1
|
Gotthard G, Flores-Ibarra A, Carrillo M, Kepa MW, Mason TJ, Stegmann DP, Olasz B, Pachota M, Dworkowski F, Ozerov D, Pedrini BF, Padeste C, Beale JH, Nogly P. Fixed-target pump-probe SFX: eliminating the scourge of light contamination. IUCRJ 2024; 11:749-761. [PMID: 38980142 PMCID: PMC11364036 DOI: 10.1107/s2052252524005591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
X-ray free-electron laser (XFEL) light sources have enabled the rapid growth of time-resolved structural experiments, which provide crucial information on the function of macromolecules and their mechanisms. Here, the aim was to commission the SwissMX fixed-target sample-delivery system at the SwissFEL Cristallina experimental station using the PSI-developed micro-structured polymer (MISP) chip for pump-probe time-resolved experiments. To characterize the system, crystals of the light-sensitive protein light-oxygen-voltage domain 1 (LOV1) from Chlamydomonas reinhardtii were used. Using different experimental settings, the accidental illumination, referred to as light contamination, of crystals mounted in wells adjacent to those illuminated by the pump laser was examined. It was crucial to control the light scattering from and through the solid supports otherwise significant contamination occurred. However, the results here show that the opaque MISP chips are suitable for defined pump-probe studies of a light-sensitive protein. The experiment also probed the sub-millisecond structural dynamics of LOV1 and indicated that at Δt = 10 µs a covalent thioether bond is established between reactive Cys57 and its flavin mononucleotide cofactor. This experiment validates the crystals to be suitable for in-depth follow-up studies of this still poorly understood signal-transduction mechanism. Importantly, the fixed-target delivery system also permitted a tenfold reduction in protein sample consumption compared with the more common high-viscosity extrusion-based delivery system. This development creates the prospect of an increase in XFEL project throughput for the field.
Collapse
Affiliation(s)
- Guillaume Gotthard
- Institute of Molecular Biology and BiophysicsETH ZurichRämistrasse 1018092ZürichSwitzerland
- Laboratory of Biomolecular ResearchPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
- Swiss Light SourcePaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Andrea Flores-Ibarra
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730-380KrakowPoland
| | - Melissa Carrillo
- Laboratory of Nanoscale BiologyPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Michal W. Kepa
- Laboratory of Biomolecular ResearchPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Thomas J. Mason
- Laboratory of Biomolecular ResearchPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
- Swiss Light SourcePaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Dennis P. Stegmann
- Swiss Light SourcePaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Bence Olasz
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730-380KrakowPoland
| | - Magdalena Pachota
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730-380KrakowPoland
| | - Florian Dworkowski
- Laboratory for Synchrotron Radiation and FemtochemistryPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Dmitry Ozerov
- Science IT Infrastructure and ServicesPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Bill F. Pedrini
- Laboratory for X-ray Nanoscience and TechnologiesPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Celestino Padeste
- Laboratory of Nanoscale BiologyPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - John H. Beale
- Swiss Light SourcePaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Przemyslaw Nogly
- Institute of Molecular Biology and BiophysicsETH ZurichRämistrasse 1018092ZürichSwitzerland
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730-380KrakowPoland
| |
Collapse
|
2
|
Gu KK, Liu Z, Narayanasamy SR, Shelby ML, Chan N, Coleman MA, Frank M, Kuhl TL. All polymer microfluidic chips-A fixed target sample delivery workhorse for serial crystallography. BIOMICROFLUIDICS 2023; 17:051302. [PMID: 37840537 PMCID: PMC10576627 DOI: 10.1063/5.0167164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The development of x-ray free electron laser (XFEL) light sources and serial crystallography methodologies has led to a revolution in protein crystallography, enabling the determination of previously unobtainable protein structures and near-atomic resolution of otherwise poorly diffracting protein crystals. However, to utilize XFEL sources efficiently demands the continuous, rapid delivery of a large number of difficult-to-handle microcrystals to the x-ray beam. A recently developed fixed-target system, in which crystals of interest are enclosed within a sample holder, which is rastered through the x-ray beam, is discussed in detail in this Perspective. The fixed target is easy to use, maintains sample hydration, and can be readily modified to allow a broad range of sample types and different beamline requirements. Recent innovations demonstrate the potential of such microfluidic-based fixed targets to be an all-around "workhorse" for serial crystallography measurements. This Perspective will summarize recent advancements in microfluidic fixed targets for serial crystallography, examine needs for future development, and guide users in designing, choosing, and utilizing a fixed-target sample delivery device for their system.
Collapse
Affiliation(s)
- Kevin K. Gu
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - Zhongrui Liu
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - Sankar Raju Narayanasamy
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Megan L. Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Nicholas Chan
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | | | | | - Tonya L. Kuhl
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
3
|
Doak RB, Shoeman RL, Gorel A, Barends TRM, Marekha B, Haacke S, Nizinski S, Schlichting I. Dynamic catcher for stabilization of high-viscosity extrusion jets. J Appl Crystallogr 2023; 56:903-907. [PMID: 37284264 PMCID: PMC10241051 DOI: 10.1107/s1600576723003795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
A 'catcher' based on a revolving cylindrical collector is described. The simple and inexpensive device reduces free-jet instabilities inherent to high-viscosity extrusion injection, facilitating delivery of microcrystals for serial diffraction X-ray crystallography.
Collapse
Affiliation(s)
- R. Bruce Doak
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Robert L. Shoeman
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Alexander Gorel
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Thomas R. M. Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Bogdan Marekha
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Institut de Physique et Chimie des Matériaux de Strasbourg, University of Strasbourg – CNRS, Strasbourg, France
| | - Stefan Haacke
- Institut de Physique et Chimie des Matériaux de Strasbourg, University of Strasbourg – CNRS, Strasbourg, France
| | - Stanislaw Nizinski
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Patel SN, Sonani RR, Roy D, Singh NK, Subudhi S, Pabbi S, Madamwar D. Exploring the structural aspects and therapeutic perspectives of cyanobacterial phycobiliproteins. 3 Biotech 2022; 12:224. [PMID: 35975025 PMCID: PMC9375810 DOI: 10.1007/s13205-022-03284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/28/2022] [Indexed: 11/01/2022] Open
Abstract
Phycobiliproteins (PBPs) of cyanobacteria and algae possess unique light harvesting capacity which expand the photosynthetically active region (PAR) and allow them to thrive in extreme niches where higher plants cannot. PBPs of cyanobacteria/algae vary in abundance, types, amino acid composition and in structure as a function of species and the habitat that they grow in. In the present review, the key aspects of structure, stability, and spectral properties of PBPs, and their correlation with ecological niche of cyanobacteria are discussed. Besides their role in light-harvesting, PBPs possess antioxidant, anti-aging, neuroprotective, hepatoprotective and anti-inflammatory properties, which can be used in therapeutics. Recent developments in therapeutic applications of PBPs are reviewed with special focus on 'route of PBPs administration' and 'therapeutic potential of PBP-derived peptide and chromophores'.
Collapse
Affiliation(s)
- Stuti N. Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat 388421 India
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat 388315 India
- Present Address: Małopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Ravi R. Sonani
- Present Address: Małopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 USA
| | - Diya Roy
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Niraj Kumar Singh
- Department of Biotechnology, Shree A. N. Patel PG Institute of Science and Research, Sardar Patel University, Anand, Gujarat 388001 India
- Present Address: Gujarat Biotechnology Research Centre (GBRC), Deaprtment of Science and Technology (DST), Government of Gujarat, Gandhinagar, Gujarat 382011 India
| | - Sanjukta Subudhi
- The Energy and Resources Institute Darbari Seth Block, India Habitat Centre, Lodi Road, New Delhi, 110003 India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat 388421 India
| |
Collapse
|
5
|
Sherrell DA, Lavens A, Wilamowski M, Kim Y, Chard R, Lazarski K, Rosenbaum G, Vescovi R, Johnson JL, Akins C, Chang C, Michalska K, Babnigg G, Foster I, Joachimiak A. Fixed-target serial crystallography at the Structural Biology Center. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1141-1151. [PMID: 36073872 PMCID: PMC9455217 DOI: 10.1107/s1600577522007895] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/05/2022] [Indexed: 05/30/2023]
Abstract
Serial synchrotron crystallography enables the study of protein structures under physiological temperature and reduced radiation damage by collection of data from thousands of crystals. The Structural Biology Center at Sector 19 of the Advanced Photon Source has implemented a fixed-target approach with a new 3D-printed mesh-holder optimized for sample handling. The holder immobilizes a crystal suspension or droplet emulsion on a nylon mesh, trapping and sealing a near-monolayer of crystals in its mother liquor between two thin Mylar films. Data can be rapidly collected in scan mode and analyzed in near real-time using piezoelectric linear stages assembled in an XYZ arrangement, controlled with a graphical user interface and analyzed using a high-performance computing pipeline. Here, the system was applied to two β-lactamases: a class D serine β-lactamase from Chitinophaga pinensis DSM 2588 and L1 metallo-β-lactamase from Stenotrophomonas maltophilia K279a.
