1
|
Pengthaisong S, Piniello B, Davies GJ, Rovira C, Ketudat Cairns JR. Reaction Mechanism of Glycoside Hydrolase Family 116 Utilizes Perpendicular Protonation. ACS Catal 2023; 13:5850-5863. [PMID: 37180965 PMCID: PMC10167657 DOI: 10.1021/acscatal.3c00620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/15/2023] [Indexed: 05/16/2023]
Abstract
Retaining glycoside hydrolases use acid/base catalysis with an enzymatic acid/base protonating the glycosidic bond oxygen to facilitate leaving-group departure alongside attack by a catalytic nucleophile to form a covalent intermediate. Generally, this acid/base protonates the oxygen laterally with respect to the sugar ring, which places the catalytic acid/base and nucleophile carboxylates within about 4.5-6.5 Å of each other. However, in glycoside hydrolase (GH) family 116, including disease-related human acid β-glucosidase 2 (GBA2), the distance between the catalytic acid/base and the nucleophile is around 8 Å (PDB: 5BVU) and the catalytic acid/base appears to be above the plane of the pyranose ring, rather than being lateral to that plane, which could have catalytic consequences. However, no structure of an enzyme-substrate complex is available for this GH family. Here, we report the structures of Thermoanaerobacterium xylanolyticum β-glucosidase (TxGH116) D593N acid/base mutant in complexes with cellobiose and laminaribiose and its catalytic mechanism. We confirm that the amide hydrogen bonding to the glycosidic oxygen is in a perpendicular rather than lateral orientation. Quantum mechanics/molecular mechanics (QM/MM) simulations of the glycosylation half-reaction in wild-type TxGH116 indicate that the substrate binds with the nonreducing glucose residue in an unusual relaxed 4C1 chair at the -1 subsite. Nevertheless, the reaction can still proceed through a 4H3 half-chair transition state, as in classical retaining β-glucosidases, as the catalytic acid D593 protonates the perpendicular electron pair. The glucose C6OH is locked in a gauche, trans orientation with respect to the C5-O5 and C4-C5 bonds to facilitate perpendicular protonation. These data imply a unique protonation trajectory in Clan-O glycoside hydrolases, which has strong implications for the design of inhibitors specific to either lateral protonators, such as human GBA1, or perpendicular protonators, such as human GBA2.
Collapse
Affiliation(s)
- Salila Pengthaisong
- School
of Chemistry, Institute of Science, Suranaree
University of Technology, Nakhon
Ratchasima 30000, Thailand
- Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Beatriz Piniello
- Departament
de Quımica Inorgánica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gideon J. Davies
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Carme Rovira
- Departament
de Quımica Inorgánica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
| | - James R. Ketudat Cairns
- School
of Chemistry, Institute of Science, Suranaree
University of Technology, Nakhon
Ratchasima 30000, Thailand
- Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
2
|
Tao S, Qingbin M, Zhiling L, Caiyu S, Lixin L, Lilai L. Comparative genomics reveals cellobiose hydrolysis mechanism of Ruminiclostridium thermocellum M3, a cellulosic saccharification bacterium. Front Microbiol 2023; 13:1079279. [PMID: 36687593 PMCID: PMC9852859 DOI: 10.3389/fmicb.2022.1079279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/07/2022] [Indexed: 01/08/2023] Open
Abstract
The cellulosome of Ruminiclostridium thermocellum was one of the most efficient cellulase systems in nature. However, the product of cellulose degradation by R. thermocellum is cellobiose, which leads to the feedback inhibition of cellulosome, and it limits the R. thermocellum application in the field of cellulosic biomass consolidated bioprocessing (CBP) industry. In a previous study, R. thermocellum M3, which can hydrolyze cellulosic feedstocks into monosaccharides, was isolated from horse manure. In this study, the complete genome of R. thermocellum M3 was sequenced and assembled. The genome of R. thermocellum M3 was compared with the other R. thermocellum to reveal the mechanism of cellulosic saccharification by R. thermocellum M3. In addition, we predicted the key genes for the elimination of feedback inhibition of cellobiose in R. thermocellum. The results indicated that the whole genome sequence of R. thermocellum M3 consisted of 3.6 Mb of chromosomes with a 38.9% of GC%. To be specific, eight gene islands and 271 carbohydrate-active enzyme-encoded proteins were detected. Moreover, the results of gene function annotation showed that 2,071, 2,120, and 1,246 genes were annotated into the Clusters of Orthologous Groups (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively, and most of the genes were involved in carbohydrate metabolism and enzymatic catalysis. Different from other R. thermocellum, strain M3 has three proteins related to β-glucosidase, and the cellobiose hydrolysis was enhanced by the synergy of gene BglA and BglX. Meanwhile, the GH42 family, CBM36 family, and AA8 family might participate in cellobiose degradation.
