1
|
Dahiya D, Péter-Szabó Z, Senanayake M, Pingali SV, Leite WC, Byrnes J, Buchko GW, Sivan P, Vilaplana F, Master E, O'Neill H. SANS investigation of fungal loosenins reveal substrate dependent impacts of protein 1 action on inter-fibril distance and packing order of cellulosic substrates. RESEARCH SQUARE 2024:rs.3.rs-4769386. [PMID: 39184091 PMCID: PMC11343303 DOI: 10.21203/rs.3.rs-4769386/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
BACKGROUND Microbial expansin-related proteins include fungal loosenins, which have been previously shown to disrupt cellulose networks and enhance the enzymatic conversion of cellulosic substrates. Despite showing beneficial impacts to cellulose processing, detailed characterization of cellulosic materials after loosenin treatment is lacking. In this study, small-angle neutron scattering (SANS) was used to investigate the effects of three recombinantly produced loosenins that originate from Phanerochaete carnosa, PcaLOOL7, PcaLOOL9, and PcaLOOL12, on the organization of holocellulose preparations from Eucalyptus and Spruce wood samples. RESULTS Whereas the SANS analysis of Spruce holocellulose revealed an increase in interfibril spacing of neighboring cellulose microfibrils following treatment with PcaLOOL12 and to a lesser extent PcaLOOL7, the analysis of Eucalyptus holocellulose revealed a reduction in packing number following treatment with PcaLOOL12 and to a lesser extent PcaLOOL9. Parallel SEC-SAXS characterization of PcaLOOL7, PcaLOOL9, and PcaLOOL12 indicated the proteins likely function as monomers; moreover, all appear to retain a flexible disordered N-terminus and folded C-terminal region. The comparatively high impact of PcaLOOL12 motivated its NMR structural characterization, revealing a double-psi b-barrel (DPBB) domain surrounded by three alpha-helices - the largest nestled against the DPBB core and the other two part of loops extending from the core. CONCLUSIONS The SANS analysis of PcaLOOL action on holocellulose samples confirms their ability to disrupt cellulose fiber networks and suggests a progression from reducing microfibril packing to increasing interfibril distance. The most impactful PcaLOOL, PcaLOOL12, was previously observed to be the most highly expressed loosenin in P. carnosa. Its structural characterization herein reveals its stabilization through two disulfide linkages, and an extended N-terminal region distal to a negatively charged and surface accessible polysaccharide binding groove.
Collapse
|
2
|
Rahman A, Sarker MT, Islam MA, Hossain MU, Hasan M, Susmi TF. Targeting Essential Hypothetical Proteins of Pseudomonas aeruginosa PAO1 for Mining of Novel Therapeutics: An In Silico Approach. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1787485. [PMID: 37090194 PMCID: PMC10119676 DOI: 10.1155/2023/1787485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 04/25/2023]
Abstract
As an omnipresent opportunistic bacterium, Pseudomonas aeruginosa PAO1 is responsible for acute and chronic infection in immunocompromised individuals. Currently, this bacterium is on WHO's red list where new antibiotics are urgently required for the treatment. Finding essential genes and essential hypothetical proteins (EHP) can be crucial in identifying novel druggable targets and therapeutics. This study is aimed at characterizing these EHPs and analyzing subcellular and physiochemical properties, PPI network, nonhomologous analysis against humans, virulence factor and novel drug target prediction, and finally structural analysis of the identified target employing around 42 robust bioinformatics tools/databases, the output of which was evaluated using the ROC analysis. The study discovered 18 EHPs from 336 essential genes, with domain and functional annotation revealing that 50% of these proteins belong to the enzyme category. The majority are cytoplasmic and cytoplasmic membrane proteins, with half being stable proteins subjected to PPIs network analysis. The network contains 261 nodes and 269 edges for 9 proteins of interest, with 11 hubs containing at least three nodes each. Finally, a pipeline builder predicts 7 proteins with novel drug targets, 5 nonhomologous proteins against human proteome, human antitargets, and human gut flora, and 3 virulent proteins. Among these, homology modeling of NP_249450 and NP_251676 was done, and the Ramachandran plot analysis revealed that more than 94% of the residues were in the preferred region. By analyzing functional attributes and virulence characteristics, the findings of this study may facilitate the development of innovative antibacterial drug targets and drugs of Pseudomonas aeruginosa PAO1.
