1
|
Olivieri B, Günaydın FE, Corren J, Senna G, Durham SR. The combination of allergen immunotherapy and biologics for inhalant allergies: Exploring the synergy. Ann Allergy Asthma Immunol 2024:S1081-1206(24)00365-X. [PMID: 38897405 DOI: 10.1016/j.anai.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The development of monoclonal antibodies that selectively target IgE and type 2 immunity has opened new possibilities in the treatment of allergies. Although they have been used mainly as single therapies found to have efficacy in the management of asthma and other T2-mediated diseases, there is a growing interest in using these monoclonal antibodies in combination with allergen immunotherapy (AIT). AIT has transformed the treatment of allergic diseases by aiming to modify the underlying immune response to allergens rather than just providing temporary symptom relief. Despite the proven efficacy and safety of AIT, unmet needs call for further research and innovation. Combination strategies involving biologics and AIT exhibit potential in improving short-term efficacy, reducing adverse events, and increasing immunologic tolerance. Anti-IgE emerges as the most promising therapeutic strategy, not only enhancing AIT's safety and tolerability but also providing additional evidence of efficacy compared with AIT alone. Anti-interleukin-4 receptor offers a reduction in adverse effects and an improved immunologic profile when combined with AIT; however, its impact on short-term efficacy seems limited. The combination of cat dander subcutaneous immunotherapy with anti-thymic stromal lymphopoietin was synergistic with enhanced efficacy and altered immune responses that persisted for 1 year after discontinuation compared with AIT alone. Long-term studies are needed to evaluate the sustained benefits and safety profiles of combination strategies.
Collapse
Affiliation(s)
- Bianca Olivieri
- Asthma, Allergy and Clinical Immunology Section, University Hospital of Verona, Verona, Italy
| | - Fatma Esra Günaydın
- Department of Immunology and Allergy Diseases, Ordu University Education and Training Hospital, Ordu, Turkey
| | - Jonathan Corren
- Division of Allergy and Clinical Immunology, Department of Medicine and Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gianenrico Senna
- Asthma, Allergy and Clinical Immunology Section, University Hospital of Verona, Verona, Italy; Department of Medicine, University of Verona, Verona, Italy
| | - Stephen R Durham
- Allergy and Clinical Immunology, Section Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
2
|
Tiligada E, Gafarov D, Zaimi M, Vitte J, Levi-Schaffer F. Novel Immunopharmacological Drugs for the Treatment of Allergic Diseases. Annu Rev Pharmacol Toxicol 2024; 64:481-506. [PMID: 37722722 DOI: 10.1146/annurev-pharmtox-051623-091038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The exponential rise in the prevalence of allergic diseases since the mid-twentieth century has led to a genuine public health emergency and has also fostered major progress in research on the underlying mechanisms and potential treatments. The management of allergic diseases benefits from the biological revolution, with an array of novel immunomodulatory therapeutic and investigational tools targeting players of allergic inflammation at distinct pathophysiological steps. Prominent examples include therapeutic monoclonal antibodies against cytokines, alarmins, and their receptors, as well as small-molecule modifiers of signal transduction mainly mediated by Janus kinases and Bruton's tyrosine kinases. However, the first-line therapeutic options have yet to switch from symptomatic to disease-modifying interventions. Here we present an overview of available drugs in the context of our current understanding of allergy pathophysiology, identify potential therapeutic targets, and conclude by providing a selection of candidate immunopharmacological molecules under investigation for potential future use in allergic diseases.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| | - Daria Gafarov
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| | - Maria Zaimi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joana Vitte
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
- Desbrest Institute of Epidemiology and Public Health, University of Montpellier, INSERM
