1
|
Wadhwa V, Jamshidi C, Stachowski K, Bird AJ, Foster MP. Conformational dynamics in specialized C 2H 2 zinc finger domains enable zinc-responsive gene repression in S. pombe. Protein Sci 2025; 34:e70044. [PMID: 39865413 PMCID: PMC11761706 DOI: 10.1002/pro.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem C2H2 zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical C2H2 zinc fingers. Isothermal titration calorimetry and NMR spectroscopy reveal two distinct zinc binding events localized to the zinc fingers. NMR spectra reveal complex dynamic behavior in this zinc-responsive region spanning time scales from fast 10-12-10-10 to slow >100 s. Slow exchange due to cis-trans isomerization of the TGERP linker results in the doubling of many signals in the protein. Conformational exchange on the 10-3 s timescale throughout the first zinc finger distinguishes it from the second and is linked to a weaker affinity for zinc. These findings reveal a mechanism of zinc sensing by Loz1 and illuminate how the protein's rough free-energy landscape enables zinc sensing, DNA binding and regulated gene expression.
Collapse
Affiliation(s)
- Vibhuti Wadhwa
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Cameron Jamshidi
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Kye Stachowski
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Amanda J. Bird
- Department of Human Nutrition and Molecular GeneticsCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Mark P. Foster
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
2
|
Babai KH, Long F, Malý M, Yamashita K, Murshudov GN. Improving macromolecular structure refinement with metal-coordination restraints. Acta Crystallogr D Struct Biol 2024; 80:821-833. [PMID: 39625466 PMCID: PMC11626771 DOI: 10.1107/s2059798324011458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024] Open
Abstract
Metals are essential components for the structure and function of many proteins. However, accurate modelling of their coordination environments remains a challenge due to the complexity and diversity of metal-coordination geometries. To address this, a method is presented for extracting and analysing coordination information, including bond lengths and angles, from the Crystallography Open Database. By using these data, comprehensive descriptions of metal-containing components are generated. A stereochemical information generator for a particular component within a specific macromolecule leverages an example PDB/mmCIF file containing the component to account for the actual surrounding environment. A matching process has been developed and implemented to align the derived metal structures with idealized coordinates from a coordination geometry library. Additionally, various strategies, depending on the quality of the matches, were employed to compile distance and angle statistics for the refinement of macromolecular structures. The developed methods were implemented in a new program, MetalCoord, that classifies and utilizes the metal-coordination geometry. The effectiveness of the developed algorithms was tested using metal-containing components from the PDB. As a result, metal-containing components from the CCP4 monomer library have been updated. The updated monomer dictionaries, in concert with the derived restraints, can be used in most structural biology computations, including macromolecular crystallography, single-particle cryo-EM and even molecular mechanics.
Collapse
Affiliation(s)
- Kaveh H. Babai
- Institute of Molecular Biology and Biotechnology, Ministry of Science and Education, 11 Izzat Nabiyev, Baku, Azerbaijan
| | - Fei Long
- MRC Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeCB2 0QHUnited Kingdom
| | - Martin Malý
- Biological Sciences, Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Keitaro Yamashita
- Structural Biology Division, Research Center for Advanced Science and TechnologyThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8904Japan
| | - Garib N. Murshudov
- Institute of Molecular Biology and Biotechnology, Ministry of Science and Education, 11 Izzat Nabiyev, Baku, Azerbaijan
- MRC Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeCB2 0QHUnited Kingdom
| |
Collapse
|
3
|
Bazayeva M, Andreini C, Rosato A. A database overview of metal-coordination distances in metalloproteins. Acta Crystallogr D Struct Biol 2024; 80:362-376. [PMID: 38682667 PMCID: PMC11066882 DOI: 10.1107/s2059798324003152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Metalloproteins are ubiquitous in all living organisms and take part in a very wide range of biological processes. For this reason, their experimental characterization is crucial to obtain improved knowledge of their structure and biological functions. The three-dimensional structure represents highly relevant information since it provides insight into the interaction between the metal ion(s) and the protein fold. Such interactions determine the chemical reactivity of the bound metal. The available PDB structures can contain errors due to experimental factors such as poor resolution and radiation damage. A lack of use of distance restraints during the refinement and validation process also impacts the structure quality. Here, the aim was to obtain a thorough overview of the distribution of the distances between metal ions and their donor atoms through the statistical analysis of a data set based on more than 115 000 metal-binding sites in proteins. This analysis not only produced reference data that can be used by experimentalists to support the structure-determination process, for example as refinement restraints, but also resulted in an improved insight into how protein coordination occurs for different metals and the nature of their binding interactions. In particular, the features of carboxylate coordination were inspected, which is the only type of interaction that is commonly present for nearly all metals.
