1
|
Hsu JN, Chen JS, Lin SM, Hong JY, Chen YJ, Jeng US, Luo SY, Hou MH. Targeting the N-Terminus Domain of the Coronavirus Nucleocapsid Protein Induces Abnormal Oligomerization via Allosteric Modulation. Front Mol Biosci 2022; 9:871499. [PMID: 35517857 PMCID: PMC9061996 DOI: 10.3389/fmolb.2022.871499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022] Open
Abstract
Epidemics caused by coronaviruses (CoVs), namely the severe acute respiratory syndrome (SARS) (2003), Middle East respiratory syndrome (MERS) (2012), and coronavirus disease 2019 (COVID-19) (2019), have triggered a global public health emergency. Drug development against CoVs is inherently arduous. The nucleocapsid (N) protein forms an oligomer and facilitates binding with the viral RNA genome, which is critical in the life cycle of the virus. In the current study, we found a potential allosteric site (Site 1) using PARS, an online allosteric site predictor, in the CoV N-N-terminal RNA-binding domain (NTD) to modulate the N protein conformation. We identified 5-hydroxyindole as the lead via molecular docking to target Site 1. We designed and synthesized four 5-hydroxyindole derivatives, named P4-1 to P4-4, based on the pose of 5-hydroxyindole in the docking model complex. Small-angle X-ray scattering (SAXS) data indicate that two 5-hydroxyindole compounds with higher hydrophobic R-groups mediate the binding between N-NTD and N-C-terminal dimerization domain (CTD) and elicit high-order oligomerization of the whole N protein. Furthermore, the crystal structures suggested that these two compounds act on this novel cavity and create a flat surface with higher hydrophobicity, which may mediate the interaction between N-NTD and N-CTD. Taken together, we discovered an allosteric binding pocket targeting small molecules that induces abnormal aggregation of the CoV N protein. These novel concepts will facilitate protein-protein interaction (PPI)-based drug design against various CoVs.
Collapse
Affiliation(s)
- Jia-Ning Hsu
- Institute of Genomics and Bioinformatics and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jyun-Siao Chen
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Shan-Meng Lin
- Institute of Genomics and Bioinformatics and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jhen-Yi Hong
- Institute of Genomics and Bioinformatics and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Jheng Chen
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shun-Yuan Luo
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Mule S, Singh A, Greish K, Sahebkar A, Kesharwani P, Shukla R. Drug repurposing strategies and key challenges for COVID-19 management. J Drug Target 2021; 30:413-429. [PMID: 34854327 DOI: 10.1080/1061186x.2021.2013852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
COVID-19 is a clinical outcome of viral infection emerged due to strain of beta coronavirus which attacks the type-2 pneumocytes in alveoli via angiotensin-converting enzyme 2 (ACE2) receptors. There is no satisfactory drug developed against 'SARS-CoV2', highlighting an immediate necessity chemotherapeutic repurposing plan COVID-19. Drug repurposing is a method of selection of approved therapeutics for new use and is considered to be the most effective drug finding strategy since it includes less time and cost to obtain treatment compared to the de novo drug acquisition process. Several drugs such as hydroxychloroquine, remdesivir, teicoplanin, darunavir, ritonavir, nitazoxanide, chloroquine, tocilizumab and favipiravir (FPV) showed their activity against 'SARS-CoV2' in vitro. This review has emphasized on repurposing of drugs, and biologics used in clinical set up for targeting COVID-19 and to evaluate their pharmacokinetics, pharmacodynamics and safety with their future aspect. The key benefit of drug repurposing is the wealth of information related to its safety, and easy accessibility. Altogether repurposing approach allows access to regulatory approval as well as reducing sophisticated safety studies.
Collapse
Affiliation(s)
- Shubham Mule
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Ajit Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Khaled Greish
- Nanomedicine Unit, College of Medicine and Medical Sciences, Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| |
Collapse
|
3
|
Gil C, Ginex T, Maestro I, Nozal V, Barrado-Gil L, Cuesta-Geijo MÁ, Urquiza J, Ramírez D, Alonso C, Campillo NE, Martinez A. COVID-19: Drug Targets and Potential Treatments. J Med Chem 2020; 63:12359-12386. [PMID: 32511912 PMCID: PMC7323060 DOI: 10.1021/acs.jmedchem.0c00606] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Currently, humans are immersed in a pandemic caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which threatens public health worldwide. To date, no drug or vaccine has been approved to treat the severe disease caused by this coronavirus, COVID-19. In this paper, we will focus on the main virus-based and host-based targets that can guide efforts in medicinal chemistry to discover new drugs for this devastating disease. In principle, all CoV enzymes and proteins involved in viral replication and the control of host cellular machineries are potentially druggable targets in the search for therapeutic options for SARS-CoV-2. This Perspective provides an overview of the main targets from a structural point of view, together with reported therapeutic compounds with activity against SARS-CoV-2 and/or other CoVs. Also, the role of innate immune response to coronavirus infection and the related therapeutic options will be presented.