Collapse
Affiliation(s)
- Darren A. Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Alex Lavens
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Mateusz Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Youngchang Kim
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Ryan Chard
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Krzysztof Lazarski
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Gerold Rosenbaum
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Rafael Vescovi
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jessica L. Johnson
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Chase Akins
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Changsoo Chang
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Karolina Michalska
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Gyorgy Babnigg
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Ian Foster
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
6
|
Barends TR, Stauch B, Cherezov V, Schlichting I. Serial femtosecond crystallography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:59. [PMID: 36643971 PMCID: PMC9833121 DOI: 10.1038/s43586-022-00141-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the advent of X-ray Free Electron Lasers (XFELs), new, high-throughput serial crystallography techniques for macromolecular structure determination have emerged. Serial femtosecond crystallography (SFX) and related methods provide possibilities beyond canonical, single-crystal rotation crystallography by mitigating radiation damage and allowing time-resolved studies with unprecedented temporal resolution. This primer aims to assist structural biology groups with little or no experience in serial crystallography planning and carrying out a successful SFX experiment. It discusses the background of serial crystallography and its possibilities. Microcrystal growth and characterization methods are discussed, alongside techniques for sample delivery and data processing. Moreover, it gives practical tips for preparing an experiment, what to consider and do during a beamtime and how to conduct the final data analysis. Finally, the Primer looks at various applications of SFX, including structure determination of membrane proteins, investigation of radiation damage-prone systems and time-resolved studies.
Collapse
Affiliation(s)
- Thomas R.M. Barends
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Benjamin Stauch
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Ilme Schlichting
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany,
| |
Collapse
|
7
|
Martin-Garcia JM, Botha S, Hu H, Jernigan R, Castellví A, Lisova S, Gil F, Calisto B, Crespo I, Roy-Chowdhury S, Grieco A, Ketawala G, Weierstall U, Spence J, Fromme P, Zatsepin N, Boer DR, Carpena X. Serial macromolecular crystallography at ALBA Synchrotron Light Source. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:896-907. [PMID: 35511023 PMCID: PMC9070724 DOI: 10.1107/s1600577522002508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The increase in successful adaptations of serial crystallography at synchrotron radiation sources continues. To date, the number of serial synchrotron crystallography (SSX) experiments has grown exponentially, with over 40 experiments reported so far. In this work, we report the first SSX experiments with viscous jets conducted at ALBA beamline BL13-XALOC. Small crystals (15-30 µm) of five soluble proteins (lysozyme, proteinase K, phycocyanin, insulin and α-spectrin-SH3 domain) were suspended in lipidic cubic phase (LCP) and delivered to the X-ray beam with a high-viscosity injector developed at Arizona State University. Complete data sets were collected from all proteins and their high-resolution structures determined. The high quality of the diffraction data collected from all five samples, and the lack of specific radiation damage in the structures obtained in this study, confirm that the current capabilities at the beamline enables atomic resolution determination of protein structures from microcrystals as small as 15 µm using viscous jets at room temperature. Thus, BL13-XALOC can provide a feasible alternative to X-ray free-electron lasers when determining snapshots of macromolecular structures.
Collapse
Affiliation(s)
- Jose M. Martin-Garcia
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, Spanish National Research Council (CSIC), Madrid, Spain
| | - Sabine Botha
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Hao Hu
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Rebecca Jernigan
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Albert Castellví
- Molecular Biology Institute of Barcelona, CSIC, Barcelona, Spain
| | - Stella Lisova
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Fernando Gil
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona, Spain
| | | | - Isidro Crespo
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona, Spain
| | - Shatabdi Roy-Chowdhury
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alice Grieco
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, Spanish National Research Council (CSIC), Madrid, Spain
| | - Gihan Ketawala
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Uwe Weierstall
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - John Spence
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Petra Fromme
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Nadia Zatsepin
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ, USA
- ARC Centre of Excellence in Advance Molecular Physics, La Trobe Institute for Molecular ScienceImaging, Department of Chemistry and Physics, La Trobe University, Melbourne, Australia
| | | | - Xavi Carpena
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
8
|
Nam KH. Beef tallow injection matrix for serial crystallography. Sci Rep 2022; 12:694. [PMID: 35027663 PMCID: PMC8758675 DOI: 10.1038/s41598-021-04714-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Serial crystallography (SX) enables the visualization of the time-resolved molecular dynamics of macromolecular structures at room temperature while minimizing radiation damage. In SX experiments, the delivery of a large number of crystals into an X-ray interaction point in a serial and stable manner is key. Sample delivery using viscous medium maintains the stable injection stream at low flow rates, markedly reducing sample consumption compared with that of a liquid jet injector and is widely applied in SX experiments with low repetition rates. As the sample properties and experimental environment can affect the stability of the injection stream of a viscous medium, it is important to develop sample delivery media with various characteristics to optimize the experimental environment. In this study, a beef tallow injection matrix possessing a higher melting temperature than previously reported fat-based shortening and lard media was introduced as a sample delivery medium and applied to SX. Beef tallow was prepared by heat treating fats from cattle, followed by the removal of soluble impurities from the extract by phase separation. Beef tallow exhibited a very stable injection stream at room temperature and a flow rate of < 10 nL/min. The room-temperature structures of lysozyme and glucose isomerase embedded in beef tallow were successfully determined at 1.55 and 1.60 Å, respectively. The background scattering of beef tallow was higher than that of previously reported fat-based shortening and lard media but negligible for data processing. In conclusion, the beef tallow matrix can be employed for sample delivery in SX experiments conducted at temperatures exceeding room temperature.
Collapse
Affiliation(s)
- Ki Hyun Nam
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea. .,POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
9
|
Pechkova E, Nicolini C, Fiordoro S, Riekel C. Mesoscale Ordering of Phycocyanin Molecules in Langmuir-Blodgett Multilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:86-91. [PMID: 34918934 DOI: 10.1021/acs.langmuir.1c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phycocyanin molecules, which are part of light-harvesting complexes in cyanobacteria, can be assembled into mesoscale multilayer nanofilms by the Langmuir-Blodgett technique. Results obtained by quartz crystal microbalance and atomic force microscopy confirm the homogeneity and reproducibility of phycocyanin Langmuir-Blodgett multilayer deposition. We show by cryo-electron microdiffraction that amorphous phycocyanin Langmuir-Blodgett multilayers form, after annealing at 150 °C and cooling to room temperature, a layered nanofibrillar lattice with rotational disorder. Scanning X-ray nanodiffraction suggests that structural transformation is not homogeneous through the film but limited to patches of up to about 10 μm diameter.
Collapse
Affiliation(s)
- Eugenia Pechkova
- Laboratories of Biophysics and Nanotechnology, Department of Experimental Medicine, University of Genova, Via A. Pastore, 3, 16132 Genova, Italy
- Fondazione EL.B.A - Nicolini, Pradalunga, Bergamo 24020, Italy
| | | | - Stefano Fiordoro
- Laboratories of Biophysics and Nanotechnology, Department of Experimental Medicine, University of Genova, Via A. Pastore, 3, 16132 Genova, Italy
| | - Christian Riekel
- The European Synchrotron, ESRF, CS40220, F-38043 Grenoble Cedex 9, France
| |
Collapse
|
10
|
Insights into Solution Structures of Photosynthetic Protein Complexes from Small-Angle Scattering Methods. CRYSTALS 2021. [DOI: 10.3390/cryst11020203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
High-resolution structures of photosynthetic pigment–protein complexes are often determined using crystallography or cryo-electron microscopy (cryo-EM), which are restricted to the use of protein crystals or to low temperatures, respectively. However, functional studies and biotechnological applications of photosystems necessitate the use of proteins isolated in aqueous solution, so that the relevance of high-resolution structures has to be independently verified. In this regard, small-angle neutron and X-ray scattering (SANS and SAXS, respectively) can serve as the missing link because of their capability to provide structural information for proteins in aqueous solution at physiological temperatures. In the present review, we discuss the principles and prototypical applications of SANS and SAXS using the photosynthetic pigment–protein complexes phycocyanin (PC) and Photosystem I (PSI) as model systems for a water-soluble and for a membrane protein, respectively. For example, the solution structure of PSI was studied using SAXS and SANS with contrast matching. A Guinier analysis reveals that PSI in solution is virtually free of aggregation and characterized by a radius of gyration of about 75 Å. The latter value is about 10% larger than expected from the crystal structure. This is corroborated by an ab initio structure reconstitution, which also shows a slight expansion of Photosystem I in buffer solution at room temperature. In part, this may be due to conformational states accessible by thermally activated protein dynamics in solution at physiological temperatures. The size of the detergent belt is derived by comparison with SANS measurements without detergent match, revealing a monolayer of detergent molecules under proper solubilization conditions.
Collapse
|
11
|
First Experiments in Structural Biology at the European X-ray Free-Electron Laser. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ultrabright pulses produced in X-ray free-electron lasers (XFELs) offer new possibilities for industry and research, particularly for biochemistry and pharmaceuticals. The unprecedented brilliance of these next-generation sources enables structure determination from sub-micron crystals as well as radiation-sensitive proteins. The European X-Ray Free-Electron Laser (EuXFEL), with its first light in 2017, ushered in a new era for ultrabright X-ray sources by providing an unparalleled megahertz-pulse repetition rate, with orders of magnitude more pulses per second than previous XFEL sources. This rapid pulse frequency has significant implications for structure determination; not only will data collection be faster (resulting in more structures per unit time), but experiments requiring large quantities of data, such as time-resolved structures, become feasible in a reasonable amount of experimental time. Early experiments at the SPB/SFX instrument of the EuXFEL demonstrate how such closely-spaced pulses can be successfully implemented in otherwise challenging experiments, such as time-resolved studies.