- Montpellier, France
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
3
|
Heisler J, Kovner D, Izadi S, Zarzar J, Carter PJ. Modulation of the high concentration viscosity of IgG 1 antibodies using clinically validated Fc mutations. MAbs 2024; 16:2379560. [PMID: 39028186 PMCID: PMC11262234 DOI: 10.1080/19420862.2024.2379560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
The self-association of therapeutic antibodies can result in elevated viscosity and create problems in manufacturing and formulation, as well as limit delivery by subcutaneous injection. The high concentration viscosity of some antibodies has been reduced by variable domain mutations or by the addition of formulation excipients. In contrast, the impact of Fc mutations on antibody viscosity has been minimally explored. Here, we studied the effect of a panel of common and clinically validated Fc mutations on the viscosity of two closely related humanized IgG1, κ antibodies, omalizumab (anti-IgE) and trastuzumab (anti-HER2). Data presented here suggest that both Fab-Fab and Fab-Fc interactions contribute to the high viscosity of omalizumab, in a four-contact model of self-association. Most strikingly, the high viscosity of omalizumab (176 cP) was reduced 10.7- and 2.2-fold by Fc modifications for half-life extension (M252Y:S254T:T256E) and aglycosylation (N297G), respectively. Related single mutations (S254T and T256E) each reduced the viscosity of omalizumab by ~6-fold. An alternative half-life extension Fc mutant (M428L:N434S) had the opposite effect in increasing the viscosity of omalizumab by 1.5-fold. The low viscosity of trastuzumab (8.6 cP) was unchanged or increased by ≤ 2-fold by the different Fc variants. Molecular dynamics simulations provided mechanistic insight into the impact of Fc mutations in modulating electrostatic and hydrophobic surface properties as well as conformational stability of the Fc. This study demonstrates that high viscosity of some IgG1 antibodies can be mitigated by Fc mutations, and thereby offers an additional tool to help design future antibody therapeutics potentially suitable for subcutaneous delivery.
Collapse
Affiliation(s)
- Joel Heisler
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| | - Daniel Kovner
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Saeed Izadi
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Jonathan Zarzar
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Paul J. Carter
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
4
|
Rhodes ER, Faris JG, Petersen BM, Sprenger KG. Common framework mutations impact antibody interfacial dynamics and flexibility. Front Immunol 2023; 14:1120582. [PMID: 36911727 PMCID: PMC9996335 DOI: 10.3389/fimmu.2023.1120582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction With the flood of engineered antibodies, there is a heightened need to elucidate the structural features of antibodies that contribute to specificity, stability, and breadth. While antibody flexibility and interface angle have begun to be explored, design rules have yet to emerge, as their impact on the metrics above remains unclear. Furthermore, the purpose of framework mutations in mature antibodies is highly convoluted. Methods To this end, a case study utilizing molecular dynamics simulations was undertaken to determine the impact framework mutations have on the VH-VL interface. We further sought to elucidate the governing mechanisms by which changes in the VH-VL interface angle impact structural elements of mature antibodies by looking at root mean squared deviations, root mean squared fluctuations, and solvent accessible surface area. Results and discussion Overall, our results suggest framework mutations can significantly shift the distribution of VH-VL interface angles, which leads to local changes in antibody flexibility through local changes in the solvent accessible surface area. The data presented herein highlights the need to reject the dogma of static antibody crystal structures and exemplifies the dynamic nature of these proteins in solution. Findings from this work further demonstrate the importance of framework mutations on antibody structure and lay the foundation for establishing design principles to create antibodies with increased specificity, stability, and breadth.