Collapse
Affiliation(s)
- Carmen Gil
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Tiziana Ginex
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Inés Maestro
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Vanesa Nozal
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Lucía Barrado-Gil
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Miguel Ángel Cuesta-Geijo
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Jesús Urquiza
- Department of Biotechnology,
Instituto Nacional de Investigación y
Tecnología Agraria y Alimentaria (INIA),
Ctra. de la Coruña km 7.5, 28040 Madrid,
Spain
| | - David Ramírez
- Instituto de Ciencias Biomédicas,
Universidad Autónoma de Chile,
Llano Subercaseaux 2801- piso 6, 7500912 Santiago,
Chile
| | - Covadonga Alonso
- Department of Biotechnology,
Instituto Nacional de Investigación y
Tecnología Agraria y Alimentaria (INIA),
Ctra. de la Coruña km 7.5, 28040 Madrid,
Spain
| | - Nuria E. Campillo
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
4
|
Zhang N, Shang J, Li C, Zhou K, Du L. An overview of Middle East respiratory syndrome coronavirus vaccines in preclinical studies. Expert Rev Vaccines 2020; 19:817-829. [PMID: 32842811 DOI: 10.1080/14760584.2020.1813574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Middle East respiratory syndrome coronavirus (MERS-CoV) causes high mortality in humans. No vaccines are approved for use in humans; therefore, a consistent effort to develop safe and effective MERS vaccines is needed. AREAS COVERED This review describes the structure of MERS-CoV and the function of its proteins, summarizes MERS vaccine candidates under preclinical study (based on spike and non-spike structural proteins, inactivated virus, and live-attenuated virus), and highlights potential problems that could prevent these vaccines entering clinical trials. It provides guidance for the development of safe and effective MERS-CoV vaccines. EXPERT OPINION Although many MERS-CoV vaccines have been developed, most remain at the preclinical stage. Some vaccines demonstrate immunogenicity and efficacy in animal models, while others have potential adverse effects or low efficacy against high-dose or divergent virus strains. Novel strategies are needed to design safe and effective MERS vaccines to induce broad-spectrum immune responses and improve protective efficacy against multiple strains of MERS-CoV and MERS-like coronaviruses with pandemic potential. More funds should be invested to move vaccine candidates into human clinical trials.
Collapse
Affiliation(s)
- Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College , Hangzhou, China
| | - Jian Shang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , Saint Paul, MN, USA
| | - Chaoqun Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College , Hangzhou, China
| | - Kehui Zhou
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College , Hangzhou, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center , New York, NY, USA
| |
Collapse
|
5
|
Lin SM, Lin SC, Hsu JN, Chang CK, Chien CM, Wang YS, Wu HY, Jeng US, Kehn-Hall K, Hou MH. Structure-Based Stabilization of Non-native Protein-Protein Interactions of Coronavirus Nucleocapsid Proteins in Antiviral Drug Design. J Med Chem 2020; 63:3131-3141. [PMID: 32105468 PMCID: PMC7094172 DOI: 10.1021/acs.jmedchem.9b01913] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Structure-based stabilization of protein-protein interactions (PPIs) is a promising strategy for drug discovery. However, this approach has mainly focused on the stabilization of native PPIs, and non-native PPIs have received little consideration. Here, we identified a non-native interaction interface on the three-dimensional dimeric structure of the N-terminal domain of the MERS-CoV nucleocapsid protein (MERS-CoV N-NTD). The interface formed a conserved hydrophobic cavity suitable for targeted drug screening. By considering the hydrophobic complementarity during the virtual screening step, we identified 5-benzyloxygramine as a new N protein PPI orthosteric stabilizer that exhibits both antiviral and N-NTD protein-stabilizing activities. X-ray crystallography and small-angle X-ray scattering showed that 5-benzyloxygramine stabilizes the N-NTD dimers through simultaneous hydrophobic interactions with both partners, resulting in abnormal N protein oligomerization that was further confirmed in the cell. This unique approach based on the identification and stabilization of non-native PPIs of N protein could be applied toward drug discovery against CoV diseases.