Collapse
|
12
|
Lee D, Park S, Lee K, Kim J, Park G, Nam KH, Baek S, Chung WK, Lee JL, Cho Y, Park J. Application of a high-throughput microcrystal delivery system to serial femtosecond crystallography. J Appl Crystallogr 2020; 53:477-485. [PMID: 32280322 PMCID: PMC7133064 DOI: 10.1107/s1600576720002423] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/20/2020] [Indexed: 01/26/2023] Open
Abstract
Microcrystal delivery methods are pivotal in the use of serial femtosecond crystallography (SFX) to resolve the macromolecular structures of proteins. Here, the development of a novel technique and instruments for efficiently delivering microcrystals for SFX are presented. The new method, which relies on a one-dimensional fixed-target system that includes a microcrystal container, consumes an extremely low amount of sample compared with conventional two-dimensional fixed-target techniques at ambient temperature. This novel system can deliver soluble microcrystals without highly viscous carrier media and, moreover, can be used as a microcrystal growth device for SFX. Diffraction data collection utilizing this advanced technique along with a real-time visual servo scan system has been successfully demonstrated for the structure determination of proteinase K microcrystals at 1.85 Å resolution.
Collapse
Affiliation(s)
- Donghyeon Lee
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro, Pohang, 37673, Republic of Korea
| | - Sehan Park
- PAL-XFEL, Pohang Accelerator Laboratory, 80 Jigok-ro 127 beongil, Pohang, 37673, Republic of Korea
| | - Keondo Lee
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro, Pohang, 37673, Republic of Korea
| | - Jangwoo Kim
- PAL-XFEL, Pohang Accelerator Laboratory, 80 Jigok-ro 127 beongil, Pohang, 37673, Republic of Korea
| | - Gisu Park
- PAL-XFEL, Pohang Accelerator Laboratory, 80 Jigok-ro 127 beongil, Pohang, 37673, Republic of Korea
| | - Ki Hyun Nam
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seoul, 02841, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seoul, 02841, Republic of Korea
| | - Sangwon Baek
- Department of Materials Science and Engineering, POSTECH, 77 Cheongam-Ro, Pohang, 37673, Republic of Korea
| | - Wan Kyun Chung
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro, Pohang, 37673, Republic of Korea
| | - Jong-Lam Lee
- Department of Materials Science and Engineering, POSTECH, 77 Cheongam-Ro, Pohang, 37673, Republic of Korea
| | - Yunje Cho
- Department of Life Sciences, POSTECH, 77 Cheongam-Ro, Pohang, 37673, Republic of Korea
| | - Jaehyun Park
- PAL-XFEL, Pohang Accelerator Laboratory, 80 Jigok-ro 127 beongil, Pohang, 37673, Republic of Korea
| |
Collapse
|
13
|
Abstract
The advent of the X-ray free electron laser (XFEL) in the last decade created the discipline of serial crystallography but also the challenge of how crystal samples are delivered to X-ray. Early sample delivery methods demonstrated the proof-of-concept for serial crystallography and XFEL but were beset with challenges of high sample consumption, jet clogging and low data collection efficiency. The potential of XFEL and serial crystallography as the next frontier of structural solution by X-ray for small and weakly diffracting crystals and provision of ultra-fast time-resolved structural data spawned a huge amount of scientific interest and innovation. To utilize the full potential of XFEL and broaden its applicability to a larger variety of biological samples, researchers are challenged to develop better sample delivery methods. Thus, sample delivery is one of the key areas of research and development in the serial crystallography scientific community. Sample delivery currently falls into three main systems: jet-based methods, fixed-target chips, and drop-on-demand. Huge strides have since been made in reducing sample consumption and improving data collection efficiency, thus enabling the use of XFEL for many biological systems to provide high-resolution, radiation damage-free structural data as well as time-resolved dynamics studies. This review summarizes the current main strategies in sample delivery and their respective pros and cons, as well as some future direction.
Collapse
|
14
|
Viscosity-adjustable grease matrices for serial nanocrystallography. Sci Rep 2020; 10:1371. [PMID: 31992735 PMCID: PMC6987181 DOI: 10.1038/s41598-020-57675-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/30/2019] [Indexed: 11/26/2022] Open
Abstract
Serial femtosecond crystallography (SFX) has enabled determination of room temperature structures of proteins with minimum radiation damage. A highly viscous grease matrix acting as a crystal carrier for serial sample loading at a low flow rate of ~0.5 μl min−1 was introduced into the beam path of X-ray free-electron laser. This matrix makes it possible to determine the protein structure with a sample consumption of less than 1 mg of the protein. The viscosity of the matrix is an important factor in maintaining a continuous and stable sample column from a nozzle of a high viscosity micro-extrusion injector for serial sample loading. Using conventional commercial grease (an oil-based, viscous agent) with insufficient control of viscosity in a matrix often gives an unexpectedly low viscosity, providing an unstable sample stream, with effects such as curling of the stream. Adjustment of the grease viscosity is extremely difficult since the commercial grease contains unknown compounds, which may act as unexpected inhibitors of proteins. This study introduces two novel grease matrix carriers comprising known compounds with a viscosity higher than that of conventional greases, to determine the proteinase K structure from nano-/microcrystals.
Collapse
|
15
|
Nam KH. Shortening injection matrix for serial crystallography. Sci Rep 2020; 10:107. [PMID: 31919476 PMCID: PMC6952439 DOI: 10.1038/s41598-019-56135-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/06/2019] [Indexed: 11/11/2022] Open
Abstract
Serial crystallography allows crystal structures to be determined at room temperature through the steady delivery of crystals to the X-ray interaction point. Viscous delivery media are advantageous because they afford efficient sample delivery from an injector or syringe at a low flow rate. Hydrophobic delivery media, such as lipidic cubic phase (LCP) or grease, provide a stable injection stream and are widely used. The development of new hydrophobic delivery materials can expand opportunities for future SX studies with various samples. Here, I introduce fat-based shortening as a delivery medium for SX experiments. This material is commercially available at low cost and is straightforward to handle because its phase (i.e., solid or liquid) can be controlled by temperature. Shortening was extruded from a syringe needle in a stable injection stream even below 200 nl/min. X-ray exposed shortening produced several background scattering rings, which have similar or lower intensities than those of LCP and contribute negligibly to data processing. Serial millisecond crystallography was performed using two shortening delivery media, and the room temperature crystal structures of lysozyme and glucose isomerase were successfully determined at resolutions of 1.5–2.0 Å. Therefore, shortening can be used as a sample delivery medium in SX experiments.
Collapse
Affiliation(s)
- Ki Hyun Nam
- Division of Biotechnology, Korea University, Seoul, Republic of Korea. .,Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea. .,Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
16
|
Huang CY, Olieric V, Caffrey M, Wang M. In Meso In Situ Serial X-Ray Crystallography (IMISX): A Protocol for Membrane Protein Structure Determination at the Swiss Light Source. Methods Mol Biol 2020; 2127:293-319. [PMID: 32112330 DOI: 10.1007/978-1-0716-0373-4_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The lipid cubic phases (LCP) have enabled the determination of many important high-resolution structures of membrane proteins such as G-protein-coupled receptors, photosensitive proteins, enzymes, channels, and transporters. However, harvesting the crystals from the glass or plastic plates in which crystals grow is challenging. The in meso in situ serial X-ray crystallography (IMISX) method uses thin plastic windowed plates that minimize LCP crystal manipulation. The method, which is compatible with high-throughput in situ measurements, allows systematic diffraction screening and rapid data collection from hundreds of microcrystals in in meso crystallization wells without direct crystal harvesting. In this chapter, we describe an IMISX protocol for in situ serial X-ray data collection of LCP-grown crystals at both cryogenic and room temperatures which includes the crystallization setup, sample delivery, automated serial diffraction data collection, and experimental phasing. We also detail how the IMISX method was applied successfully for the structure determination of two novel targets-the undecaprenyl-pyrophosphate phosphatase BacA and the chemokine G-protein-coupled receptor CCR2A.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland.