Collapse
Affiliation(s)
| | | | | | - Kayla G. Sprenger
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO, United States
| |
Collapse
|
5
|
Jacobitz AW, Rodezno W, Agrawal NJ. Utilizing cross-product prior knowledge to rapidly de-risk chemical liabilities in therapeutic antibody candidates. AAPS OPEN 2022. [DOI: 10.1186/s41120-022-00057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThere is considerable pressure in the pharmaceutical industry to advance better molecules faster. One pervasive concern for protein-based therapeutics is the presence of potential chemical liabilities. We have developed a simple methodology for rapidly de-risking specific chemical concerns in antibody-based molecules using prior knowledge of each individual liability at a specific position in the molecule’s sequence. Our methodology hinges on the development of sequence-aligned chemical liability databases of molecules from different stages of commercialization and on sequence-aligned experimental data from prior molecules that have been developed at Amgen. This approach goes beyond the standard practice of simply flagging all instances of each motif that fall in a CDR. Instead, we de-risk motifs that are common at a specific site in commercial mAb-based molecules (and therefore did not previously pose an insurmountable barrier to commercialization) and motifs at specific sites for which we have prior experimental data indicating acceptably low levels of modification. We have used this approach successfully to identify candidates in a discovery phase program with exclusively very low risk potential chemical liabilities. Identifying these candidates in the discovery phase allowed us to bypass protein engineering and accelerate the program’s timeline by 6 months.
Collapse
|
6
|
Petersen BM, Ulmer SA, Rhodes ER, Gutierrez-Gonzalez MF, Dekosky BJ, Sprenger KG, Whitehead TA. Regulatory Approved Monoclonal Antibodies Contain Framework Mutations Predicted From Human Antibody Repertoires. Front Immunol 2021; 12:728694. [PMID: 34646268 PMCID: PMC8503325 DOI: 10.3389/fimmu.2021.728694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Monoclonal antibodies (mAbs) are an important class of therapeutics used to treat cancer, inflammation, and infectious diseases. Identifying highly developable mAb sequences in silico could greatly reduce the time and cost required for therapeutic mAb development. Here, we present position-specific scoring matrices (PSSMs) for antibody framework mutations developed using baseline human antibody repertoire sequences. Our analysis shows that human antibody repertoire-based PSSMs are consistent across individuals and demonstrate high correlations between related germlines. We show that mutations in existing therapeutic antibodies can be accurately predicted solely from baseline human antibody sequence data. We find that mAbs developed using humanized mice had more human-like FR mutations than mAbs originally developed by hybridoma technology. A quantitative assessment of entire framework regions of therapeutic antibodies revealed that there may be potential for improving the properties of existing therapeutic antibodies by incorporating additional mutations of high frequency in baseline human antibody repertoires. In addition, high frequency mutations in baseline human antibody repertoires were predicted in silico to reduce immunogenicity in therapeutic mAbs due to the removal of T cell epitopes. Several therapeutic mAbs were identified to have common, universally high-scoring framework mutations, and molecular dynamics simulations revealed the mechanistic basis for the evolutionary selection of these mutations. Our results suggest that baseline human antibody repertoires may be useful as predictive tools to guide mAb development in the future.
Collapse
Affiliation(s)
- Brian M Petersen
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, United States
| | - Sophia A Ulmer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, United States
| | - Emily R Rhodes
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, United States
| | | | - Brandon J Dekosky
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States.,Department of Chemical Engineering, University of Kansas, Lawrence, KS, United States
| | - Kayla G Sprenger
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, United States
| | - Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, United States
| |
Collapse
|
7
|
Mitropoulou AN, Ceska T, Heads JT, Beavil AJ, Henry AJ, McDonnell JM, Sutton BJ, Davies AM. Engineering the Fab fragment of the anti-IgE omalizumab to prevent Fab crystallization and permit IgE-Fc complex crystallization. Acta Crystallogr F Struct Biol Commun 2020; 76:116-129. [PMID: 32133997 PMCID: PMC7057348 DOI: 10.1107/s2053230x20001466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/03/2020] [Indexed: 12/01/2022] Open
Abstract
Immunoglobulin E (IgE) plays a central role in the allergic response, in which cross-linking of allergen by FcεRI-bound IgE triggers mast cell and basophil degranulation and the release of inflammatory mediators. The high-affinity interaction between IgE and FcεRI is a long-standing target for therapeutic intervention in allergic disease. Omalizumab is a clinically approved anti-IgE monoclonal antibody that binds to free IgE, also with high affinity, preventing its interaction with FcεRI. All attempts to crystallize the pre-formed complex between the omalizumab Fab and the Fc region of IgE (IgE-Fc), to understand the structural basis for its mechanism of action, surprisingly failed. Instead, the Fab alone selectively crystallized in different crystal forms, but their structures revealed intermolecular Fab/Fab interactions that were clearly strong enough to disrupt the Fab/IgE-Fc complexes. Some of these interactions were common to other Fab crystal structures. Mutations were therefore designed to disrupt two recurring packing interactions observed in the omalizumab Fab crystal structures without interfering with the ability of the omalizumab Fab to recognize IgE-Fc; this led to the successful crystallization and subsequent structure determination of the Fab/IgE-Fc complex. The mutagenesis strategy adopted to achieve this result is applicable to other intractable Fab/antigen complexes or systems in which Fabs are used as crystallization chaperones.