Collapse
Affiliation(s)
- Shan-Meng Lin
- Institute
of Genomics and Bioinformatics, National
Chung Hsing University, Taichung 402, Taiwan
- Department
of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shih-Chao Lin
- National
Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Jia-Ning Hsu
- Institute
of Genomics and Bioinformatics, National
Chung Hsing University, Taichung 402, Taiwan
- Department
of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Chung-ke Chang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Ching-Ming Chien
- Institute
of Genomics and Bioinformatics, National
Chung Hsing University, Taichung 402, Taiwan
- Department
of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Yong-Sheng Wang
- Institute
of Genomics and Bioinformatics, National
Chung Hsing University, Taichung 402, Taiwan
| | - Hung-Yi Wu
- Graduate
Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - U-Ser Jeng
- National
Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Kylene Kehn-Hall
- National
Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Ming-Hon Hou
- Institute
of Genomics and Bioinformatics, National
Chung Hsing University, Taichung 402, Taiwan
- Department
of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Xie W, Ao C, Yang Y, Liu Y, Liang R, Zeng Z, Ye G, Xiao S, Fu ZF, Dong W, Peng G. Two critical N-terminal epitopes of the nucleocapsid protein contribute to the cross-reactivity between porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus. J Gen Virol 2019; 100:206-216. [PMID: 30652967 DOI: 10.1099/jgv.0.001216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Both porcine epidemic diarrhoea virus (PEDV) and porcine transmissible gastroenteritis virus (TGEV), which cause high mortality in piglets and produce similar clinical symptoms and histopathological morphology, belong to the genus Alphacoronavirus. Serological diagnosis plays an important role in distinguishing pathogen species. Together with the spike (S) protein, the nucleocapsid (N) protein is one of the immunodominant regions among coronaviruses. In this study, two-way antigenic cross-reactivity between the N proteins of PEDV and TGEV was observed by indirect immunofluorescence assay (IFA) and Western blot analysis. Furthermore, the PEDV N protein harbouring truncations of amino acids (aa) 1 to 170 or aa 125 to 301 was demonstrated to cross-react with the anti-TGEV N polyclonal antibody (PAb), whereas the truncation-expressing aa 302 to 401 resulted in a specific reaction with the anti-PEDV N PAb but not with the anti-TGEV N PAb. Mutants of the PEDV N protein were generated based on sequence alignment and structural analysis; we then confirmed that the N-terminal residues 58-RWRMRRGERIE-68 and 78-LGTGPHAD-85 contributed to the cross-reactivity. All the results provide vital clues for the development of precise diagnostic assays for porcine coronaviruses.
Collapse
Affiliation(s)
- Wenting Xie
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Chaojie Ao
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yilin Yang
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yinan Liu
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Rui Liang
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Zhe Zeng
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Gang Ye
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Shaobo Xiao
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Zhen F Fu
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 4Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Wanyu Dong
- 5National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Guiqing Peng
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
7
|
Srivastava S, Kamthania M, Singh S, Saxena AK, Sharma N. Structural basis of development of multi-epitope vaccine against Middle East respiratory syndrome using in silico approach. Infect Drug Resist 2018; 11:2377-2391. [PMID: 30538505 PMCID: PMC6254671 DOI: 10.2147/idr.s175114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Middle East respiratory syndrome (MERS) is caused by MERS coronavirus (MERS-CoV). Thus
far, MERS outbreaks have been reported from Saudi Arabia (2013 and 2014) and South Korea
(2015). No specific vaccine has yet been reported against MERS. Purpose To address the urgent need for an MERS vaccine, in the present study, we have designed
two multi-epitope vaccines (MEVs) against MERS utilizing several in silico methods and
tools. Methods The design of both the multi-epitope vaccines (MEVs) are composed of cytotoxic T
lymphocyte (CTL) and helper T lymphocyte (HTL) epitopes, screened form thirteen
different proteins of MERS-CoV. Both the MEVs also carry potential B-cell linear epitope
regions, B-cell discontinuous epitopes as well as interferon-γ-inducing
epitopes. Human β-defensin-2 and β-defensin-3 were used as adjuvants to
enhance the immune response of MEVs. To design the MEVs, short peptide molecular linkers
were utilized to link screened most potential CTL epitopes, HTL epitopes and the
adjuvants. Tertiary models for both the MEVs were generated, refined, and further
studied for their molecular interaction with toll-like receptor 3. The cDNAs of both
MEVs were generated and analyzed in silico for their expression in a mammalian host cell
line (human). Results Screened CTL and HTL epitopes were found to have high propensity for stable molecular
interaction with HLA alleles molecules. CTL epitopes were also found to have favorable
molecular interaction within the cavity of transporter associated with antigen
processing. The selected CTL and HTL epitopes jointly cover upto 94.0% of worldwide
human population. Both the CTL and HTL MEVs molecular models have shown to have stable
binding and complex formation propensity with toll-like receptor 3. The cDNA analysis of
both the MEVs have shown high expression tendency in mammalian host cell line
(human). Conclusion After multistage in silico analysis, both the MEVs are predicted to elicit humoral as
well as cell mediated immune response. Epitopes of the designed MEVs are predicted to
cover large human population worldwide. Hence both the designed MEVs could be tried in
vivo as potential vaccine candidates against MERS.