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Martin Caffrey
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| |
Collapse
|
17
|
Zhao F, Zhang B, Yan E, Sun B, Wang Z, He J, Yin D. A guide to sample delivery systems for serial crystallography. FEBS J 2019; 286:4402-4417. [PMID: 31618529 DOI: 10.1111/febs.15099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Feng‐Zhu Zhao
- School of Life Sciences Northwestern Polytechnical University Xi'an China
| | - Bin Zhang
- School of Life Sciences Northwestern Polytechnical University Xi'an China
| | - Er‐Kai Yan
- School of Life Sciences Northwestern Polytechnical University Xi'an China
| | - Bo Sun
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai China
| | - Zhi‐Jun Wang
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai China
| | - Jian‐Hua He
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai China
| | - Da‐Chuan Yin
- School of Life Sciences Northwestern Polytechnical University Xi'an China
- Shenzhen Research Institute Northwestern Polytechnical University Shenzhen China
| |
Collapse
|
18
|
Lieske J, Cerv M, Kreida S, Komadina D, Fischer J, Barthelmess M, Fischer P, Pakendorf T, Yefanov O, Mariani V, Seine T, Ross BH, Crosas E, Lorbeer O, Burkhardt A, Lane TJ, Guenther S, Bergtholdt J, Schoen S, Törnroth-Horsefield S, Chapman HN, Meents A. On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies. IUCRJ 2019; 6:714-728. [PMID: 31316815 PMCID: PMC6608620 DOI: 10.1107/s2052252519007395] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/21/2019] [Indexed: 05/18/2023]
Abstract
Efficient and reliable sample delivery has remained one of the bottlenecks for serial crystallography experiments. Compared with other methods, fixed-target sample delivery offers the advantage of significantly reduced sample consumption and shorter data collection times owing to higher hit rates. Here, a new method of on-chip crystallization is reported which allows the efficient and reproducible growth of large numbers of protein crystals directly on micro-patterned silicon chips for in-situ serial crystallography experiments. Crystals are grown by sitting-drop vapor diffusion and previously established crystallization conditions can be directly applied. By reducing the number of crystal-handling steps, the method is particularly well suited for sensitive crystal systems. Excessive mother liquor can be efficiently removed from the crystals by blotting, and no sealing of the fixed-target sample holders is required to prevent the crystals from dehydrating. As a consequence, 'naked' crystals are obtained on the chip, resulting in very low background scattering levels and making the crystals highly accessible for external manipulation such as the application of ligand solutions. Serial diffraction experiments carried out at cryogenic temperatures at a synchrotron and at room temperature at an X-ray free-electron laser yielded high-quality X-ray structures of the human membrane protein aquaporin 2 and two new ligand-bound structures of thermolysin and the human kinase DRAK2. The results highlight the applicability of the method for future high-throughput on-chip screening of pharmaceutical compounds.
Collapse
Affiliation(s)
- Julia Lieske
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Maximilian Cerv
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Stefan Kreida
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Kemicentrum, 221 00 Lund, Sweden
| | - Dana Komadina
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Janine Fischer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Miriam Barthelmess
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Pontus Fischer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Tim Pakendorf
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Thomas Seine
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- EMBL, Notkestrasse 85, 22607 Hamburg, Germany
| | - Breyan H. Ross
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Eva Crosas
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Olga Lorbeer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Anja Burkhardt
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Thomas J. Lane
- Bioscience Division and Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sebastian Guenther
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Julian Bergtholdt
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Silvan Schoen
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Susanna Törnroth-Horsefield
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Kemicentrum, 221 00 Lund, Sweden
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Alke Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
19
|
Mishin A, Gusach A, Luginina A, Marin E, Borshchevskiy V, Cherezov V. An outlook on using serial femtosecond crystallography in drug discovery. Expert Opin Drug Discov 2019; 14:933-945. [PMID: 31184514 DOI: 10.1080/17460441.2019.1626822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: X-ray crystallography has made important contributions to modern drug development but its application to many important drug targets has been extremely challenging. The recent emergence of X-ray free electron lasers (XFELs) and advancements in serial femtosecond crystallography (SFX) have offered new opportunities to overcome limitations of traditional crystallography to accelerate the structure-based drug discovery (SBDD) process. Areas covered: In this review, the authors describe the general principles of X-ray generation and the main properties of XFEL beams, outline details of SFX data collection and processing, and summarize the progress in the development of associated instrumentation for sample delivery and X-ray detection. An overview of the SFX applications to various important drug targets such as membrane proteins is also provided. Expert opinion: While SFX has already made clear advancements toward the understanding of the structure and dynamics of several major drug targets, its robust application in SBDD still needs further developments of new high-throughput techniques for sample production, automation of crystal delivery and data collection, as well as for processing and storage of large amounts of data. The expansion of the available XFEL beamtime is a key to the success of SFX in SBDD.
Collapse
Affiliation(s)
- Alexey Mishin
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Anastasiia Gusach
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Aleksandra Luginina
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Egor Marin
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Valentin Borshchevskiy
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Vadim Cherezov
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia.,b Bridge Institute, Departments of Chemistry and Biological Sciences, University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
20
|
Park JH, Yun JH, Shi Y, Han J, Li X, Jin Z, Kim T, Park J, Park S, Liu H, Lee W. Non-Cryogenic Structure and Dynamics of HIV-1 Integrase Catalytic Core Domain by X-ray Free-Electron Lasers. Int J Mol Sci 2019; 20:E1943. [PMID: 31010024 PMCID: PMC6514806 DOI: 10.3390/ijms20081943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022] Open
Abstract
HIV-1 integrase (HIV-1 IN) is an enzyme produced by the HIV-1 virus that integrates genetic material of the virus into the DNA of infected human cells. HIV-1 IN acts as a key component of the Retroviral Pre-Integration Complex (PIC). Protein dynamics could play an important role during the catalysis of HIV-1 IN; however, this process has not yet been fully elucidated. X-ray free electron laser (XFEL) together with nuclear magnetic resonance (NMR) could provide information regarding the dynamics during this catalysis reaction. Here, we report the non-cryogenic crystal structure of HIV-1 IN catalytic core domain at 2.5 Å using microcrystals in XFELs. Compared to the cryogenic structure at 2.1 Å using conventional synchrotron crystallography, there was a good agreement between the two structures, except for a catalytic triad formed by Asp64, Asp116, and Glu152 (DDE) and the lens epithelium-derived growth factor binding sites. The helix III region of the 140-153 residues near the active site and the DDE triad show a higher dynamic profile in the non-cryogenic structure, which is comparable to dynamics data obtained from NMR spectroscopy in solution state.
Collapse
Affiliation(s)
- Jae-Hyun Park
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Ji-Hye Yun
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Yingchen Shi
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China.
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China.
| | - Jeongmin Han
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Xuanxuan Li
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China.
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China.
| | - Zeyu Jin
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Taehee Kim
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jaehyun Park
- Pohang Accelerator Laboratory, Pohang 37673, Korea.
| | - Sehan Park
- Pohang Accelerator Laboratory, Pohang 37673, Korea.
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China.
| | - Weontae Lee
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
21
|
Nam KH. Sample Delivery Media for Serial Crystallography. Int J Mol Sci 2019; 20:E1094. [PMID: 30836596 PMCID: PMC6429298 DOI: 10.3390/ijms20051094] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/19/2023] Open
Abstract
X-ray crystallographic methods can be used to visualize macromolecules at high resolution. This provides an understanding of molecular mechanisms and an insight into drug development and rational engineering of enzymes used in the industry. Although conventional synchrotron-based X-ray crystallography remains a powerful tool for understanding molecular function, it has experimental limitations, including radiation damage, cryogenic temperature, and static structural information. Serial femtosecond crystallography (SFX) using X-ray free electron laser (XFEL) and serial millisecond crystallography (SMX) using synchrotron X-ray have recently gained attention as research methods for visualizing macromolecules at room temperature without causing or reducing radiation damage, respectively. These techniques provide more biologically relevant structures than traditional X-ray crystallography at cryogenic temperatures using a single crystal. Serial femtosecond crystallography techniques visualize the dynamics of macromolecules through time-resolved experiments. In serial crystallography (SX), one of the most important aspects is the delivery of crystal samples efficiently, reliably, and continuously to an X-ray interaction point. A viscous delivery medium, such as a carrier matrix, dramatically reduces sample consumption, contributing to the success of SX experiments. This review discusses the preparation and criteria for the selection and development of a sample delivery medium and its application for SX.
Collapse
Affiliation(s)
- Ki Hyun Nam
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Korea.
| |
Collapse
|
22
|
Grünbein ML, Nass Kovacs G. Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr D Struct Biol 2019; 75:178-191. [PMID: 30821706 PMCID: PMC6400261 DOI: 10.1107/s205979831801567x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
The high peak brilliance and femtosecond pulse duration of X-ray free-electron lasers (XFELs) provide new scientific opportunities for experiments in physics, chemistry and biology. In structural biology, one of the major applications is serial femtosecond crystallography. The intense XFEL pulse results in the destruction of any exposed microcrystal, making serial data collection mandatory. This requires a high-throughput serial approach to sample delivery. To this end, a number of such sample-delivery techniques have been developed, some of which have been ported to synchrotron sources, where they allow convenient low-dose data collection at room temperature. Here, the current sample-delivery techniques used at XFEL and synchrotron sources are reviewed, with an emphasis on liquid injection and high-viscosity extrusion, including their application for time-resolved experiments. The challenges associated with sample delivery at megahertz repetition-rate XFELs are also outlined.
Collapse
Affiliation(s)
- Marie Luise Grünbein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Shao C, Liu Z, Yang H, Wang S, Burley SK. Outlier analyses of the Protein Data Bank archive using a probability-density-ranking approach. Sci Data 2018; 5:180293. [PMID: 30532050 PMCID: PMC6289109 DOI: 10.1038/sdata.2018.293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/12/2018] [Indexed: 02/02/2023] Open
Abstract
Outlier analyses are central to scientific data assessments. Conventional outlier identification methods do not work effectively for Protein Data Bank (PDB) data, which are characterized by heavy skewness and the presence of bounds and/or long tails. We have developed a data-driven nonparametric method to identify outliers in PDB data based on kernel probability density estimation. Unlike conventional outlier analyses based on location and scale, Probability Density Ranking can be used for robust assessments of distance from other observations. Analyzing PDB data from the vantage points of probability and frequency enables proper outlier identification, which is important for quality control during deposition-validation-biocuration of new three-dimensional structure data. Ranking of Probability Density also permits use of Most Probable Range as a robust measure of data dispersion that is more compact than Interquartile Range. The Probability-Density-Ranking approach can be employed to analyze outliers and data-spread on any large data set with continuous distribution.