Collapse
Affiliation(s)
- Sheng Tao
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China,*Correspondence: Sheng Tao,
| | - Meng Qingbin
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Li Zhiling
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China,Li Zhiling,
| | - Sun Caiyu
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Li Lixin
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Liu Lilai
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China
| |
Collapse
|
3
|
Systematic Functional and Computational Analysis of Glucose-Binding Residues in Glycoside Hydrolase Family GH116. Catalysts 2022. [DOI: 10.3390/catal12030343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Glycoside hydrolases (GH) bind tightly to the sugar moiety at the glycosidic bond being hydrolyzed to stabilize its transition state conformation. We endeavored to assess the importance of glucose-binding residues in GH family 116 (GH116) β-glucosidases, which include human β-glucosylceramidase 2 (GBA2), by mutagenesis followed by kinetic characterization, X-ray crystallography, and ONIOM calculations on Thermoanaerobacterium xylanolyticum TxGH116, the structural model for GH116 enzymes. Mutations of residues that bind at the glucose C3OH and C4OH caused 27–196-fold increases in KM for p-nitrophenyl-β-D-glucoside, and significant decreases in the kcat, up to 5000-fold. At the C6OH binding residues, mutations of E777 decreased the kcat/KM by over 60,000-fold, while R786 mutants increased both the KM (40-fold) and kcat (2–4-fold). The crystal structures of R786A and R786K suggested a larger entrance to the active site could facilitate their faster rates. ONIOM binding energy calculations identified D452, H507, E777, and R786, along with the catalytic residues E441 and D593, as strong electrostatic contributors to glucose binding with predicted interaction energies > 15 kcal mol−1, consistent with the effects of the D452, H507, E777 and R786 mutations on enzyme kinetics. The relative importance of GH116 active site residues in substrate binding and catalysis identified in this work improves the prospects for the design of inhibitors for GBA2 and the engineering of GH116 enzymes for hydrolytic and synthetic applications.
Collapse
|
4
|
Pengthaisong S, Hua Y, Ketudat Cairns JR. Structural basis for transglycosylation in glycoside hydrolase family GH116 glycosynthases. Arch Biochem Biophys 2021; 706:108924. [PMID: 34019851 DOI: 10.1016/j.abb.2021.108924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
Glycosynthases are glycoside hydrolase mutants that can synthesize oligosaccharides or glycosides from an inverted donor without hydrolysis of the products. Although glycosynthases have been characterized from a variety of glycoside hydrolase (GH) families, family GH116 glycosynthases have yet to be reported. We produced the Thermoanaerobacterium xylanolyticum TxGH116 nucleophile mutants E441D, E441G, E441Q and E441S and compared their glycosynthase activities to the previously generated E441A mutant. The TxGH116 E441G and E441S mutants exhibited highest glycosynthase activity to transfer glucose from α-fluoroglucoside (α-GlcF) to cellobiose acceptor, while E441D had low but significant activity as well. The E441G, E441S and E441A variants showed broad specificity for α-glycosyl fluoride donors and p-nitrophenyl glycoside acceptors. The structure of the TxGH116 E441A mutant with α-GlcF provided the donor substrate complex, while soaking of the TxGH116 E441G mutant with α-GlcF resulted in cellooligosaccharides extending from the +1 subsite out of the active site, with glycerol in the -1 subsite. Soaking of E441A or E441G with cellobiose or cellotriose gave similar acceptor substrate complexes with the nonreducing glucosyl residue in the +1 subsite. Combining structures with the ligands from the TxGH116 E441A with α-GlcF crystals with that of E441A or E441G with cellobiose provides a plausible structure of the catalytic ternary complex, which places the nonreducing glucosyl residue O4 2.5 Å from the anomeric carbon of α-GlcF, thereby explaining its apparent preference for production of β-1,4-linked oligosaccharides. This functional and structural characterization provides the background for development of GH116 glycosynthases for synthesis of oligosaccharides and glycosides of interest.
Collapse
Affiliation(s)
- Salila Pengthaisong
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand; Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Yanling Hua
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand; Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand; Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
5
|
Escuder-Rodríguez JJ, DeCastro ME, Cerdán ME, Rodríguez-Belmonte E, Becerra M, González-Siso MI. Cellulases from Thermophiles Found by Metagenomics. Microorganisms 2018; 6:microorganisms6030066. [PMID: 29996513 PMCID: PMC6165527 DOI: 10.3390/microorganisms6030066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/05/2023] Open
Abstract
Cellulases are a heterogeneous group of enzymes that synergistically catalyze the hydrolysis of cellulose, the major component of plant biomass. Such reaction has biotechnological applications in a broad spectrum of industries, where they can provide a more sustainable model of production. As a prerequisite for their implementation, these enzymes need to be able to operate in the conditions the industrial process requires. Thus, cellulases retrieved from extremophiles, and more specifically those of thermophiles, are likely to be more appropriate for industrial needs in which high temperatures are involved. Metagenomics, the study of genes and gene products from the whole community genomic DNA present in an environmental sample, is a powerful tool for bioprospecting in search of novel enzymes. In this review, we describe the cellulolytic systems, we summarize their biotechnological applications, and we discuss the strategies adopted in the field of metagenomics for the discovery of new cellulases, focusing on those of thermophilic microorganisms.
Collapse
Affiliation(s)
- Juan-José Escuder-Rodríguez
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - María-Eugenia DeCastro
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - María-Esperanza Cerdán
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - Esther Rodríguez-Belmonte
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - Manuel Becerra
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| |
Collapse
|
6
|
Yang F, Yang X, Li Z, Du C, Wang J, Li S. Overexpression and characterization of a glucose-tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose. Appl Microbiol Biotechnol 2015; 99:8903-15. [DOI: 10.1007/s00253-015-6619-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/07/2015] [Accepted: 04/10/2015] [Indexed: 12/20/2022]
|