Collapse
Affiliation(s)
- Sukrit Srivastava
- Department of Biotechnology, Mangalayatan University, Aligarh, India, .,Molecular Medicine Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India,
| | - Mohit Kamthania
- Department of Biotechnology, Mangalayatan University, Aligarh, India, .,Department of Biotechnology, Faculty of Life Sciences, Institute of Applied Medicines and Research, Ghaziabad, Uttar Pradesh, India
| | - Soni Singh
- Department of Biotechnology, Mangalayatan University, Aligarh, India,
| | - Ajay K Saxena
- Molecular Medicine Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India,
| | - Nishi Sharma
- Department of Biotechnology, Mangalayatan University, Aligarh, India,
| |
Collapse
|
8
|
Papageorgiou N, Lichière J, Baklouti A, Ferron F, Sévajol M, Canard B, Coutard B. Structural characterization of the N-terminal part of the MERS-CoV nucleocapsid by X-ray diffraction and small-angle X-ray scattering. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:192-202. [PMID: 26894667 PMCID: PMC7159594 DOI: 10.1107/s2059798315024328] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023]
Abstract
The N protein of coronaviruses is a multifunctional protein that is organized into several domains. The N‐terminal part is composed of an intrinsically disordered region (IDR) followed by a structured domain called the N‐terminal domain (NTD). In this study, the structure determination of the N‐terminal region of the MERS‐CoV N protein via X‐ray diffraction measurements is reported at a resolution of 2.4 Å. Since the first 30 amino acids were not resolved by X‐ray diffraction, the structural study was completed by a SAXS experiment to propose a structural model including the IDR. This model presents the N‐terminal region of the MERS‐CoV as a monomer that displays structural features in common with other coronavirus NTDs.
Collapse
|
9
|
Chang CK, Jeyachandran S, Hu NJ, Liu CL, Lin SY, Wang YS, Chang YM, Hou MH. Structure-based virtual screening and experimental validation of the discovery of inhibitors targeted towards the human coronavirus nucleocapsid protein. MOLECULAR BIOSYSTEMS 2016; 12:59-66. [DOI: 10.1039/c5mb00582e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nucleocapsid protein (NP), an essential RNA-binding viral protein in human coronavirus (CoV)-infected cells, is an antiviral target for drug discovery.
Collapse
Affiliation(s)
- Chung-ke Chang
- Institute of Biomedical Science
- Academia Sinica
- Nangang
- Taiwan
| | - Sivakamavalli Jeyachandran
- Institute of Genomics and Bioinformatics and Institute of Life Sciences
- National Chung Hsing University
- Taichung 40254
- Taiwan
| | - Nien-Jen Hu
- Institute of Biochemistry
- National Chung Hsing University
- Taichung 40254
- Taiwan
| | - Chia-Ling Liu
- Institute of Genomics and Bioinformatics and Institute of Life Sciences
- National Chung Hsing University
- Taichung 40254
- Taiwan
| | - Shing-Yen Lin
- Institute of Genomics and Bioinformatics and Institute of Life Sciences
- National Chung Hsing University
- Taichung 40254
- Taiwan
| | - Yong-Sheng Wang
- Institute of Genomics and Bioinformatics and Institute of Life Sciences
- National Chung Hsing University
- Taichung 40254
- Taiwan
| | - Yu-Ming Chang
- Institute of Biological Chemistry
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics and Institute of Life Sciences
- National Chung Hsing University
- Taichung 40254
- Taiwan
- Institute of Biochemistry
| |
Collapse
|
10
|
Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein. Drug Discov Today 2015; 21:562-72. [PMID: 26691874 PMCID: PMC7108309 DOI: 10.1016/j.drudis.2015.11.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/11/2015] [Accepted: 11/30/2015] [Indexed: 12/18/2022]
Abstract
Coronavirus nucleocapsid proteins are appealing drug targets against coronavirus-induced diseases. A variety of compounds targeting the coronavirus nucleocapsid protein have been developed. Many of these compounds show potential antiviral activity.
The advent of severe acute respiratory syndrome (SARS) in the 21st century and the recent outbreak of Middle-East respiratory syndrome (MERS) highlight the importance of coronaviruses (CoVs) as human pathogens, emphasizing the need for development of novel antiviral strategies to combat acute respiratory infections caused by CoVs. Recent studies suggest that nucleocapsid (N) proteins from coronaviruses and other viruses can be useful antiviral drug targets against viral infections. This review aims to provide readers with a concise survey of the structural features of coronavirus N proteins and how these features provide insights into structure-based development of therapeutics against coronaviruses. We will also present our latest results on MERS-CoV N protein and its potential as an antiviral drug target.
Collapse
|