Collapse
Affiliation(s)
- Chenghua Shao
- RCSB Protein Data Bank, Rutgers, The State University of New
Jersey, Piscataway,
NJ
08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State
University of New Jersey, Piscataway, NJ
08854, USA
| | - Zonghong Liu
- Department of Statistics and Biostatistics, Rutgers, The State
University of New Jersey, New
Brunswick, NJ,
08903, USA
| | - Huanwang Yang
- RCSB Protein Data Bank, Rutgers, The State University of New
Jersey, Piscataway,
NJ
08854, USA
| | - Sijian Wang
- Institute for Quantitative Biomedicine, Rutgers, The State
University of New Jersey, Piscataway, NJ
08854, USA
- Department of Statistics and Biostatistics, Rutgers, The State
University of New Jersey, New
Brunswick, NJ,
08903, USA
| | - Stephen K. Burley
- RCSB Protein Data Bank, Rutgers, The State University of New
Jersey, Piscataway,
NJ
08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State
University of New Jersey, Piscataway, NJ
08854, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State
University of New Jersey, New
Brunswick, NJ,
08903, USA
- RCSB Protein Data Bank, San Diego Supercomputer Center and
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California
San Diego, La Jolla,
CA
92093, USA
| |
Collapse
|
24
|
Lan TY, Wierman JL, Tate MW, Philipp HT, Martin-Garcia JM, Zhu L, Kissick D, Fromme P, Fischetti RF, Liu W, Elser V, Gruner SM. Solving protein structure from sparse serial microcrystal diffraction data at a storage-ring synchrotron source. IUCRJ 2018; 5:548-558. [PMID: 30224958 PMCID: PMC6126656 DOI: 10.1107/s205225251800903x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/20/2018] [Indexed: 05/29/2023]
Abstract
In recent years, the success of serial femtosecond crystallography and the paucity of beamtime at X-ray free-electron lasers have motivated the development of serial microcrystallography experiments at storage-ring synchrotron sources. However, especially at storage-ring sources, if a crystal is too small it will have suffered significant radiation damage before diffracting a sufficient number of X-rays into Bragg peaks for peak-indexing software to determine the crystal orientation. As a consequence, the data frames of small crystals often cannot be indexed and are discarded. Introduced here is a method based on the expand-maximize-compress (EMC) algorithm to solve protein structures, specifically from data frames for which indexing methods fail because too few X-rays are diffracted into Bragg peaks. The method is demonstrated on a real serial microcrystallography data set whose signals are too weak to be indexed by conventional methods. In spite of the daunting background scatter from the sample-delivery medium, it was still possible to solve the protein structure at 2.1 Å resolution. The ability of the EMC algorithm to analyze weak data frames will help to reduce sample consumption. It will also allow serial microcrystallography to be performed with crystals that are otherwise too small to be feasibly analyzed at storage-ring sources.
Collapse
Affiliation(s)
- Ti-Yen Lan
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer L. Wierman
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Macromolecular Diffraction Facility at CHESS (MacCHESS), Cornell University, Ithaca, NY 14853, USA
| | - Mark W. Tate
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Hugh T. Philipp
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jose M. Martin-Garcia
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Lan Zhu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - David Kissick
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Petra Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Robert F. Fischetti
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Wei Liu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Veit Elser
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Sol M. Gruner
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Macromolecular Diffraction Facility at CHESS (MacCHESS), Cornell University, Ithaca, NY 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
25
|
Ishchenko A, Gati C, Cherezov V. Structural biology of G protein-coupled receptors: new opportunities from XFELs and cryoEM. Curr Opin Struct Biol 2018; 51:44-52. [PMID: 29554543 DOI: 10.1016/j.sbi.2018.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors mediate cell signaling and regulate the majority of sensory and physiological processes in the human body. Recent breakthroughs in cryo-electron microscopy and X-ray free electron lasers have accelerated structural studies of difficult-to-crystallize receptors and their signaling complexes, and have opened up new opportunities in understanding conformational dynamics and visualizing the process of receptor activation with unprecedented spatial and temporal resolution. Here, we summarize major milestones and challenges associated with the application of these techniques and outline future directions in their development with a focus on membrane protein structural biology.
Collapse
Affiliation(s)
- Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Cornelius Gati
- SLAC National Accelerator Laboratory, Bioscience Division, Menlo Park, CA 94025, USA; Stanford University, Department of Structural Biology, Stanford, CA 94305, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia.
| |
Collapse
|
26
|
Lee DB, Kim JM, Seok JH, Lee JH, Jo JD, Mun JY, Conrad C, Coe J, Nelson G, Hogue B, White TA, Zatsepin N, Weierstall U, Barty A, Chapman H, Fromme P, Spence J, Chung MS, Oh CH, Kim KH. Supersaturation-controlled microcrystallization and visualization analysis for serial femtosecond crystallography. Sci Rep 2018; 8:2541. [PMID: 29416086 PMCID: PMC5803221 DOI: 10.1038/s41598-018-20899-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/23/2018] [Indexed: 11/09/2022] Open
Abstract
Time-resolved serial femtosecond crystallography with X-ray free electron laser (XFEL) holds the potential to view fast reactions occurring at near-physiological temperature. However, production and characterization of homogeneous micron-sized protein crystals at high density remain a bottleneck, due to the lack of the necessary equipments in ordinary laboratories. We describe here supersaturation-controlled microcrystallization and visualization and analysis tools that can be easily used in any laboratory. The microcrystallization conditions of the influenza virus hemagglutinin were initially obtained with low reproducibility, which was improved by employing a rapid evaporation of hanging drops. Supersaturation-controlled microcrystallization was then developed in a vapor diffusion mode, where supersaturation was induced by evaporation in hanging drops sequentially for durations ranging from 30 sec to 3 min, depending on the protein. It was applied successfully to the microcrystal formation of lysozyme, ferritin and hemagglutinin with high density. Moreover, visualization and analysis tools were developed to characterize the microcrystals observed by light microscopy. The size and density distributions of microcrystals analyzed by the tools were found to be consistent with the results of manual analysis, further validated by high-resolution microscopic analyses. Our supersaturation-controlled microcrystallization and visualization and analysis tools will provide universal access to successful XFEL studies.
Collapse
Affiliation(s)
- Dan Bi Lee
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, Korea
| | - Jong-Min Kim
- Department of Electronics & Information Engineering, Korea University, Sejong, Korea
| | - Jong Hyeon Seok
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, Korea
| | - Ji-Hye Lee
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, Korea
| | - Jae Deok Jo
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, Korea
| | - Ji Young Mun
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Korea
| | - Chelsie Conrad
- Department of Chemistry, Arizona State University, Tempe, Arizona, USA
| | - Jesse Coe
- Department of Chemistry, Arizona State University, Tempe, Arizona, USA
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Brenda Hogue
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Nadia Zatsepin
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Henry Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Petra Fromme
- Department of Chemistry, Arizona State University, Tempe, Arizona, USA
| | - John Spence
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Mi Sook Chung
- Department of Food and Nutrition, Duksung Women's University, Seoul, Korea
| | - Chang-Hyun Oh
- Department of Electronics & Information Engineering, Korea University, Sejong, Korea.
| | - Kyung Hyun Kim
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, Korea.
| |
Collapse
|
27
|
X-ray free electron laser: opportunities for drug discovery. Essays Biochem 2017; 61:529-542. [PMID: 29118098 DOI: 10.1042/ebc20170031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/16/2023]
Abstract
Past decades have shown the impact of structural information derived from complexes of drug candidates with their protein targets to facilitate the discovery of safe and effective medicines. Despite recent developments in single particle cryo-electron microscopy, X-ray crystallography has been the main method to derive structural information. The unique properties of X-ray free electron laser (XFEL) with unmet peak brilliance and beam focus allow X-ray diffraction data recording and successful structure determination from smaller and weaker diffracting crystals shortening timelines in crystal optimization. To further capitalize on the XFEL advantage, innovations in crystal sample delivery for the X-ray experiment, data collection and processing methods are required. This development was a key contributor to serial crystallography allowing structure determination at room temperature yielding physiologically more relevant structures. Adding the time resolution provided by the femtosecond X-ray pulse will enable monitoring and capturing of dynamic processes of ligand binding and associated conformational changes with great impact to the design of candidate drug compounds.
Collapse
|
28
|
Meents A, Wiedorn MO, Srajer V, Henning R, Sarrou I, Bergtholdt J, Barthelmess M, Reinke PYA, Dierksmeyer D, Tolstikova A, Schaible S, Messerschmidt M, Ogata CM, Kissick DJ, Taft MH, Manstein DJ, Lieske J, Oberthuer D, Fischetti RF, Chapman HN. Pink-beam serial crystallography. Nat Commun 2017; 8:1281. [PMID: 29097720 PMCID: PMC5668288 DOI: 10.1038/s41467-017-01417-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/14/2017] [Indexed: 02/02/2023] Open
Abstract
Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, "pink", beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized for very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.