Collapse
Affiliation(s)
- Milana Bazayeva
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudia Andreini
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Agirre J, Atanasova M, Bagdonas H, Ballard CB, Baslé A, Beilsten-Edmands J, Borges RJ, Brown DG, Burgos-Mármol JJ, Berrisford JM, Bond PS, Caballero I, Catapano L, Chojnowski G, Cook AG, Cowtan KD, Croll TI, Debreczeni JÉ, Devenish NE, Dodson EJ, Drevon TR, Emsley P, Evans G, Evans PR, Fando M, Foadi J, Fuentes-Montero L, Garman EF, Gerstel M, Gildea RJ, Hatti K, Hekkelman ML, Heuser P, Hoh SW, Hough MA, Jenkins HT, Jiménez E, Joosten RP, Keegan RM, Keep N, Krissinel EB, Kolenko P, Kovalevskiy O, Lamzin VS, Lawson DM, Lebedev AA, Leslie AGW, Lohkamp B, Long F, Malý M, McCoy AJ, McNicholas SJ, Medina A, Millán C, Murray JW, Murshudov GN, Nicholls RA, Noble MEM, Oeffner R, Pannu NS, Parkhurst JM, Pearce N, Pereira J, Perrakis A, Powell HR, Read RJ, Rigden DJ, Rochira W, Sammito M, Sánchez Rodríguez F, Sheldrick GM, Shelley KL, Simkovic F, Simpkin AJ, Skubak P, Sobolev E, Steiner RA, Stevenson K, Tews I, Thomas JMH, Thorn A, Valls JT, Uski V, Usón I, Vagin A, Velankar S, Vollmar M, Walden H, Waterman D, Wilson KS, Winn MD, Winter G, Wojdyr M, Yamashita K. The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr D Struct Biol 2023; 79:449-461. [PMID: 37259835 PMCID: PMC10233625 DOI: 10.1107/s2059798323003595] [Citation(s) in RCA: 269] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.
Collapse
Affiliation(s)
- Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Mihaela Atanasova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Haroldas Bagdonas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Charles B. Ballard
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - James Beilsten-Edmands
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Rafael J. Borges
- The Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - David G. Brown
- Laboratoires Servier SAS Institut de Recherches, Croissy-sur-Seine, France
| | - J. Javier Burgos-Mármol
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - John M. Berrisford
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Paul S. Bond
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Iracema Caballero
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Lucrezia Catapano
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
| | - Grzegorz Chojnowski
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Atlanta G. Cook
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King’s Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Kevin D. Cowtan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Tristan I. Croll
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
- Altos Labs, Portway Building, Granta Park, Great Abington, Cambridge CB21 6GP, United Kingdom
| | - Judit É. Debreczeni
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, United Kingdom
| | - Nicholas E. Devenish
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Eleanor J. Dodson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Tarik R. Drevon
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0QS, United Kingdom
| | - Phil R. Evans
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Maria Fando
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - James Foadi
- Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
| | - Luis Fuentes-Montero
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Markus Gerstel
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Richard J. Gildea
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Kaushik Hatti
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Maarten L. Hekkelman
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philipp Heuser
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Soon Wen Hoh
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Michael A. Hough
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elisabet Jiménez
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Robbie P. Joosten
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ronan M. Keegan
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Nicholas Keep
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Eugene B. Krissinel
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Petr Kolenko
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 55, 252 50 Vestec, Czech Republic
| | - Oleg Kovalevskiy
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Victor S. Lamzin
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - David M. Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Andrey A. Lebedev
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Andrew G. W. Leslie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Bernhard Lohkamp