Collapse
Affiliation(s)
- Alkistis N. Mitropoulou
- Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London SE1 1UL, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Tom Ceska
- UCB Celltech, 208 Bath Road, Slough SL1 3WE, UK
| | | | - Andrew J. Beavil
- Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London SE1 1UL, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | - James M. McDonnell
- Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London SE1 1UL, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Brian J. Sutton
- Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London SE1 1UL, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Anna M. Davies
- Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London SE1 1UL, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| |
Collapse
|
8
|
Yu C, Wang K, Cui X, Lu L, Dong J, Wang M, Gao X. Clinical Efficacy and Safety of Omalizumab in the Treatment of Allergic Rhinitis: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Am J Rhinol Allergy 2019; 34:196-208. [PMID: 31672020 DOI: 10.1177/1945892419884774] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Patients with moderate to severe allergic rhinitis (AR) who are treated according to the current rhinitis management guidelines may be inadequately controlled. These patients are at risk of serious comorbidities, such as asthma and chronic sinusitis. These symptoms, sneezing and an itchy, runny, stuffy nose, may have a negative impact on patients’ daily functioning. Omalizumab is being developed as a new choice for the treatment of AR. We therefore undertook a meta-analysis to assess the efficacy and safety of omalizumab in the treatment of AR. Methods We systematically searched PubMed, Cochrane Library, and MEDLINE databases for randomized controlled studies on the treatment of AR with omalizumab. Our evaluation outcomes were symptom scores, medication efficacy, combined symptom and medication scores, and adverse events. We descriptively summarized and quantitatively synthesized original data to evaluate the efficacy and safety of omalizumab in the treatment of AR by using Stata12.0 software for meta-analyses. Results The results of our meta-analysis showed that there were statistically significant differences between the omalizumab group and the control group in the following aspects: daily nasal symptom score (standardized mean difference [SMD] = –0.443, 95% confidence interval [CI]: –0.538 to –0.347, P < .001); daily ocular symptom score (SMD = –0.385, 95% CI: –0.5 to –0.269, P < .001); daily nasal medication symptom scores (SMD = –0.421, 95% CI: –0.591 to –0.251, P < .001); proportion of days of emergency drug use (risk ratio [RR] = 0.488, 95% CI: 0.307 to 0.788, P < .005); rhinoconjunctivitis-specific quality of life questionnaire (SMD = –0.286, 95% CI: –0.418 to –0.154, P < .001); and overall evaluation (RR = 1.435, 95% CI: 1.303–1.582, P < .001). There was no statistically significant difference in safety indicator: adverse events (RR = 1.026, 95% CI: 0.916–1.150, P = .655). Conclusion Omalizumab is effective and relatively safe in patients with AR; omalizumab used in conjunction with special immunotherapy has shown promising results, especially in reducing adverse events.