Collapse
Affiliation(s)
- A Meents
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany. .,Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany.
| | - M O Wiedorn
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - V Srajer
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - R Henning
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - I Sarrou
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - J Bergtholdt
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - M Barthelmess
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - P Y A Reinke
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - D Dierksmeyer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - A Tolstikova
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - S Schaible
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - M Messerschmidt
- National Science Foundation BioXFEL Science and Technology Center, 700 Ellicott Street, Buffalo, NY, 14203, USA
| | - C M Ogata
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - D J Kissick
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - M H Taft
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - D J Manstein
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - J Lieske
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - D Oberthuer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - R F Fischetti
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - H N Chapman
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| |
Collapse
|
29
|
Jiang L, Wang Y, Yin Q, Liu G, Liu H, Huang Y, Li B. Phycocyanin: A Potential Drug for Cancer Treatment. J Cancer 2017; 8:3416-3429. [PMID: 29151925 PMCID: PMC5687155 DOI: 10.7150/jca.21058] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
Phycocyanin isolated from marine organisms has the characteristics of high efficiency and low toxicity, and it can be used as a functional food. It has been reported that phycocyanin has anti-oxidative function, anti-inflammatory activity, anti-cancer function, immune enhancement function, liver and kidney protection pharmacological effects. Thus, phycocyanin has an important development and utilization as a potential drug, and phycocyanin has become a new hot spot in the field of drug research. So far, there are more and more studies have shown that phycocyanin has the anti-cancer effect, which can block the proliferation of cancer cells and kill cancer cells. Phycocyanin exerts anti-cancer activity by blocking tumor cell cell cycle, inducing tumor cell apoptosis and autophagy, thereby phycocyanin can serve as a promising anti-cancer agent. This review discusses the therapeutic use of phycocyanin and focuses on the latest advances of phycocyanin as a promising anti-cancer drug.
Collapse
Affiliation(s)
- Liangqian Jiang
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Yujuan Wang
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Qifeng Yin
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Huihui Liu
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Yajing Huang
- Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Bing Li
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| |
Collapse
|
30
|
Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nat Commun 2017; 8:542. [PMID: 28912485 PMCID: PMC5599499 DOI: 10.1038/s41467-017-00630-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022] Open
Abstract
Historically, room-temperature structure determination was succeeded by cryo-crystallography to mitigate radiation damage. Here, we demonstrate that serial millisecond crystallography at a synchrotron beamline equipped with high-viscosity injector and high frame-rate detector allows typical crystallographic experiments to be performed at room-temperature. Using a crystal scanning approach, we determine the high-resolution structure of the radiation sensitive molybdenum storage protein, demonstrate soaking of the drug colchicine into tubulin and native sulfur phasing of the human G protein-coupled adenosine receptor. Serial crystallographic data for molecular replacement already converges in 1,000–10,000 diffraction patterns, which we collected in 3 to maximally 82 minutes. Compared with serial data we collected at a free-electron laser, the synchrotron data are of slightly lower resolution, however fewer diffraction patterns are needed for de novo phasing. Overall, the data we collected by room-temperature serial crystallography are of comparable quality to cryo-crystallographic data and can be routinely collected at synchrotrons. Serial crystallography was developed for protein crystal data collection with X-ray free-electron lasers. Here the authors present several examples which show that serial crystallography using high-viscosity injectors can also be routinely employed for room-temperature data collection at synchrotrons.
Collapse
|
31
|
Roedig P, Ginn HM, Pakendorf T, Sutton G, Harlos K, Walter TS, Meyer J, Fischer P, Duman R, Vartiainen I, Reime B, Warmer M, Brewster AS, Young ID, Michels-Clark T, Sauter NK, Kotecha A, Kelly J, Rowlands DJ, Sikorsky M, Nelson S, Damiani DS, Alonso-Mori R, Ren J, Fry EE, David C, Stuart DI, Wagner A, Meents A. High-speed fixed-target serial virus crystallography. Nat Methods 2017; 14:805-810. [PMID: 28628129 PMCID: PMC5588887 DOI: 10.1038/nmeth.4335] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/15/2017] [Indexed: 12/19/2022]
Abstract
We report a method for serial X-ray crystallography at X-ray free-electron lasers (XFELs), which allows for full use of the current 120-Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micropatterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery, we were able to determine the crystal structures of the picornavirus bovine enterovirus 2 (BEV2) and the cytoplasmic polyhedrosis virus type 18 polyhedrin, with total data collection times of less than 14 and 10 min, respectively. Our method requires only micrograms of sample and should therefore broaden the applicability of serial femtosecond crystallography to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for most efficient use of the limited beam time available at XFELs and should enable a substantial increase in sample throughput at these facilities.
Collapse
Affiliation(s)
- Philip Roedig
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Helen M. Ginn
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source Limited, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Tim Pakendorf
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Geoff Sutton
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas S. Walter
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jan Meyer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Pontus Fischer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Ramona Duman
- Diamond Light Source Limited, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Ismo Vartiainen
- Institute of Photonics, University of Eastern Finland, Joensuu, Finland
| | - Bernd Reime
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Martin Warmer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Iris D. Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Tara Michels-Clark
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - James Kelly
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- The Pirbright Institute, Pirbright, United Kingdom
| | - David J. Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Marcin Sikorsky
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Silke Nelson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Daniel S. Damiani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Jingshan Ren
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Elizabeth E. Fry
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - David I. Stuart
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source Limited, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Armin Wagner
- Diamond Light Source Limited, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Alke Meents
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Center for Free Electron Laser Science (CFEL), Hamburg, Germany
| |
Collapse
|
32
|
Johansson LC, Stauch B, Ishchenko A, Cherezov V. A Bright Future for Serial Femtosecond Crystallography with XFELs. Trends Biochem Sci 2017; 42:749-762. [PMID: 28733116 DOI: 10.1016/j.tibs.2017.06.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022]
Abstract
X-ray free electron lasers (XFELs) have the potential to revolutionize macromolecular structural biology due to the unique combination of spatial coherence, extreme peak brilliance, and short duration of X-ray pulses. A recently emerged serial femtosecond (fs) crystallography (SFX) approach using XFEL radiation overcomes some of the biggest hurdles of traditional crystallography related to radiation damage through the diffraction-before-destruction principle. Intense fs XFEL pulses enable high-resolution room-temperature structure determination of difficult-to-crystallize biological macromolecules, while simultaneously opening a new era of time-resolved structural studies. Here, we review the latest developments in instrumentation, sample delivery, data analysis, crystallization methods, and applications of SFX to important biological questions, and conclude with brief insights into the bright future of structural biology using XFELs.
Collapse
Affiliation(s)
- Linda C Johansson
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA
| | - Benjamin Stauch
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA
| | - Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA.
| |
Collapse
|
33
|
Martin-Garcia JM, Conrad CE, Nelson G, Stander N, Zatsepin NA, Zook J, Zhu L, Geiger J, Chun E, Kissick D, Hilgart MC, Ogata C, Ishchenko A, Nagaratnam N, Roy-Chowdhury S, Coe J, Subramanian G, Schaffer A, James D, Ketwala G, Venugopalan N, Xu S, Corcoran S, Ferguson D, Weierstall U, Spence JCH, Cherezov V, Fromme P, Fischetti RF, Liu W. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation. IUCRJ 2017; 4:439-454. [PMID: 28875031 PMCID: PMC5571807 DOI: 10.1107/s205225251700570x] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/13/2017] [Indexed: 05/17/2023]
Abstract
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.
Collapse
Affiliation(s)
- Jose M. Martin-Garcia
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Chelsie E. Conrad
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Garrett Nelson
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287, USA
| | - Natasha Stander
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287, USA
| | - Nadia A. Zatsepin
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287, USA
| | - James Zook
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Lan Zhu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - James Geiger
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Eugene Chun
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - David Kissick
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Mark C. Hilgart
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Craig Ogata
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, 3430 South Vermont Avenue, MC 3303, Los Angeles, CA 90089, USA
| | - Nirupa Nagaratnam
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Shatabdi Roy-Chowdhury
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jesse Coe
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Ganesh Subramanian
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287, USA
| | - Alexander Schaffer
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Daniel James
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Gihan Ketwala
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287, USA
| | - Nagarajan Venugopalan
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Shenglan Xu
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Stephen Corcoran
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Dale Ferguson
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Uwe Weierstall
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287, USA
| | - John C. H. Spence
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, 3430 South Vermont Avenue, MC 3303, Los Angeles, CA 90089, USA
| | - Petra Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Robert F. Fischetti
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Wei Liu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
34
|
Kovácsová G, Grünbein ML, Kloos M, Barends TRM, Schlesinger R, Heberle J, Kabsch W, Shoeman RL, Doak RB, Schlichting I. Viscous hydrophilic injection matrices for serial crystallography. IUCRJ 2017; 4:400-410. [PMID: 28875027 PMCID: PMC5571803 DOI: 10.1107/s2052252517005140] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/11/2017] [Indexed: 05/21/2023]
Abstract
Serial (femtosecond) crystallography at synchrotron and X-ray free-electron laser (XFEL) sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates - gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP) as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydro-gels as viscous injection matrices is described, namely sodium carb-oxy-methyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new matrices afford very stable adjustable streams suitable for time-resolved measurements.