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Fei Long
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Martin Malý
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 55, 252 50 Vestec, Czech Republic
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Airlie J. McCoy
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Stuart J. McNicholas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Ana Medina
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Claudia Millán
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - James W. Murray
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Garib N. Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert A. Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Martin E. M. Noble
- Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Robert Oeffner
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Navraj S. Pannu
- Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - James M. Parkhurst
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0QS, United Kingdom
| | - Nicholas Pearce
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Joana Pereira
- Biozentrum and SIB Swiss Institute of Bioinformatics, University of Basel, 4056 Basel, Switzerland
| | - Anastassis Perrakis
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Harold R. Powell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - William Rochira
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Massimo Sammito
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
- Discovery Centre, Biologics Engineering, AstraZeneca, Biomedical Campus, 1 Francis Crick Avenue, Trumpington, Cambridge CB2 0AA, United Kingdom
| | - Filomeno Sánchez Rodríguez
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - George M. Sheldrick
- Department of Structural Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Kathryn L. Shelley
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Felix Simkovic
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Adam J. Simpkin
- Laboratoires Servier SAS Institut de Recherches, Croissy-sur-Seine, France
| | - Pavol Skubak
- Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Egor Sobolev
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Roberto A. Steiner
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
- Department of Biomedical Sciences, University of Padova, Italy
| | - Kyle Stevenson
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Jens M. H. Thomas
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Andrea Thorn
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Josep Triviño Valls
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Ville Uski
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08003 Barcelona, Spain
| | - Alexei Vagin
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Melanie Vollmar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Helen Walden
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David Waterman
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Martyn D. Winn
- Scientific Computing Department, Science and Technology Facilities Council, Didcot OX11 0FA, United Kingdom
| | - Graeme Winter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Marcin Wojdyr
- Global Phasing Limited (United Kingdom), Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
5
|
Hekkelman ML, de Vries I, Joosten RP, Perrakis A. AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat Methods 2023; 20:205-213. [PMID: 36424442 PMCID: PMC9911346 DOI: 10.1038/s41592-022-01685-y] [Citation(s) in RCA: 199] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
Abstract
Artificial intelligence-based protein structure prediction approaches have had a transformative effect on biomolecular sciences. The predicted protein models in the AlphaFold protein structure database, however, all lack coordinates for small molecules, essential for molecular structure or function: hemoglobin lacks bound heme; zinc-finger motifs lack zinc ions essential for structural integrity and metalloproteases lack metal ions needed for catalysis. Ligands important for biological function are absent too; no ADP or ATP is bound to any of the ATPases or kinases. Here we present AlphaFill, an algorithm that uses sequence and structure similarity to 'transplant' such 'missing' small molecules and ions from experimentally determined structures to predicted protein models. The algorithm was successfully validated against experimental structures. A total of 12,029,789 transplants were performed on 995,411 AlphaFold models and are available together with associated validation metrics in the alphafill.eu databank, a resource to help scientists make new hypotheses and design targeted experiments.