Collapse
Affiliation(s)
- Chenjie Yu
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, The People’s Republic of China
- Department of Otorhinolaryngology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, The People’s Republic of China
- Research Institute of Otorhinolaryngology, Drum Tower Hospital, Nanjing, The People’s Republic of China
| | - Kaijian Wang
- Department of Otorhinolaryngology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, The People’s Republic of China
| | - Xinyan Cui
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, The People’s Republic of China
| | - Ling Lu
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, The People’s Republic of China
- Department of Otorhinolaryngology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, The People’s Republic of China
- Research Institute of Otorhinolaryngology, Drum Tower Hospital, Nanjing, The People’s Republic of China
| | - Jianfei Dong
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, The People’s Republic of China
- Department of Otorhinolaryngology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, The People’s Republic of China
- Research Institute of Otorhinolaryngology, Drum Tower Hospital, Nanjing, The People’s Republic of China
| | - Maohua Wang
- Department of Otorhinolaryngology, Second Xiangya Hospital, Central South University, Changsha, The People’s Republic of China
| | - Xia Gao
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, The People’s Republic of China
- Department of Otorhinolaryngology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, The People’s Republic of China
- Research Institute of Otorhinolaryngology, Drum Tower Hospital, Nanjing, The People’s Republic of China
| |
Collapse
|
9
|
Wahba AA, Abdelfattah AM. Anti-immunoglobulin E therapy: is it a valid option for the management of chronic rhinosinusitis with nasal polyposis? THE EGYPTIAN JOURNAL OF OTOLARYNGOLOGY 2019. [DOI: 10.4103/ejo.ejo_19_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Rasmussen P, Spillner E, Hoffmann HJ. Inhibiting phosphatase SHIP-1 enhances suboptimal IgE-mediated activation of human blood basophils but inhibits IgE-mediated activation of cultured human mast cells. Immunol Lett 2019; 210:40-46. [PMID: 31004680 DOI: 10.1016/j.imlet.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 11/20/2022]
Abstract
IgE-mediated activation of basophil granulocytes and mast cells follows a bell-shaped dose-response curve. The decreased activation at supraoptimal allergen stimulation is thought to be associated with SH2-containing inositol-5'-phosphatase 1 (SHIP-1). SHIP-1 phosphorylation is inversely related to IgE-mediated releasability of basophils. This study sought to clarify the regulatory role of SHIP-1 in degranulation of basophil granulocytes and mast cells by selective inhibition of the phosphatase function of SHIP-1with 3-α-aminocholestane (3-α-AC). Six grass pollen allergic patients, six non-responder patients and six cultured human primary mast cell lines were included. The effect of 3-α-AC (1-60 μM, 30 min, 37 °C) was analyzed at individual suboptimal, optimal and supra-optimal allergen concentrations. The activity, upregulation of CD63, measured at different conditions was compared to evaluate the maximal effect of selective SHIP-1 inhibition. Basophils of five non-responder patients were treated with 3-α-AC (10 μM, 30 min, 37 °C). At high concentrations (>60 μM) of 3-α-AC, cells appeared to enter apoptosis. The median reactivity increased from 27.1% to 44.9% CD63+ basophils at 10 μM of 3-α-AC and suboptimal allergen stimulation (p = 0.0153). There was no effect on blood basophils of 3-α-AC at optimal or supra-optimal allergen concentrations. In contrast, treatment with more than 6 μM 3-α-AC significantly inhibited mast cell reactivity. 10 μM 3-α-AC reduced median reactivity from 32.85% to 16.5% CD63+ mast cells (p = 0.0465). Treatment with 3-α-AC did not increase response of basophils of non-responder patients. Modulating blood basophils with 3-α-AC enhanced reactivity only at suboptimal allergen concentration, and basophils from non-responders did not regain responsiveness to IgE stimulation. 3-α-AC inhibited the IgE response of mast cells in a dose dependent manner.