Collapse
Affiliation(s)
- Atikur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Takim Sarker
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Ashiqul Islam
- Department of Chemistry and Biochemistry, University of Windsor, Canada
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tasmina Ferdous Susmi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
3
|
Fernández-Justel D, Marcos-Alcalde Í, Abascal F, Vidaña N, Gómez-Puertas P, Jiménez A, Revuelta JL, Buey RM. Diversity of mechanisms to control bacterial GTP homeostasis by the mutually exclusive binding of adenine and guanine nucleotides to IMP dehydrogenase. Protein Sci 2022; 31:e4314. [PMID: 35481629 PMCID: PMC9462843 DOI: 10.1002/pro.4314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
IMP dehydrogenase(IMPDH) is an essential enzyme that catalyzes the rate‐limiting step in the guanine nucleotide pathway. In eukaryotic cells, GTP binding to the regulatory domain allosterically controls the activity of IMPDH by a mechanism that is fine‐tuned by post‐translational modifications and enzyme polymerization. Nonetheless, the mechanisms of regulation of IMPDH in bacterial cells remain unclear. Using biochemical, structural, and evolutionary analyses, we demonstrate that, in most bacterial phyla, (p)ppGpp compete with ATP to allosterically modulate IMPDH activity by binding to a, previously unrecognized, conserved high affinity pocket within the regulatory domain. This pocket was lost during the evolution of Proteobacteria, making their IMPDHs insensitive to these alarmones. Instead, most proteobacterial IMPDHs evolved to be directly modulated by the balance between ATP and GTP that compete for the same allosteric binding site. Altogether, we demonstrate that the activity of bacterial IMPDHs is allosterically modulated by a universally conserved nucleotide‐controlled conformational switch that has divergently evolved to adapt to the specific particularities of each organism. These results reconcile the reported data on the crosstalk between (p)ppGpp signaling and the guanine nucleotide biosynthetic pathway and reinforce the essential role of IMPDH allosteric regulation on bacterial GTP homeostasis. PDB Code(s): 7PJI and 7PMZ;
Collapse
Affiliation(s)
- David Fernández-Justel
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Íñigo Marcos-Alcalde
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain.,Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Nerea Vidaña
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Paulino Gómez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - José L Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
4
|
Arif SM, Floto RA, Blundell TL. Using Structure-guided Fragment-Based Drug Discovery to Target Pseudomonas aeruginosa Infections in Cystic Fibrosis. Front Mol Biosci 2022; 9:857000. [PMID: 35433835 PMCID: PMC9006449 DOI: 10.3389/fmolb.2022.857000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is progressive genetic disease that predisposes lungs and other organs to multiple long-lasting microbial infections. Pseudomonas aeruginosa is the most prevalent and deadly pathogen among these microbes. Lung function of CF patients worsens following chronic infections with P. aeruginosa and is associated with increased mortality and morbidity. Emergence of multidrug-resistant, extensively drug-resistant and pandrug-resistant strains of P. aeruginosa due to intrinsic and adaptive antibiotic resistance mechanisms has failed the current anti-pseudomonal antibiotics. Hence new antibacterials are urgently needed to treat P. aeruginosa infections. Structure-guided fragment-based drug discovery (FBDD) is a powerful approach in the field of drug development that has succeeded in delivering six FDA approved drugs over the past 20 years targeting a variety of biological molecules. However, FBDD has not been widely used in the development of anti-pseudomonal molecules. In this review, we first give a brief overview of our structure-guided FBDD pipeline and then give a detailed account of FBDD campaigns to combat P. aeruginosa infections by developing small molecules having either bactericidal or anti-virulence properties. We conclude with a brief overview of the FBDD efforts in our lab at the University of Cambridge towards targeting P. aeruginosa infections.
Collapse
Affiliation(s)
| | - R. Andres Floto
- Molecular Immunity Unit, Department of Medicine University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Tom L. Blundell,
| |
Collapse
|
5
|
Fisher KE, Tillett RL, Fotoohi M, Caldwell C, Petereit J, Schlauch K, Tittiger C, Blomquist GJ, MacLean M. RNA-Seq used to identify ipsdienone reductase (IDONER): A novel monoterpene carbon-carbon double bond reductase central to Ips confusus pheromone production. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 129:103513. [PMID: 33388375 PMCID: PMC7909325 DOI: 10.1016/j.ibmb.2020.103513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The pinyon ips beetle, Ips confusus (LeConte) is a highly destructive pest in pine forests in western North America. When colonizing a new host tree, I. confusus beetles coordinate a mass attack to overcome the tree's defenses using aggregation pheromones. Ips confusus, as with other Ips spp. beetles, biosynthesize ipsdienol and ipsenol in a specific enantiomeric blend and ratio as aggregation pheromones. While several of the initial steps in the pheromone biosynthetic pathway have been well defined, the final steps were unknown. We used comparative RNA-Seq analysis between fed and unfed male I. confusus midgut tissue to identify candidate genes involved in pheromone biosynthesis. The 12,995 potentially unique transcripts showed a clear separation based on feeding state. Differential expression analysis identified gene groups that were tightly connected. This analysis identified all known pheromone biosynthetic genes and suggested a novel monoterpene double bond reductase, ipsdienone reductase (IDONER), with pheromone biosynthetic gene expression patterns. IDONER cDNA was cloned, expressed, and functionally characterized. The coding DNA sequence has an ORF of 1101 nt with a predicted translation product of 336 amino acids. The enzyme has a molecular weight of 36.7 kDa with conserved motifs of the medium chain dehydrogenases/reductase (MDR) superfamily in the leukotriene B4 dehydrogenases/reductases (LTB4R) family. Tagged recombinant protein was expressed and purified. Enzyme assays and GC/MS analysis showed IDONER catalyzed the reduction of ipsdienone to form ipsenone. This study shows that IDONER is a monoterpene double bond reductase involved in I. confusus pheromone biosynthesis.
