste, Italy
| | - Angelo Taibi
- Dipartimento Di Fisica E Scienze Della Terra, Università Di Ferrara, Ferrara, Italy.,I.N.F.N. Sezione Di Ferrara, Ferrara, Italy
| | | | - Fabrizio Zanconati
- Dipartimento Di Scienze Mediche Chirurgiche E Della Salute, Università Di Trieste, Trieste, Italy
| | - Pasquale Delogu
- Dipartimento Di Scienze Fisiche, Della Terra E Dell'Ambiente, Università Di Siena, Siena, Italy.,I.N.F.N. Sezione Di Pisa, Pisa, Italy
| |
Collapse
|
12
|
Synchrotron Radiation-Based Three-Dimensional Visualization of Angioarchitectural Remodeling in Hippocampus of Epileptic Rats. Neurosci Bull 2019; 36:333-345. [PMID: 31823302 DOI: 10.1007/s12264-019-00450-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Characterizing the three-dimensional (3D) morphological alterations of microvessels under both normal and seizure conditions is crucial for a better understanding of epilepsy. However, conventional imaging techniques cannot detect microvessels on micron/sub-micron scales without angiography. In this study, synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (ILPCI) and quantitative 3D characterization were used to acquire high-resolution, high-contrast images of rat brain tissue under both normal and seizure conditions. The number of blood microvessels was markedly increased on days 1 and 14, but decreased on day 60 after seizures. The surface area, diameter distribution, mean tortuosity, and number of bifurcations and network segments also showed similar trends. These pathological changes were confirmed by histological tests. Thus, SR-based ILPCI provides systematic and detailed views of cerebrovascular anatomy at the micron level without using contrast-enhancing agents. This holds considerable promise for better diagnosis and understanding of the pathogenesis and development of epilepsy.
Collapse
|
13
|
Gureyev TE, Nesterets YI, Baran PM, Taba ST, Mayo SC, Thompson D, Arhatari B, Mihocic A, Abbey B, Lockie D, Fox J, Kumar B, Prodanovic Z, Hausermann D, Maksimenko A, Hall C, Peele AG, Dimmock M, Pavlov KM, Cholewa M, Lewis S, Tromba G, Quiney HM, Brennan PC. Propagation-based x-ray phase-contrast tomography of mastectomy samples using synchrotron radiation. Med Phys 2019; 46:5478-5487. [PMID: 31574166 DOI: 10.1002/mp.13842] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/02/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Propagation-based phase-contrast computed tomography (PB-CT) is a method for three-dimensional x-ray imaging that utilizes refraction, as well as absorption, of x rays in the tissues to increase the signal-to-noise ratio (SNR) in the resultant images, in comparison with equivalent conventional absorption-only x-ray tomography (CT). Importantly, the higher SNR is achieved without sacrificing spatial resolution or increasing the radiation dose delivered to the imaged tissues. The present work has been carried out in the context of the current development of a breast CT imaging facility at the Australian Synchrotron. METHODS Seven unfixed complete mastectomy samples with and without breast cancer lesions have been imaged using absorption-only CT and PB-CT techniques under controlled experimental conditions. The radiation doses delivered to the mastectomy samples during the scans were comparable to those approved for mammographic screening. Physical characteristics of the reconstructed images, such as spatial resolution and SNR, have been measured and compared with the results of the radiological quality assessment of the complete absorption CT and PB-CT image stacks. RESULTS Despite the presence of some image artefacts, the PB-CT images have outperformed comparable absorption CT images collected at the same radiation dose, in terms of both the measured objective image characteristics and the radiological image scores. The outcomes of these experiments are shown to be consistent with predictions of the theory of PB-CT imaging and previous reported experimental studies of this imaging modality. CONCLUSIONS The results presented in this paper demonstrate that PB-CT holds a high potential for improving on the quality and diagnostic value of images obtained using existing medical x-ray technologies, such as mammography and digital breast tomosynthesis (DBT). If implemented at suitable synchrotron imaging facilities, PB-CT can be used to complement existing imaging modalities, leading to more accurate breast cancer diagnosis.