Collapse
Affiliation(s)
- Pernille Rasmussen
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Denmark
| | | | | |
Collapse
|
11
|
Scott‐Taylor TH, Axinia S, Amin S, Pettengell R. Immunoglobulin G; structure and functional implications of different subclass modifications in initiation and resolution of allergy. Immun Inflamm Dis 2018; 6:13-33. [PMID: 29164823 PMCID: PMC5818455 DOI: 10.1002/iid3.192] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 12/24/2022] Open
Abstract
IgE and not IgG is usually associated with allergy. IgE lodged on mast cells in skin or gut and basophils in the blood allows for the prolonged duration of allergy through the persistent expression of high affinity IgE receptors. However, many allergic reactions are not dependent on IgE and are generated in the absence of allergen specific and even total IgE. Instead, IgG plasma cells are involved in induction of, and for much of the pathogenesis of, allergic diseases. The pattern of IgG producing plasma cells in atopic children and the tendency for direct or further class switching to IgE are the principle factors responsible for long-lasting sensitization of mast cells in allergic children. Indirect class switching from IgG producing plasma cells has been shown to be the predominant pathway for production of IgE while a Th2 microenvironment, genetic predisposition, and the concentration and nature of allergens together act on IgG plasma cells in the atopic tendency to undergo further immunoglobulin gene recombination. The seminal involvement of IgG in allergy is further indicated by the principal role of IgG4 in the natural resolution of allergy and as the favourable immunological response to immunotherapy. This paper will look at allergy through the role of different antibodies than IgE and give current knowledge of the nature and role of IgG antibodies in the start, maintenance and resolution of allergy.
Collapse
Affiliation(s)
| | - Stefan‐Claudiu Axinia
- School of Life SciencesLondon Metropolitan University166‐220 Holloway RoadLondon, N7 8DB
| | - Sumeya Amin
- School of Life SciencesLondon Metropolitan University166‐220 Holloway RoadLondon, N7 8DB
| | - Ruth Pettengell
- Department of HaematologySt George's University of LondonCranmer TerraceLondon SW17 0RE
| |
Collapse
|
12
|
Mirra V, Montella S, Santamaria F. Pediatric severe asthma: a case series report and perspectives on anti-IgE treatment. BMC Pediatr 2018; 18:73. [PMID: 29466963 PMCID: PMC5820802 DOI: 10.1186/s12887-018-1019-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Background The primary goal of asthma management is to achieve disease control for reducing the risk of future exacerbations and progressive loss of lung function. Asthma not responding to treatment may result in significant morbidity. In many children with uncontrolled symptoms, the diagnosis of asthma may be wrong or adherence to treatment may be poor. It is then crucial to distinguish these cases from the truly “severe therapy-resistant” asthmatics by a proper filtering process. Herein we report on four cases diagnosed as difficult asthma, detail the workup that resulted in the ultimate diagnosis, and provide the process that led to the prescription of omalizumab. Case presentation All children had been initially referred because of asthma not responding to long-term treatment with high-dose inhaled steroids, long-acting β2-agonists and leukotriene receptor antagonists. Definitive diagnosis was severe asthma. Three out four patients were treated with omalizumab, which improved asthma control and patients’ quality of life. We reviewed the current literature on the diagnostic approach to the disease and on the comorbidities associated with difficult asthma and presented the perspectives on omalizumab treatment in children and adolescents. Based on the evidence from the literature review, we also proposed an algorithm for the diagnosis of pediatric difficult-to-treat and severe asthma. Conclusions The management of asthma is becoming much more patient-specific, as more and more is learned about the biology behind the development and progression of asthma. The addition of omalizumab, the first targeted biological treatment approved for asthma, has led to renewed optimism in the management of children and adolescents with atopic severe asthma.