Collapse
Affiliation(s)
- Katherine E Fisher
- Phigenics Research and Innovation Laboratory, Nevada Center for Applied Research, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Richard L Tillett
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, 89154, USA.
| | - Misha Fotoohi
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Cody Caldwell
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Juli Petereit
- Nevada Center for Bioinformatics, University of Nevada, Reno, NV, 89557, USA.
| | - Karen Schlauch
- Desert Research Institute, Northern Nevada Science Center Campus, 2215 Raggio Parkway, Reno, NV, 89512, USA.
| | - Claus Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Gary J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Marina MacLean
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| |
Collapse
|
6
|
Froes TQ, Baldini RL, Vajda S, Castilho MS. Structure-based Druggability Assessment of Anti-virulence Targets from Pseudomonas aeruginosa. Curr Protein Pept Sci 2020; 20:1189-1203. [PMID: 31038064 DOI: 10.2174/1389203720666190417120758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 11/22/2022]
Abstract
Antimicrobial Resistance (AMR) represents a serious threat to health and the global economy. However, interest in antibacterial drug development has decreased substantially in recent decades. Meanwhile, anti-virulence drug development has emerged as an attractive alternative to fight AMR. Although several macromolecular targets have been explored for this goal, their druggability is a vital piece of information that has been overlooked. This review explores this subject by showing how structure- based freely available in silico tools, such as PockDrug and FTMap, might be useful for designing novel inhibitors of the pyocyanin biosynthesis pathway and improving the potency/selectivity of compounds that target the Pseudomonas aeruginosa quorum sensing mechanism. The information provided by hotspot analysis, along with binding site features, reveals novel druggable targets (PhzA and PhzS) that remain largely unexplored. However, it also highlights that in silico druggability prediction tools have several limitations that might be overcome in the near future. Meanwhile, anti-virulence drug targets should be assessed by complementary methods, such as the combined use of FTMap/PockDrug, once the consensus druggability classification reduces the risk of wasting resources on undruggable proteins.
Collapse
Affiliation(s)
- Thamires Q Froes
- Programa de Pos-Graduacao em Biotecnologia da Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil.,aculdade de Farmácia da Universidade Federal da Bahia, Bahia, Salvador, BA, Brazil
| | - Regina L Baldini
- Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo. Sao Paulo, SP, Brazil
| | - Sandor Vajda
- College of Engineering, Boston University, Boston, MA, United States
| | - Marcelo S Castilho
- Programa de Pos-Graduacao em Biotecnologia da Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil.,aculdade de Farmácia da Universidade Federal da Bahia, Bahia, Salvador, BA, Brazil.,College of Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
7
|
The functional impact of the C/N-terminal extensions of the mouse retinal IMPDH1 isoforms: a kinetic evaluation. Mol Cell Biochem 2019; 465:155-164. [PMID: 31838626 DOI: 10.1007/s11010-019-03675-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Mutations in the retinal inosine monophosphate dehydrogenase1 (IMPDH1) gene is believed to be one cause of retinitis pigmentosa (RP). The main structural difference between the mutation-susceptible retinal isoforms with canonical one resides in the C- and N-terminal extensions. There are limited studies on the structure and function of terminal peptide extensions of the IMPDH1 retinal isoforms. Using recombinant murine IMPDH1 (mH1), we evaluated the kinetics of the retinal isoforms along with inhibition by some of the purine nucleotides. Molecular modeling tools were also applied to study the probable effect(s) of the terminal peptide tails on the function of the retinal isoforms. Molecular dynamic simulations indicated the possible impact of the end-terminal segments on the enzyme function through interactions with the enzyme's finger domain, affecting its critical pseudo barrel structure. The higher experimentally-determined Km and Ki values of the retinal mIMPDH1 (546) and mIMPDH1 (603) relative to that of the canonical isoform, mIMPDH1 (514), might clearly be due to these interactions. Furthermore and despite of the canonical isoform, the retinal isoforms of mH1 exhibited no NAD+ substrate inhibition. The resent data would certainly provide the ground for future evaluation of the physiological significance of these variations.