Collapse
Affiliation(s)
- Gabriela Kovácsová
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Marie Luise Grünbein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Marco Kloos
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Thomas R. M. Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Ramona Schlesinger
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Wolfgang Kabsch
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Robert L. Shoeman
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - R. Bruce Doak
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| |
Collapse
|
35
|
Crystal Growth of High-Quality Protein Crystals under the Presence of an Alternant Electric Field in Pulse-Wave Mode, and a Strong Magnetic Field with Radio Frequency Pulses Characterized by X-ray Diffraction. CRYSTALS 2017. [DOI: 10.3390/cryst7060179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The first part of this research was devoted to investigating the effect of alternate current (AC) using four different types of wave modes (pulse-wave) at 2 Hz on the crystal growth of lysozyme in solution. The best results, in terms of size and crystal quality, were obtained when protein crystals were grown under the influence of electric fields in a very specific wave mode (“breathing” wave), giving the highest resolution up to 1.34 Å in X-ray diffraction analysis compared with controls and with those crystals grown in gel. In the second part, we evaluated the effect of a strong magnetic field of 16.5 Tesla combined with radiofrequency pulses of 0.43 μs on the crystal growth in gels of tetragonal hen egg white (HEW) lysozyme. The lysozyme crystals grown, both in solution applying breathing-wave and in gel under the influence of this strong magnetic field with pulses of radio frequencies, produced the larger-in-size crystals and the highest resolution structures. Data processing and refinement statistics are very good in terms of the resolution, mosaicity and Wilson B factor obtained for each crystal. Besides, electron density maps show well-defined and distinctly separated atoms at several selected tryptophan residues for the crystal grown using the “breathing wave pulses”.
Collapse
|
36
|
Hosseinkhani S, Emamgholi Zadeh E, Sahebazzamani F, Ataei F, Hemmati R. Luciferin-Regenerating Enzyme Crystal Structure Is Solved but its Function Is Still Unclear. Photochem Photobiol 2017; 93:429-435. [PMID: 28120440 DOI: 10.1111/php.12723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/24/2016] [Indexed: 01/12/2023]
Abstract
Contribution of luciferin-regenerating enzyme (LRE) for in vitro recycling of D-luciferin has been reported. According to crystal structure of LRE, it is a beta-propeller protein which is a type of all β-protein architecture. In this overview, reinvestigation of the luciferase-based LRE assays and its function is reported. Until now, sequence of LRE genes from four different species of firefly has been reported. In spite of previous reports, T-LRE (from Lampyris turkestanicus) was cloned and expressed in Escherichia coli as well as Pichia pastoris in a nonsoluble form as inclusion body. According to recent investigations, bioluminescent signal of soluble T-LRE-luciferase-coupled assay increased and then reached an equilibrium state in the presence of D-cysteine. In addition, the results revealed that both D- and L-cysteine in the absence of T-LRE caused a significant increase in bioluminescence intensity of luciferase over a long time. Based on activity measurements and spectroscopic results, D-cysteine increased the activity of luciferase due to its redox potential and induction of conformational changes in structure and kinetics properties. In conclusion, in spite of previous reports on the effect of LRE (at least T-LRE) on luciferase activity, most of the increase in luciferase activity is caused by direct effect of D-cysteine on structure and activity of firefly luciferase. Moreover, bioinformatics analysis cannot support the presence of LRE in peroxisome of photocytes in firefly lanterns.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Emamgholi Zadeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Sahebazzamani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
37
|
Solution structure and excitation energy transfer in phycobiliproteins of Acaryochloris marina investigated by small angle scattering. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:318-324. [PMID: 28131736 DOI: 10.1016/j.bbabio.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/09/2017] [Accepted: 01/24/2017] [Indexed: 11/22/2022]
Abstract
The structure of phycobiliproteins of the cyanobacterium Acaryochloris marina was investigated in buffer solution at physiological temperatures, i.e. under the same conditions applied in spectroscopic experiments, using small angle neutron scattering. The scattering data of intact phycobiliproteins in buffer solution containing phosphate can be well described using a cylindrical shape with a length of about 225Å and a diameter of approximately 100Å. This finding is qualitatively consistent with earlier electron microscopy studies reporting a rod-like shape of the phycobiliproteins with a length of about 250 (M. Chen et al., FEBS Letters 583, 2009, 2535) or 300Å (J. Marquart et al., FEBS Letters 410, 1997, 428). In contrast, phycobiliproteins dissolved in buffer lacking phosphate revealed a splitting of the rods into cylindrical subunits with a height of 28Å only, but also a pronounced sample aggregation. Complementary small angle neutron and X-ray scattering experiments on phycocyanin suggest that the cylindrical subunits may represent either trimeric phycocyanin or trimeric allophycocyanin. Our findings are in agreement with the assumption that a phycobiliprotein rod with a total height of about 225Å can accommodate seven trimeric phycocyanin subunits and one trimeric allophycocyanin subunit, each of which having a height of about 28Å. The structural information obtained by small angle neutron and X-ray scattering can be used to interpret variations in the low-energy region of the 4.5K absorption spectra of phycobiliproteins dissolved in buffer solutions containing and lacking phosphate, respectively.
Collapse
|
38
|
Ishchenko A, Cherezov V, Liu W. Preparation and Delivery of Protein Microcrystals in Lipidic Cubic Phase for Serial Femtosecond Crystallography. J Vis Exp 2016. [PMID: 27683972 PMCID: PMC5092055 DOI: 10.3791/54463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Membrane proteins (MPs) are essential components of cellular membranes and primary drug targets. Rational drug design relies on precise structural information, typically obtained by crystallography; however MPs are difficult to crystallize. Recent progress in MP structural determination has benefited greatly from the development of lipidic cubic phase (LCP) crystallization methods, which typically yield well-diffracting, but often small crystals that suffer from radiation damage during traditional crystallographic data collection at synchrotron sources. The development of new-generation X-ray free-electron laser (XFEL) sources that produce extremely bright femtosecond pulses has enabled room temperature data collection from microcrystals with no or negligible radiation damage. Our recent efforts in combining LCP technology with serial femtosecond crystallography (LCP-SFX) have resulted in high-resolution structures of several human G protein-coupled receptors, which represent a notoriously difficult target for structure determination. In the LCP-SFX technique, LCP is recruited as a matrix for both growth and delivery of MP microcrystals to the intersection of the injector stream with an XFEL beam for crystallographic data collection. It has been demonstrated that LCP-SFX can substantially improve the diffraction resolution when only sub-10 µm crystals are available, or when the use of smaller crystals at room temperature can overcome various problems associated with larger cryocooled crystals, such as accumulation of defects, high mosaicity and cryocooling artifacts. Future advancements in X-ray sources and detector technologies should make serial crystallography highly attractive and practicable for implementation not only at XFELs, but also at more accessible synchrotron beamlines. Here we present detailed visual protocols for the preparation, characterization and delivery of microcrystals in LCP for serial crystallography experiments. These protocols include methods for conducting crystallization experiments in syringes, detecting and characterizing the crystal samples, optimizing crystal density, loading microcrystal laden LCP into the injector device and delivering the sample to the beam for data collection.
Collapse
Affiliation(s)
- Andrii Ishchenko
- The Bridge Institute, University of Southern California; Department of Chemistry, University of Southern California
| | - Vadim Cherezov
- The Bridge Institute, University of Southern California; Department of Chemistry, University of Southern California;
| | - Wei Liu
- School of Molecular Sciences, Center for Applied Structural Discovery at the Biodesign Institute, Arizona State University;
| |
Collapse
|
39
|
Batyuk A, Galli L, Ishchenko A, Han GW, Gati C, Popov PA, Lee MY, Stauch B, White TA, Barty A, Aquila A, Hunter MS, Liang M, Boutet S, Pu M, Liu ZJ, Nelson G, James D, Li C, Zhao Y, Spence JCH, Liu W, Fromme P, Katritch V, Weierstall U, Stevens RC, Cherezov V. Native phasing of x-ray free-electron laser data for a G protein-coupled receptor. SCIENCE ADVANCES 2016; 2:e1600292. [PMID: 27679816 PMCID: PMC5035125 DOI: 10.1126/sciadv.1600292] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/01/2016] [Indexed: 05/23/2023]
Abstract
Serial femtosecond crystallography (SFX) takes advantage of extremely bright and ultrashort pulses produced by x-ray free-electron lasers (XFELs), allowing for the collection of high-resolution diffraction intensities from micrometer-sized crystals at room temperature with minimal radiation damage, using the principle of "diffraction-before-destruction." However, de novo structure factor phase determination using XFELs has been difficult so far. We demonstrate the ability to solve the crystallographic phase problem for SFX data collected with an XFEL using the anomalous signal from native sulfur atoms, leading to a bias-free room temperature structure of the human A2A adenosine receptor at 1.9 Å resolution. The advancement was made possible by recent improvements in SFX data analysis and the design of injectors and delivery media for streaming hydrated microcrystals. This general method should accelerate structural studies of novel difficult-to-crystallize macromolecules and their complexes.