Collapse
Affiliation(s)
- Virginia Mirra
- Department of Translational Medical Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Silvia Montella
- Department of Translational Medical Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Francesca Santamaria
- Department of Translational Medical Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
13
|
Davies AM, Allan EG, Keeble AH, Delgado J, Cossins BP, Mitropoulou AN, Pang MOY, Ceska T, Beavil AJ, Craggs G, Westwood M, Henry AJ, McDonnell JM, Sutton BJ. Allosteric mechanism of action of the therapeutic anti-IgE antibody omalizumab. J Biol Chem 2017; 292:9975-9987. [PMID: 28438838 PMCID: PMC5473249 DOI: 10.1074/jbc.m117.776476] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/19/2017] [Indexed: 02/03/2023] Open
Abstract
Immunoglobulin E and its interactions with receptors FcϵRI and CD23 play a central role in allergic disease. Omalizumab, a clinically approved therapeutic antibody, inhibits the interaction between IgE and FcϵRI, preventing mast cell and basophil activation, and blocks IgE binding to CD23 on B cells and antigen-presenting cells. We solved the crystal structure of the complex between an omalizumab-derived Fab and IgE-Fc, with one Fab bound to each Cϵ3 domain. Free IgE-Fc adopts an acutely bent structure, but in the complex it is only partially bent, with large-scale conformational changes in the Cϵ3 domains that inhibit the interaction with FcϵRI. CD23 binding is inhibited sterically due to overlapping binding sites on each Cϵ3 domain. Studies of omalizumab Fab binding in solution demonstrate the allosteric basis for FcϵRI inhibition and, together with the structure, reveal how omalizumab may accelerate dissociation of receptor-bound IgE from FcϵRI, exploiting the intrinsic flexibility and allosteric potential of IgE.
Collapse
Affiliation(s)
- Anna M Davies
- From the Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL
- the Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London SE1 1UL, and
| | - Elizabeth G Allan
- From the Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL
- the Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London SE1 1UL, and
| | - Anthony H Keeble
- From the Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL
- the Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London SE1 1UL, and
| | - Jean Delgado
- UCB-Celltech, 208 Bath Road, Slough SL1 3WE, United Kingdom
| | | | - Alkistis N Mitropoulou
- From the Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL
- the Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London SE1 1UL, and
| | - Marie O Y Pang
- From the Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL
- the Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London SE1 1UL, and
| | - Tom Ceska
- UCB-Celltech, 208 Bath Road, Slough SL1 3WE, United Kingdom
| | - Andrew J Beavil
- From the Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL
- the Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London SE1 1UL, and
| | - Graham Craggs
- UCB-Celltech, 208 Bath Road, Slough SL1 3WE, United Kingdom
| | - Marta Westwood
- UCB-Celltech, 208 Bath Road, Slough SL1 3WE, United Kingdom
| | | | - James M McDonnell
- From the Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL,
- the Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London SE1 1UL, and
| | - Brian J Sutton
- From the Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL,
- the Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London SE1 1UL, and
| |
Collapse
|
14
|
Structural basis of omalizumab therapy and omalizumab-mediated IgE exchange. Nat Commun 2016; 7:11610. [PMID: 27194387 PMCID: PMC4873975 DOI: 10.1038/ncomms11610] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/13/2016] [Indexed: 01/15/2023] Open
Abstract
Omalizumab is a widely used therapeutic anti-IgE antibody. Here we report the crystal structure of the omalizumab-Fab in complex with an IgE-Fc fragment. This structure reveals the mechanism of omalizumab-mediated inhibition of IgE interactions with both high- and low-affinity IgE receptors, and explains why omalizumab selectively binds free IgE. The structure of the complex also provides mechanistic insight into a class of disruptive IgE inhibitors that accelerate the dissociation of the high-affinity IgE receptor from IgE. We use this structural data to generate a mutant IgE-Fc fragment that is resistant to omalizumab binding. Treatment with this omalizumab-resistant IgE-Fc fragment, in combination with omalizumab, promotes the exchange of cell-bound full-length IgE with omalizumab-resistant IgE-Fc fragments on human basophils. This combination treatment also blocks basophil activation more efficiently than either agent alone, providing a novel approach to probe regulatory mechanisms underlying IgE hypersensitivity with implications for therapeutic interventions.