Collapse
|
8
|
Olczak A, Cianci M. The signal-to-noise ratio in SAD experiments. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2017.1386182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrzej Olczak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
9
|
Elamin AA, Steinicke S, Oehlmann W, Braun Y, Wanas H, Shuralev EA, Huck C, Maringer M, Rohde M, Singh M. Novel drug targets in cell wall biosynthesis exploited by gene disruption in Pseudomonas aeruginosa. PLoS One 2017; 12:e0186801. [PMID: 29045498 PMCID: PMC5646862 DOI: 10.1371/journal.pone.0186801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023] Open
Abstract
For clinicians, Pseudomonas aeruginosa is a nightmare pathogen that is one of the top three causes of opportunistic human infections. Therapy of P. aeruginosa infections is complicated due to its natural high intrinsic resistance to antibiotics. Active efflux and decreased uptake of drugs due to cell wall/membrane permeability appear to be important issues in the acquired antibiotic tolerance mechanisms. Bacterial cell wall biosynthesis enzymes have been shown to be essential for pathogenicity of Gram-negative bacteria. However, the role of these targets in virulence has not been identified in P. aeruginosa. Here, we report knockout (k.o) mutants of six cell wall biosynthesis targets (murA, PA4450; murD, PA4414; murF, PA4416; ppiB, PA1793; rmlA, PA5163; waaA, PA4988) in P. aeruginosa PAO1, and characterized these in order to find out whether these genes and their products contribute to pathogenicity and virulence of P. aeruginosa. Except waaA k.o, deletion of cell wall biosynthesis targets significantly reduced growth rate in minimal medium compared to the parent strain. The k.o mutants showed exciting changes in cell morphology and colonial architectures. Remarkably, ΔmurF cells became grossly enlarged. Moreover, the mutants were also attenuated in vivo in a mouse infection model except ΔmurF and ΔwaaA and proved to be more sensitive to macrophage-mediated killing than the wild-type strain. Interestingly, the deletion of the murA gene resulted in loss of virulence activity in mice, and the virulence was restored in a plant model by unknown mechanism. This study demonstrates that cell wall targets contribute significantly to intracellular survival, in vivo growth, and pathogenesis of P. aeruginosa. In conclusion, these findings establish a link between cell wall targets and virulence of P. aeruginosa and thus may lead to development of novel drugs for the treatment of P. aeruginosa infection.
Collapse
Affiliation(s)
| | | | - Wulf Oehlmann
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Yvonne Braun
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Hanaa Wanas
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Eduard A. Shuralev
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Tatarstan, Russian Federation
- Central Research Laboratory, Kazan State Medical Academy – Branch Campus of the FSBEI FPE RMACPE MOH Russia, Kazan, Tatarstan, Russian Federation
| | | | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| |
Collapse
|
10
|
Dik DA, Marous DR, Fisher JF, Mobashery S. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit Rev Biochem Mol Biol 2017. [PMID: 28644060 DOI: 10.1080/10409238.2017.1337705] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lytic transglycosylases (LTs) are bacterial enzymes that catalyze the non-hydrolytic cleavage of the peptidoglycan structures of the bacterial cell wall. They are not catalysts of glycan synthesis as might be surmised from their name. Notwithstanding the seemingly mundane reaction catalyzed by the LTs, their lytic reactions serve bacteria for a series of astonishingly diverse purposes. These purposes include cell-wall synthesis, remodeling, and degradation; for the detection of cell-wall-acting antibiotics; for the expression of the mechanism of cell-wall-acting antibiotics; for the insertion of secretion systems and flagellar assemblies into the cell wall; as a virulence mechanism during infection by certain Gram-negative bacteria; and in the sporulation and germination of Gram-positive spores. Significant advances in the mechanistic understanding of each of these processes have coincided with the successive discovery of new LTs structures. In this review, we provide a systematic perspective on what is known on the structure-function correlations for the LTs, while simultaneously identifying numerous opportunities for the future study of these enigmatic enzymes.
Collapse
Affiliation(s)
- David A Dik
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Daniel R Marous
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Jed F Fisher
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Shahriar Mobashery
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| |
Collapse
|
11
|
Díaz-Sáez L, Pankov G, Hunter WN. Open and compressed conformations of Francisella tularensis ClpP. Proteins 2016; 85:188-194. [PMID: 27802578 PMCID: PMC5225881 DOI: 10.1002/prot.25197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/13/2016] [Accepted: 10/24/2016] [Indexed: 11/29/2022]
Abstract
Caseinolytic proteases are large oligomeric assemblies responsible for maintaining protein homeostasis in bacteria and in so doing influence a wide range of biological processes. The functional assembly involves three chaperones together with the oligomeric caseinolytic protease catalytic subunit P (ClpP). This protease represents a potential target for therapeutic intervention in pathogenic bacteria. Here, we detail an efficient protocol for production of recombinant ClpP from Francisella tularensis, and the structural characterization of three crystal forms which grow under similar conditions. One crystal form reveals a compressed state of the ClpP tetradecamer and two forms an open state. A comparison of the two types of structure infers that differences at the enzyme active site result from a conformational change involving a highly localized disorder‐order transition of a β‐strand α‐helix combination. This transition occurs at a subunit‐subunit interface. Our study may now underpin future efforts in a structure‐based approach to target ClpP for inhibitor or activator development. Proteins 2016; 85:188–194. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura Díaz-Sáez
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Genady Pankov
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - William N Hunter
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
12
|
Jacewicz A, Schnell R, Lindqvist Y, Schneider G. Crystal structure of the flavoenzyme PA4991 from Pseudomonas aeruginosa. Acta Crystallogr F Struct Biol Commun 2016; 72:105-11. [PMID: 26841760 PMCID: PMC4741190 DOI: 10.1107/s2053230x15024437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/18/2015] [Indexed: 11/13/2022] Open
Abstract
The locus PA4991 in Pseudomonas aeruginosa encodes an open reading frame that has been identified as essential for the virulence and/or survival of this pathogenic organism in the infected host. Here, it is shown that this gene encodes a monomeric FAD-binding protein of molecular mass 42.2 kDa. The structure of PA4991 was determined by a combination of molecular replacement using a search model generated with Rosetta and phase improvement by a low-occupancy heavy-metal derivative. PA4991 belongs to the GR2 family of FAD-dependent oxidoreductases, comprising an FAD-binding domain typical of the glutathione reductase family and a second domain dominated by an eight-stranded mixed β-sheet. Most of the protein-FAD interactions are via the FAD-binding domain, but the isoalloxazine ring is located at the domain interface and interacts with residues from both domains. A comparison with the structurally related glycine oxidase and glycerol-3-phosphate dehydrogenase shows that in spite of very low amino-acid sequence identity (<18%) several active-site residues involved in substrate binding in these enzymes are conserved in PA4991. However, enzymatic assays show that PA4991 does not display amino-acid oxidase or glycerol-3-phosphate dehydrogenase activities, suggesting that it requires different substrates for activity.