Collapse
Affiliation(s)
- Alexander Batyuk
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lorenzo Galli
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrii Ishchenko
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.; Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Gye Won Han
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.; Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Cornelius Gati
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Petr A Popov
- Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA.; Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia.; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ming-Yue Lee
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.; Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Benjamin Stauch
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.; Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrew Aquila
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mengchen Pu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.; iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Daniel James
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Chufeng Li
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Yun Zhao
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - John C H Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Wei Liu
- Center for Applied Structural Discovery at the Biodesign Institute, School of Molecular Sciences, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
| | - Petra Fromme
- Center for Applied Structural Discovery at the Biodesign Institute, School of Molecular Sciences, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
| | - Vsevolod Katritch
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.; Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA.; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Raymond C Stevens
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.; Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA.; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.; iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Vadim Cherezov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.; Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA.; Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia.; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.; Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
40
|
Application of advanced X-ray methods in life sciences. Biochim Biophys Acta Gen Subj 2016; 1861:3671-3685. [PMID: 27156488 DOI: 10.1016/j.bbagen.2016.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Synchrotron radiation (SR) sources provide diverse X-ray methods for the investigation of structure-function relationships in biological macromolecules. SCOPE OF REVIEW Recent developments in SR sources and in the X-ray tools they offer for life sciences are reviewed. Specifically, advances in macromolecular crystallography, small angle X-ray solution scattering, X-ray absorption and fluorescence spectroscopy, and imaging are discussed with examples. MAJOR CONCLUSIONS SR sources offer a range of X-ray techniques that can be used in a complementary fashion in studies of biological systems at a wide range of resolutions from atomic to cellular scale. Emerging applications of X-ray techniques include the characterization of disordered proteins, noncrystalline and nonequilibrium systems, elemental imaging of tissues, cells and organs, and detection of time-resolved changes in molecular structures. GENERAL SIGNIFICANCE X-ray techniques are in the center of hybrid approaches that are used to gain insight into complex problems relating to biomolecular mechanisms, disease and possible therapeutic solutions. This article is part of a Special Issue entitled "Science for Life". Guest Editors: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
|
41
|
Stevenson HP, Lin G, Barnes CO, Sutkeviciute I, Krzysiak T, Weiss SC, Reynolds S, Wu Y, Nagarajan V, Makhov AM, Lawrence R, Lamm E, Clark L, Gardella TJ, Hogue BG, Ogata CM, Ahn J, Gronenborn AM, Conway JF, Vilardaga JP, Cohen AE, Calero G. Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallogr D Struct Biol 2016; 72:603-15. [PMID: 27139624 PMCID: PMC4854312 DOI: 10.1107/s2059798316001546] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/25/2016] [Indexed: 11/10/2022] Open
Abstract
The crystallization of protein samples remains the most significant challenge in structure determination by X-ray crystallography. Here, the effectiveness of transmission electron microscopy (TEM) analysis to aid in the crystallization of biological macromolecules is demonstrated. It was found that the presence of well ordered lattices with higher order Bragg spots, revealed by Fourier analysis of TEM images, is a good predictor of diffraction-quality crystals. Moreover, the use of TEM allowed (i) comparison of lattice quality among crystals from different conditions in crystallization screens; (ii) the detection of crystal pathologies that could contribute to poor X-ray diffraction, including crystal lattice defects, anisotropic diffraction and crystal contamination by heavy protein aggregates and nanocrystal nuclei; (iii) the qualitative estimation of crystal solvent content to explore the effect of lattice dehydration on diffraction and (iv) the selection of high-quality crystal fragments for microseeding experiments to generate reproducibly larger sized crystals. Applications to X-ray free-electron laser (XFEL) and micro-electron diffraction (microED) experiments are also discussed.
Collapse
Affiliation(s)
- Hilary P. Stevenson
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Christopher O. Barnes
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Ieva Sutkeviciute
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, M240 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Troy Krzysiak
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Simon C. Weiss
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Shelley Reynolds
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Ying Wu
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | | - Alexander M. Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Robert Lawrence
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
| | - Emily Lamm
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Lisa Clark
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Timothy J. Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Brenda G. Hogue
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
| | - Craig M. Ogata
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 60439, USA
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - James F. Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Jean-Pierre Vilardaga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, M240 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
42
|
Martin-Garcia JM, Conrad CE, Coe J, Roy-Chowdhury S, Fromme P. Serial femtosecond crystallography: A revolution in structural biology. Arch Biochem Biophys 2016; 602:32-47. [PMID: 27143509 DOI: 10.1016/j.abb.2016.03.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 10/21/2022]
Abstract
Macromolecular crystallography at synchrotron sources has proven to be the most influential method within structural biology, producing thousands of structures since its inception. While its utility has been instrumental in progressing our knowledge of structures of molecules, it suffers from limitations such as the need for large, well-diffracting crystals, and radiation damage that can hamper native structural determination. The recent advent of X-ray free electron lasers (XFELs) and their implementation in the emerging field of serial femtosecond crystallography (SFX) has given rise to a remarkable expansion upon existing crystallographic constraints, allowing structural biologists access to previously restricted scientific territory. SFX relies on exceptionally brilliant, micro-focused X-ray pulses, which are femtoseconds in duration, to probe nano/micrometer sized crystals in a serial fashion. This results in data sets comprised of individual snapshots, each capturing Bragg diffraction of single crystals in random orientations prior to their subsequent destruction. Thus structural elucidation while avoiding radiation damage, even at room temperature, can now be achieved. This emerging field has cultivated new methods for nanocrystallogenesis, sample delivery, and data processing. Opportunities and challenges within SFX are reviewed herein.
Collapse
Affiliation(s)
- Jose M Martin-Garcia
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Chelsie E Conrad
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Jesse Coe
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Shatabdi Roy-Chowdhury
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA.
| |
Collapse
|
43
|
Barnes CO, Kovaleva EG, Fu X, Stevenson HP, Brewster AS, DePonte DP, Baxter EL, Cohen AE, Calero G. Assessment of microcrystal quality by transmission electron microscopy for efficient serial femtosecond crystallography. Arch Biochem Biophys 2016; 602:61-68. [PMID: 26944553 DOI: 10.1016/j.abb.2016.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 12/13/2022]
Abstract
Serial femtosecond crystallography (SFX) employing high-intensity X-ray free-electron laser (XFEL) sources has enabled structural studies on microcrystalline protein samples at non-cryogenic temperatures. However, the identification and optimization of conditions that produce well diffracting microcrystals remains an experimental challenge. Here, we report parallel SFX and transmission electron microscopy (TEM) experiments using fragmented microcrystals of wild type (WT) homoprotocatechuate 2,3-dioxygenase (HPCD) and an active site variant (H200Q). Despite identical crystallization conditions and morphology, as well as similar crystal size and density, the indexing efficiency of the diffraction data collected using the H200Q variant sample was over 7-fold higher compared to the diffraction results obtained using the WT sample. TEM analysis revealed an abundance of protein aggregates, crystal conglomerates and a smaller population of highly ordered lattices in the WT sample as compared to the H200Q variant sample. While not reported herein, the 1.75 Å resolution structure of the H200Q variant was determined from ∼16 min of beam time, demonstrating the utility of TEM analysis in evaluating sample monodispersity and lattice quality, parameters critical to the efficiency of SFX experiments.
Collapse
Affiliation(s)
- Christopher O Barnes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Elena G Kovaleva
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA
| | - Xiaofeng Fu
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Hilary P Stevenson
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Aaron S Brewster
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
44
|
Abdallah BG, Roy-Chowdhury S, Fromme R, Fromme P, Ros A. Protein Crystallization in an Actuated Microfluidic Nanowell Device. CRYSTAL GROWTH & DESIGN 2016; 16:2074-2082. [PMID: 27683240 PMCID: PMC5036579 DOI: 10.1021/acs.cgd.5b01748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Protein crystallization is a major bottleneck of structure determination by X-ray crystallography, hampering the process by years in some cases. Numerous matrix screening trials using significant amounts of protein are often applied, while a systematic approach with phase diagram determination is prohibited for many proteins that can only be expressed in small amounts. Here, we demonstrate a microfluidic nanowell device implementing protein crystallization and phase diagram screening using nanoscale volumes of protein solution per trial. The device is made with cost-effective materials and is completely automated for efficient and economical experimentation. In the developed device, 170 trials can be realized with unique concentrations of protein and precipitant established by gradient generation and isolated by elastomeric valving for crystallization incubation. Moreover, this device can be further downscaled to smaller nanowell volumes and larger scale integration. The device was calibrated using a fluorescent dye and compared to a numerical model where concentrations of each trial can be quantified to establish crystallization phase diagrams. Using this device, we successfully crystallized lysozyme and C-phycocyanin, as visualized by compatible crystal imaging techniques such as bright-field microscopy, UV fluorescence, and second-order nonlinear imaging of chiral crystals. Concentrations yielding observed crystal formation were quantified and used to determine regions of the crystallization phase space for both proteins. Low sample consumption and compatibility with a variety of proteins and imaging techniques make this device a powerful tool for systematic crystallization studies.
Collapse
Affiliation(s)
- Bahige G. Abdallah
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Shatabdi Roy-Chowdhury
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexandra Ros
- Corresponding Author: Phone: 1-480-965-5323. Fax: 1-480-965-7954.
| |
Collapse
|
45
|
|