Collapse
|
15
|
Selb R, Eckl-Dorna J, Twaroch TE, Lupinek C, Teufelberger A, Hofer G, Focke-Tejkl M, Gepp B, Linhart B, Breiteneder H, Ellinger A, Keller W, Roux KH, Valenta R, Niederberger V. Critical and direct involvement of the CD23 stalk region in IgE binding. J Allergy Clin Immunol 2016; 139:281-289.e5. [PMID: 27343203 PMCID: PMC5321597 DOI: 10.1016/j.jaci.2016.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/08/2016] [Accepted: 04/27/2016] [Indexed: 10/24/2022]
Abstract
BACKGROUND The low-affinity receptor for IgE, FcεRII (CD23), contributes to allergic inflammation through allergen presentation to T cells, regulation of IgE responses, and enhancement of transepithelial allergen migration. OBJECTIVE We sought to investigate the interaction between CD23, chimeric monoclonal human IgE, and the corresponding birch pollen allergen Bet v 1 at a molecular level. METHODS We expressed 4 CD23 variants. One variant comprised the full extracellular portion of CD23, including the stalk and head domain; 1 variant was identical with the first, except for an amino acid exchange in the stalk region abolishing the N-linked glycosylation site; and 2 variants represented the head domain, 1 complete and 1 truncated. The 4 CD23 variants were purified as monomeric and structurally folded proteins, as demonstrated by gel filtration and circular dichroism. By using a human IgE mAb, the corresponding allergen Bet v 1, and a panel of antibodies specific for peptides spanning the CD23 surface, both binding and inhibition assays and negative stain electron microscopy were performed. RESULTS A hitherto unknown IgE-binding site was mapped on the stalk region of CD23, and the non-N-glycosylated monomeric version of CD23 was superior in IgE binding compared with glycosylated CD23. Furthermore, we demonstrated that a therapeutic anti-IgE antibody, omalizumab, which inhibits IgE binding to FcεRI, also inhibited IgE binding to CD23. CONCLUSION Our results provide a new model for the CD23-IgE interaction. We show that the stalk region of CD23 is crucially involved in IgE binding and that the interaction can be blocked by the therapeutic anti-IgE antibody omalizumab.
Collapse
Affiliation(s)
- Regina Selb
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Teresa E Twaroch
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Lupinek
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Gerhard Hofer
- Institute of Molecular Biosciences, Karl Franzens University, Graz, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Barbara Gepp
- Division of Medical Biotechnology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Heimo Breiteneder
- Division of Medical Biotechnology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Adolf Ellinger
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, Karl Franzens University, Graz, Austria
| | - Kenneth H Roux
- Department of Biological Science, Florida State University, Tallahassee, Fla
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Landolina N, Levi-Schaffer F. Monoclonal antibodies: the new magic bullets for allergy: IUPHAR Review 17. Br J Pharmacol 2016; 173:793-803. [PMID: 26620589 DOI: 10.1111/bph.13396] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/08/2015] [Accepted: 11/22/2015] [Indexed: 12/18/2022] Open
Abstract
Allergic diseases and conditions are widespread and their incidence is on the increase. They are characterized by the activation of mast cells resident in tissues and the consequent infiltration and stimulation of several inflammatory cells, predominantly eosinophils. Cell-cell cross-talk and the release of mediators are responsible for the symptoms and for the modulation of the response. The gold standard of therapeutic intervention is still glucocorticosteroids, although they are not effective in all patients and may cause numerous side effects. Symptomatic medications are also widespread. As research has led to deeper insights into the mechanisms governing the diseases, new avenues have been opened resulting in recent years in the development of monoclonal antibodies (mAbs) such as anti-IgE mAbs (omalizumab) and others still undergoing clinical trials aimed to specifically target molecules involved in the migration and stimulation of inflammatory cells. In this review, we summarize new developments in the field of anti-allergic mAbs with special emphasis on the treatment of asthma, particularly severe forms of this condition, and atopic dermatitis, which are two unmet clinical needs.
Collapse
Affiliation(s)
- N Landolina
- Pharmacology and Experimental Therapeutics Unit, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - F Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|