Collapse
Affiliation(s)
- Agata Jacewicz
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Ylva Lindqvist
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
13
|
Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases. Nat Commun 2015; 6:8923. [PMID: 26558346 PMCID: PMC4660370 DOI: 10.1038/ncomms9923] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/16/2015] [Indexed: 12/26/2022] Open
Abstract
Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. IMP dehydrogenase (IMPDH) plays essential roles in purine metabolism and cell proliferation. Here Buey et al. describe a guanine nucleotides regulated molecular mechanism for allosteric communication between the regulatory and catalytic domains of IMPDH.
Collapse
|
14
|
Sarkar A, Brenk R. To Hit or Not to Hit, That Is the Question - Genome-wide Structure-Based Druggability Predictions for Pseudomonas aeruginosa Proteins. PLoS One 2015; 10:e0137279. [PMID: 26360059 PMCID: PMC4567284 DOI: 10.1371/journal.pone.0137279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/15/2015] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium known to cause opportunistic infections in immune-compromised or immunosuppressed individuals that often prove fatal. New drugs to combat this organism are therefore sought after. To this end, we subjected the gene products of predicted perturbative genes to structure-based druggability predictions using DrugPred. Making this approach suitable for large-scale predictions required the introduction of new methods for calculation of descriptors, development of a workflow to identify suitable pockets in homologous proteins and establishment of criteria to obtain valid druggability predictions based on homologs. We were able to identify 29 perturbative proteins of P. aeruginosa that may contain druggable pockets, including some of them with no or no drug-like inhibitors deposited in ChEMBL. These proteins form promising novel targets for drug discovery against P. aeruginosa.
Collapse
Affiliation(s)
- Aurijit Sarkar
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Ruth Brenk
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
- University of Bergen, Department for Biomedicine, Bergen, Norway
- * E-mail:
| |
Collapse
|
15
|
Labesse G, Alexandre T, Gelin M, Haouz A, Munier-Lehmann H. Crystallographic studies of two variants ofPseudomonas aeruginosaIMPDH with impaired allosteric regulation. ACTA ACUST UNITED AC 2015; 71:1890-9. [DOI: 10.1107/s1399004715013115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022]
Abstract
Inosine-5′-monophosphate dehydrogenases (IMPDHs), which are the rate-limiting enzymes in guanosine-nucleotide biosynthesis, are important therapeutic targets. Despite in-depth functional and structural characterizations of various IMPDHs, the role of the Bateman domain containing two CBS motifs remains controversial. Their involvement in the allosteric regulation ofPseudomonas aeruginosaIMPDH by Mg-ATP has recently been reported. To better understand the function of IMPDH and the importance of the CBS motifs, the structure of a variant devoid of these modules (ΔCBS) was solved at high resolution in the apo form and in complex with IMP. In addition, a single amino-acid substitution variant, D199N, was also structurally characterized: the mutation corresponds to the autosomal dominant mutant D226N of human IMPDH1, which is responsible for the onset of the retinopathy adRP10. These new structures shed light onto the possible mechanism of regulation of the IMPDH enzymatic activity. In particular, three conserved loops seem to be key players in this regulation as they connect the tetramer–tetramer interface with the active site and show significant modification upon substrate binding.
Collapse
|
16
|
Baum B, Lecker LSM, Zoltner M, Jaenicke E, Schnell R, Hunter WN, Brenk R. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form. Acta Crystallogr F Struct Biol Commun 2015; 71:1020-6. [PMID: 26249693 PMCID: PMC4528935 DOI: 10.1107/s2053230x15010614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/02/2015] [Indexed: 11/16/2022] Open
Abstract
Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.