Collapse
Affiliation(s)
- T E Gureyev
- The University of Melbourne, Parkville, 3010, Australia.,The University of Sydney, Lidcombe, 2141, Australia.,Monash University, Clayton, 3800, Australia.,University of New England, Armidale, 2351, Australia
| | - Ya I Nesterets
- University of New England, Armidale, 2351, Australia.,Commonwealth Scientific and Industrial Research Organisation, Clayton, 3168, Australia
| | - P M Baran
- The University of Melbourne, Parkville, 3010, Australia
| | - S T Taba
- The University of Sydney, Lidcombe, 2141, Australia
| | - S C Mayo
- Commonwealth Scientific and Industrial Research Organisation, Clayton, 3168, Australia
| | - D Thompson
- University of New England, Armidale, 2351, Australia.,Commonwealth Scientific and Industrial Research Organisation, Clayton, 3168, Australia
| | - B Arhatari
- The University of Melbourne, Parkville, 3010, Australia.,La Trobe University, Bundoora, 3086, Australia
| | - A Mihocic
- La Trobe University, Bundoora, 3086, Australia
| | - B Abbey
- La Trobe University, Bundoora, 3086, Australia
| | - D Lockie
- Maroondah BreastScreen, Ringwood East, 3135, Australia
| | - J Fox
- Monash University, Clayton, 3800, Australia
| | - B Kumar
- Monash University, Clayton, 3800, Australia
| | | | - D Hausermann
- Australian Synchrotron, ANSTO, Clayton, 3168, Australia
| | - A Maksimenko
- Australian Synchrotron, ANSTO, Clayton, 3168, Australia
| | - C Hall
- Australian Synchrotron, ANSTO, Clayton, 3168, Australia
| | - A G Peele
- Australian Synchrotron, ANSTO, Clayton, 3168, Australia
| | - M Dimmock
- Monash University, Clayton, 3800, Australia
| | - K M Pavlov
- Monash University, Clayton, 3800, Australia.,University of New England, Armidale, 2351, Australia.,University of Canterbury, Christchurch, 8041, New Zealand
| | - M Cholewa
- University of Rzeszow, 35-310, Rzeszow, Poland
| | - S Lewis
- The University of Sydney, Lidcombe, 2141, Australia
| | - G Tromba
- Elettra Sincrotrone, 34149, Basovizza, Trieste, Italy
| | - H M Quiney
- The University of Melbourne, Parkville, 3010, Australia
| | - P C Brennan
- The University of Sydney, Lidcombe, 2141, Australia
| |
Collapse
|
14
|
Pacilè S, Dullin C, Baran P, Tonutti M, Perske C, Fischer U, Albers J, Arfelli F, Dreossi D, Pavlov K, Maksimenko A, Mayo SC, Nesterets YI, Taba ST, Lewis S, Brennan PC, Gureyev TE, Tromba G, Wienbeck S. Free propagation phase-contrast breast CT provides higher image quality than cone-beam breast-CT at low radiation doses: a feasibility study on human mastectomies. Sci Rep 2019; 9:13762. [PMID: 31551475 PMCID: PMC6760215 DOI: 10.1038/s41598-019-50075-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/22/2019] [Indexed: 12/09/2022] Open
Abstract
In this study we demonstrate the first direct comparison between synchrotron x-ray propagation-based CT (PB-CT) and cone-beam breast-CT (CB-CT) on human mastectomy specimens (N = 12) including different benign and malignant lesions. The image quality and diagnostic power of the obtained data sets were compared and judged by two independent expert radiologists. Two cases are presented in detail in this paper including a comparison with the corresponding histological evaluation. Results indicate that with PB-CT it is possible to increase the level of contrast-to-noise ratio (CNR) keeping the same level of dose used for the CB-CT or achieve the same level of CNR reached by CB-CT at a lower level of dose. In other words, PB-CT can achieve a higher diagnostic potential compared to the commercial breast-CT system while also delivering a considerably lower mean glandular dose. Therefore, we believe that PB-CT technique, if translated to a clinical setting, could have a significant impact in improving breast cancer diagnosis.
Collapse
Affiliation(s)
- S Pacilè
- Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Italy. .,Department of Engineering and Architecture, University of Trieste, Trieste, Italy.
| | - C Dullin
- Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Italy.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Translational Molecular Imaging, Max-Plank-Institute for Experimental Medicine, Goettingen, Germany
| | - P Baran
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville, Australia
| | - M Tonutti
- Department of Radiology, Academic Hospital of Trieste, Trieste, Italy
| | - C Perske
- Institute for Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - U Fischer
- Diagnostic Breast Center Goettingen, Goettingen, Germany
| | - J Albers
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - F Arfelli
- Department of Physics, University of Trieste, Trieste, Italy
| | - D Dreossi
- Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Italy
| | - K Pavlov
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand.,School of Science and Technology, University of New England, Armidale, Australia.,School of Physics and Astronomy, Monash University, Clayton, Australia
| | | | - S C Mayo
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia
| | - Y I Nesterets
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia.,School of Science and Technology, University of New England, Armidale, Australia
| | - S Tavakoli Taba
- The University of Sydney, BREAST, Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - S Lewis
- The University of Sydney, BREAST, Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - P C Brennan
- The University of Sydney, BREAST, Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - T E Gureyev
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville, Australia.,School of Science and Technology, University of New England, Armidale, Australia.,School of Physics and Astronomy, Monash University, Clayton, Australia.,The University of Sydney, BREAST, Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - G Tromba
- Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Italy
| | - S Wienbeck
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
15
|
Optimization of the energy for Breast monochromatic absorption X-ray Computed Tomography. Sci Rep 2019; 9:13135. [PMID: 31511550 PMCID: PMC6739417 DOI: 10.1038/s41598-019-49351-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022] Open
Abstract
The limits of mammography have led to an increasing interest on possible alternatives such as the breast Computed Tomography (bCT). The common goal of all X-ray imaging techniques is to achieve the optimal contrast resolution, measured through the Contrast to Noise Ratio (CNR), while minimizing the radiological risks, quantified by the dose. Both dose and CNR depend on the energy and the intensity of the X-rays employed for the specific imaging technique. Some attempts to determine an optimal energy for bCT have suggested the range 22 keV-34 keV, some others instead suggested the range 50 keV-60 keV depending on the parameters considered in the study. Recent experimental works, based on the use of monochromatic radiation and breast specimens, show that energies around 32 keV give better image quality respect to setups based on higher energies. In this paper we report a systematic study aiming at defining the range of energies that maximizes the CNR at fixed dose in bCT. The study evaluates several compositions and diameters of the breast and includes various reconstruction algorithms as well as different dose levels. The results show that a good compromise between CNR and dose is obtained using energies around 28 keV.