Collapse
Affiliation(s)
- Bernhard Baum
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz, Germany
| | - Laura S. M. Lecker
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 4EH, Scotland
| | - Martin Zoltner
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 4EH, Scotland
| | - Elmar Jaenicke
- Institut für Molekulare Biophysik, Johannes Gutenberg-Universität, Jakob Welder Weg 26, 55128 Mainz, Germany
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 177 Stockholm, Sweden
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 4EH, Scotland
| | - Ruth Brenk
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
17
|
Gorgel M, Bøggild A, Ulstrup JJ, Weiss MS, Müller U, Nissen P, Boesen T. Against the odds? De novo structure determination of a pilin with two cysteine residues by sulfur SAD. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1095-101. [PMID: 25945575 DOI: 10.1107/s1399004715003272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/16/2015] [Indexed: 11/11/2022]
Abstract
Exploiting the anomalous signal of the intrinsic S atoms to phase a protein structure is advantageous, as ideally only a single well diffracting native crystal is required. However, sulfur is a weak anomalous scatterer at the typical wavelengths used for X-ray diffraction experiments, and therefore sulfur SAD data sets need to be recorded with a high multiplicity. In this study, the structure of a small pilin protein was determined by sulfur SAD despite several obstacles such as a low anomalous signal (a theoretical Bijvoet ratio of 0.9% at a wavelength of 1.8 Å), radiation damage-induced reduction of the cysteines and a multiplicity of only 5.5. The anomalous signal was improved by merging three data sets from different volumes of a single crystal, yielding a multiplicity of 17.5, and a sodium ion was added to the substructure of anomalous scatterers. In general, all data sets were balanced around the threshold values for a successful phasing strategy. In addition, a collection of statistics on structures from the PDB that were solved by sulfur SAD are presented and compared with the data. Looking at the quality indicator R(anom)/R(p.i.m.), an inconsistency in the documentation of the anomalous R factor is noted and reported.
Collapse
Affiliation(s)
- Manuela Gorgel
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Andreas Bøggild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Jakob Jensen Ulstrup
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Manfred S Weiss
- Macromolecular Crystallography (HZB-MX), Helmholtz Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Uwe Müller
- Macromolecular Crystallography (HZB-MX), Helmholtz Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Thomas Boesen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| |
Collapse
|
18
|
Jorgenson MA, Chen Y, Yahashiri A, Popham DL, Weiss DS. The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa. Mol Microbiol 2014; 93:113-28. [PMID: 24806796 DOI: 10.1111/mmi.12643] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2014] [Indexed: 11/28/2022]
Abstract
Rare lipoprotein A (RlpA) is a widely conserved outer membrane protein of unknown function that has previously only been studied in Escherichia coli, where it localizes to the septal ring and scattered foci along the lateral wall, but mutants have no phenotypic change. Here we show rlpA mutants of Pseudomonas aeruginosa form chains of short, fat cells when grown in low osmotic strength media. These morphological defects indicate RlpA is needed for efficient separation of daughter cells and maintenance of rod shape. Analysis of peptidoglycan sacculi from an rlpA deletion mutant revealed increased tetra and hexasaccharides that lack stem peptides (hereafter called 'naked glycans'). Incubation of these sacculi with purified RlpA resulted in release of naked glycans containing 1,6-anhydro N-acetylmuramic acid ends. RlpA did not degrade sacculi from wild-type cells unless the sacculi were subjected to a limited digestion with an amidase to remove some of the stem peptides. Thus, RlpA is a lytic transglycosylase with a strong preference for naked glycan strands. We propose that RlpA activity is regulated in vivo by substrate availability, and that amidases and RlpA work in tandem to degrade peptidoglycan in the division septum and lateral wall.
Collapse
Affiliation(s)
- Matthew A Jorgenson
- Department of Microbiology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | | | |
Collapse
|
19
|
Rimsa V, Eadsforth TC, Joosten RP, Hunter WN. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB_REDO strategies. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:279-89. [PMID: 24531462 PMCID: PMC3940198 DOI: 10.1107/s1399004713026801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 09/30/2013] [Indexed: 01/01/2023]
Abstract
A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB_REDO were coupled with model-map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn2+-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn2+, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1' recognition subsite that suggests specificity towards an acidic substrate.
Collapse
Affiliation(s)
- Vadim Rimsa
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Thomas C. Eadsforth
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Robbie P. Joosten
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
20
|
Cukier CD, Hope AG, Elamin AA, Moynie L, Schnell R, Schach S, Kneuper H, Singh M, Naismith JH, Lindqvist Y, Gray DW, Schneider G. Discovery of an allosteric inhibitor binding site in 3-Oxo-acyl-ACP reductase from Pseudomonas aeruginosa. ACS Chem Biol 2013; 8:2518-27. [PMID: 24015914 PMCID: PMC3833349 DOI: 10.1021/cb4005063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
3-Oxo-acyl-acyl carrier protein (ACP) reductase (FabG) plays a key role in the bacterial fatty acid synthesis II system in pathogenic microorganisms, which has been recognized as a potential drug target. FabG catalyzes reduction of a 3-oxo-acyl-ACP intermediate during the elongation cycle of fatty acid biosynthesis. Here, we report gene deletion experiments that support the essentiality of this gene in P. aeruginosa and the identification of a number of small molecule FabG inhibitors with IC50 values in the nanomolar to low micromolar range and good physicochemical properties. Structural characterization of 16 FabG-inhibitor complexes by X-ray crystallography revealed that the compounds bind at a novel allosteric site located at the FabG subunit-subunit interface. Inhibitor binding relies primarily on hydrophobic interactions, but specific hydrogen bonds are also observed. Importantly, the binding cavity is formed upon complex formation and therefore would not be recognized by virtual screening approaches. The structure analysis further reveals that the inhibitors act by inducing conformational changes that propagate to the active site, resulting in a displacement of the catalytic triad and the inability to bind NADPH.
Collapse
Affiliation(s)
- Cyprian D. Cukier
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Ayssar A. Elamin
- LIONEX Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany
| | - Lucile Moynie
- Biomedical
Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, U.K
| | - Robert Schnell
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Susanne Schach
- LIONEX Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany
| | | | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany
| | - James H. Naismith
- Biomedical
Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, U.K
| | - Ylva Lindqvist
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Gunter Schneider
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
21
|
Huet J, Teinkela Mbosso EJ, Soror S, Meyer F, Looze Y, Wintjens R, Wohlkönig A. High-resolution structure of a papaya plant-defense barwin-like protein solved by in-house sulfur-SAD phasing. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2017-26. [PMID: 24100320 DOI: 10.1107/s0907444913018015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/29/2013] [Indexed: 11/11/2022]
Abstract
The first crystal structure of a barwin-like protein, named carwin, has been determined at high resolution by single-wavelength anomalous diffraction (SAD) phasing using the six intrinsic S atoms present in the protein. The barwin-like protein was purified from Carica papaya latex and crystallized in the orthorhombic space group P212121. Using in-house Cu Kα X-ray radiation, 16 cumulative diffraction data sets were acquired to increase the signal-to-noise level and thereby the anomalous scattering signal. A sequence-database search on the papaya genome identified two carwin isoforms of 122 residues in length, both containing six S atoms that yield an estimated Bijvoet ratio of 0.93% at 1.54 Å wavelength. A systematic analysis of data quality and redundancy was performed to assess the capacity to locate the S atoms and to phase the data. It was observed that the crystal decay was low during data collection and that successful S-SAD phasing could be obtained with a relatively low data multiplicity of about 7. Using a synchrotron source, high-resolution data (1 Å) were collected from two different crystal forms of the papaya latex carwin. The refined structures showed a central β-barrel of six strands surrounded by several α-helices and loops. The β-barrel of carwin appears to be a common structural module that is shared within several other unrelated proteins. Finally, the possible biological function of the protein is discussed.
Collapse
Affiliation(s)
- Joëlle Huet
- Laboratoire des Biopolymères et des Nanomatériaux Supramoléculaires (CP206/04), Faculté de Pharmacie, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Chen MW, Lohkamp B, Schnell R, Lescar J, Schneider G. Substrate Channel Flexibility in Pseudomonas aeruginosa MurB Accommodates Two Distinct Substrates. PLoS One 2013; 8:e66936. [PMID: 23805286 PMCID: PMC3689657 DOI: 10.1371/journal.pone.0066936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/10/2013] [Indexed: 12/03/2022] Open
Abstract
Biosynthesis of UDP-N-acetylmuramic acid in bacteria is a committed step towards peptidoglycan production. In an NADPH- and FAD-dependent reaction, the UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) reduces UDP-N-acetylglucosamine-enolpyruvate to UDP-N-acetylmuramic acid. We determined the three-dimensional structures of the ternary complex of Pseudomonas aeruginosa MurB with FAD and NADP+ in two crystal forms to resolutions of 2.2 and 2.1 Å, respectively, to investigate the structural basis of the first half-reaction, hydride transfer from NADPH to FAD. The nicotinamide ring of NADP+ stacks against the si face of the isoalloxazine ring of FAD, suggesting an unusual mode of hydride transfer to flavin. Comparison with the structure of the Escherichia coli MurB complex with UDP-N-acetylglucosamine-enolpyruvate shows that both substrates share the binding site located between two lobes of the substrate-binding domain III, consistent with a ping pong mechanism with sequential substrate binding. The nicotinamide and the enolpyruvyl moieties are strikingly well-aligned upon superimposition, both positioned for hydride transfer to and from FAD. However, flexibility of the substrate channel allows the non-reactive parts of the two substrates to bind in different conformations. A potassium ion in the active site may assist in substrate orientation and binding. These structural models should help in structure-aided drug design against MurB, which is essential for cell wall biogenesis and hence bacterial survival.