Collapse
|
16
|
Longo R, Arfelli F, Bonazza D, Bottigli U, Brombal L, Contillo A, Cova MA, Delogu P, Di Lillo F, Di Trapani V, Donato S, Dreossi D, Fanti V, Fedon C, Golosio B, Mettivier G, Oliva P, Pacilè S, Sarno A, Rigon L, Russo P, Taibi A, Tonutti M, Zanconati F, Tromba G. Advancements towards the implementation of clinical phase-contrast breast computed tomography at Elettra. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1343-1353. [PMID: 31274463 DOI: 10.1107/s1600577519005502] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Breast computed tomography (BCT) is an emerging application of X-ray tomography in radiological practice. A few clinical prototypes are under evaluation in hospitals and new systems are under development aiming at improving spatial and contrast resolution and reducing delivered dose. At the same time, synchrotron-radiation phase-contrast mammography has been demonstrated to offer substantial advantages when compared with conventional mammography. At Elettra, the Italian synchrotron radiation facility, a clinical program of phase-contrast BCT based on the free-space propagation approach is under development. In this paper, full-volume breast samples imaged with a beam energy of 32 keV delivering a mean glandular dose of 5 mGy are presented. The whole acquisition setup mimics a clinical study in order to evaluate its feasibility in terms of acquisition time and image quality. Acquisitions are performed using a high-resolution CdTe photon-counting detector and the projection data are processed via a phase-retrieval algorithm. Tomographic reconstructions are compared with conventional mammographic images acquired prior to surgery and with histologic examinations. Results indicate that BCT with monochromatic beam and free-space propagation phase-contrast imaging provide relevant three-dimensional insights of breast morphology at clinically acceptable doses and scan times.
Collapse
Affiliation(s)
- Renata Longo
- Department of Physics, University of Trieste, 34127 Trieste, Italy
| | - Fulvia Arfelli
- Department of Physics, University of Trieste, 34127 Trieste, Italy
| | - Deborah Bonazza
- Department of Medical Science, Cattinara Hospital, University of Trieste, 34149 Trieste, Italy
| | - Ubaldo Bottigli
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Luca Brombal
- Department of Physics, University of Trieste, 34127 Trieste, Italy
| | - Adriano Contillo
- Department of Physics and Earth Science, University of Ferrara, 44122 Ferrara, Italy
| | - Maria A Cova
- Department of Medical Science, Cattinara Hospital, University of Trieste, 34149 Trieste, Italy
| | - Pasquale Delogu
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Francesca Di Lillo
- Department of Physics `E. Pancini', University of Napoli `Federico II', 80126 Napoli, Italy
| | - Vittorio Di Trapani
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Sandro Donato
- Department of Physics, University of Trieste, 34127 Trieste, Italy
| | - Diego Dreossi
- Elettra-Sincrotrone Trieste SCpA, 34149 Trieste, Italy
| | - Viviana Fanti
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| | | | - Bruno Golosio
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| | - Giovanni Mettivier
- Department of Physics `E. Pancini', University of Napoli `Federico II', 80126 Napoli, Italy
| | | | - Serena Pacilè
- Elettra-Sincrotrone Trieste SCpA, 34149 Trieste, Italy
| | - Antonio Sarno
- Department of Physics `E. Pancini', University of Napoli `Federico II', 80126 Napoli, Italy
| | - Luigi Rigon
- Department of Physics, University of Trieste, 34127 Trieste, Italy
| | - Paolo Russo
- Department of Physics `E. Pancini', University of Napoli `Federico II', 80126 Napoli, Italy
| | - Angelo Taibi
- Department of Physics and Earth Science, University of Ferrara, 44122 Ferrara, Italy
| | - Maura Tonutti
- ASUITS, Trieste University Hospital, Department of Radiology, 34100 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical Science, Cattinara Hospital, University of Trieste, 34149 Trieste, Italy
| | | |
Collapse
|