Collapse
Affiliation(s)
- Ming Wei Chen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Bernhard Lohkamp
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
23
|
Dawson A, Trumper P, Chrysostomou G, Hunter WN. Structure of diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase from Acinetobacter baumannii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:611-7. [PMID: 23722836 PMCID: PMC3668577 DOI: 10.1107/s174430911301292x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/11/2013] [Indexed: 11/11/2022]
Abstract
The bifunctional diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase (RibD) represents a potential antibacterial drug target. The structure of recombinant Acinetobacter baumannii RibD is reported in orthorhombic and tetragonal crystal forms at 2.2 and 2.0 Å resolution, respectively. Comparisons with orthologous structures in the Protein Data Bank indicated close similarities. The tetragonal crystal form was obtained in the presence of guanosine monophosphate, which surprisingly was observed to occupy the adenine-binding site of the reductase domain.
Collapse
Affiliation(s)
- Alice Dawson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paul Trumper
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Georgios Chrysostomou
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
24
|
Jacewicz A, Izumi A, Brunner K, Schnell R, Schneider G. Structural insights into the UbiD protein family from the crystal structure of PA0254 from Pseudomonas aeruginosa. PLoS One 2013; 8:e63161. [PMID: 23671667 PMCID: PMC3650080 DOI: 10.1371/journal.pone.0063161] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022] Open
Abstract
The 3-polyprenyl-4-hydroxybenzoate decarboxylase (UbiD) catalyzes the conversion of 3-polyprenyl-4-hydroxybenzoate to 2-polyprenylphenol in the biosynthesis of ubiquinone. Pseudomonas aeruginosa contains two genes (PA0254 and PA5237) that are related in sequence to putative UbiD enzymes. A bioinformatics analysis suggests that the UbiD sequence family can be divided into two subclasses, with PA5237 and PA0254 belonging to different branches of this family. The three-dimensional structure of PA0254 has been determined using single wavelength anomalous diffraction and molecular replacement in two different crystal forms to resolutions of 1.95 and 2.3 Å, respectively. The subunit of PA0254 consists of three domains, an N-terminal α/β domain, a split β-barrel with a similar fold of a family of flavin reductases and a C-terminal α/β domain with a topology characteristic for the UbiD protein family. The middle domain contains a metal binding site adjacent to a large open cleft that may represent the active site. The two protein ligands binding a magnesium ion, His188 and Glu229, invariant in the PA0254 subclass, are also conserved in a corresponding metal site found in one of the FMN binding proteins from the split β-barrel fold family. PA0254 forms, in contrast to the hexameric UbiD from E. coli and P. aeruginosa, a homo-dimer. Insertion of four residues in a loop region in the PA0254 type enzymes results in structural differences that are incompatible with hexamer assembly.
Collapse
Affiliation(s)
- Agata Jacewicz
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Atsushi Izumi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Katharina Brunner
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (RS); (GS)
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (RS); (GS)
| |
Collapse
|
25
|
MgATP regulates allostery and fiber formation in IMPDHs. Structure 2013; 21:975-85. [PMID: 23643948 DOI: 10.1016/j.str.2013.03.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 11/22/2022]
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in nucleotide biosynthesis studied as an important therapeutic target and its complex functioning in vivo is still puzzling and debated. Here, we highlight the structural basis for the regulation of IMPDHs by MgATP. Our results demonstrate the essential role of the CBS tandem, conserved among almost all IMPDHs. We found that Pseudomonas aeruginosa IMPDH is an octameric enzyme allosterically regulated by MgATP and showed that this octameric organization is widely conserved in the crystal structures of other IMPDHs. We also demonstrated that human IMPDH1 adopts two types of complementary octamers that can pile up into isolated fibers in the presence of MgATP. The aggregation of such fibers in the autosomal dominant mutant, D226N, could explain the onset of the retinopathy adRP10. Thus, the regulatory CBS modules in IMPDHs are functional and they can either modulate catalysis or macromolecular assembly.
Collapse
|
26
|
Rao VA, Shepherd SM, Owen R, Hunter WN. Structure of Pseudomonas aeruginosa inosine 5'-monophosphate dehydrogenase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:243-7. [PMID: 23519796 PMCID: PMC3606566 DOI: 10.1107/s1744309113002352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/23/2013] [Indexed: 05/29/2023]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) represents a potential antimicrobial drug target. The crystal structure of recombinant Pseudomonas aeruginosa IMPDH has been determined to a resolution of 2.25 Å. The structure is a homotetramer of subunits dominated by a (β/α)8-barrel fold, consistent with other known structures of IMPDH. Also in common with previous work, the cystathionine β-synthase domains, residues 92-204, are not present in the model owing to disorder. However, unlike the majority of available structures, clearly defined electron density exists for a loop that creates part of the active site. This loop, composed of residues 297-315, links α8 and β9 and carries the catalytic Cys304. P. aeruginosa IMPDH shares a high level of sequence identity with bacterial and protozoan homologues, with residues involved in binding substrate and the NAD+ cofactor being conserved. Specific differences that have been proven to contribute to selectivity against the human enzyme in a study of Cryptosporidium parvum IMPDH are also conserved, highlighting the potential value of IMPDH as a drug target.
Collapse
Affiliation(s)
- Vincenzo A. Rao
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Sharon M. Shepherd
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Richard Owen
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| |
Collapse
|