Collapse
Affiliation(s)
- Maarten L. Hekkelman
- grid.430814.a0000 0001 0674 1393Oncode Institute and Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ida de Vries
- grid.430814.a0000 0001 0674 1393Oncode Institute and Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Robbie P. Joosten
- grid.430814.a0000 0001 0674 1393Oncode Institute and Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anastassis Perrakis
- Oncode Institute and Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Laveglia V, Giachetti A, Sala D, Andreini C, Rosato A. Learning to Identify Physiological and Adventitious Metal-Binding Sites in the Three-Dimensional Structures of Proteins by Following the Hints of a Deep Neural Network. J Chem Inf Model 2022; 62:2951-2960. [PMID: 35679182 PMCID: PMC9241070 DOI: 10.1021/acs.jcim.2c00522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thirty-eight percent of protein structures in the Protein Data Bank contain at least one metal ion. However, not all these metal sites are biologically relevant. Cations present as impurities during sample preparation or in the crystallization buffer can cause the formation of protein-metal complexes that do not exist in vivo. We implemented a deep learning approach to build a classifier able to distinguish between physiological and adventitious zinc-binding sites in the 3D structures of metalloproteins. We trained the classifier using manually annotated sites extracted from the MetalPDB database. Using a 10-fold cross validation procedure, the classifier achieved an accuracy of about 90%. The same neural classifier could predict the physiological relevance of non-heme mononuclear iron sites with an accuracy of nearly 80%, suggesting that the rules learned on zinc sites have general relevance. By quantifying the relative importance of the features describing the input zinc sites from the network perspective and by analyzing the characteristics of the MetalPDB datasets, we inferred some common principles. Physiological sites present a low solvent accessibility of the aminoacids forming coordination bonds with the metal ion (the metal ligands), a relatively large number of residues in the metal environment (≥20), and a distinct pattern of conservation of Cys and His residues in the site. Adventitious sites, on the other hand, tend to have a low number of donor atoms from the polypeptide chain (often one or two). These observations support the evaluation of the physiological relevance of novel metal-binding sites in protein structures.
Collapse
Affiliation(s)
- Vincenzo Laveglia
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Andrea Giachetti
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Davide Sala
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.,Institute for Drug Discovery, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany.,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudia Andreini
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Simplified quality assessment for small-molecule ligands in the Protein Data Bank. Structure 2022; 30:252-262.e4. [PMID: 35026162 PMCID: PMC8849442 DOI: 10.1016/j.str.2021.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/14/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023]
Abstract
More than 70% of the experimentally determined macromolecular structures in the Protein Data Bank (PDB) contain small-molecule ligands. Quality indicators of ∼643,000 ligands present in ∼106,000 PDB X-ray crystal structures have been analyzed. Ligand quality varies greatly with regard to goodness of fit between ligand structure and experimental data, deviations in bond lengths and angles from known chemical structures, and inappropriate interatomic clashes between the ligand and its surroundings. Based on principal component analysis, correlated quality indicators of ligand structure have been aggregated into two largely orthogonal composite indicators measuring goodness of fit to experimental data and deviation from ideal chemical structure. Ranking of the composite quality indicators across the PDB archive enabled construction of uniformly distributed composite ranking score. This score is implemented at RCSB.org to compare chemically identical ligands in distinct PDB structures with easy-to-interpret two-dimensional ligand quality plots, allowing PDB users to quickly assess ligand structure quality and select the best exemplars.
Collapse
|
8
|
Nicholls RA, Wojdyr M, Joosten RP, Catapano L, Long F, Fischer M, Emsley P, Murshudov GN. The missing link: covalent linkages in structural models. Acta Crystallogr D Struct Biol 2021; 77:727-745. [PMID: 34076588 PMCID: PMC8171067 DOI: 10.1107/s2059798321003934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Covalent linkages between constituent blocks of macromolecules and ligands have been subject to inconsistent treatment during the model-building, refinement and deposition process. This may stem from a number of sources, including difficulties with initially detecting the covalent linkage, identifying the correct chemistry, obtaining an appropriate restraint dictionary and ensuring its correct application. The analysis presented herein assesses the extent of problems involving covalent linkages in the Protein Data Bank (PDB). Not only will this facilitate the remediation of existing models, but also, more importantly, it will inform and thus improve the quality of future linkages. By considering linkages of known type in the CCP4 Monomer Library (CCP4-ML), failure to model a covalent linkage is identified to result in inaccurate (systematically longer) interatomic distances. Scanning the PDB for proximal atom pairs that do not have a corresponding type in the CCP4-ML reveals a large number of commonly occurring types of unannotated potential linkages; in general, these may or may not be covalently linked. Manual consideration of the most commonly occurring cases identifies a number of genuine classes of covalent linkages. The recent expansion of the CCP4-ML is discussed, which has involved the addition of over 16 000 and the replacement of over 11 000 component dictionaries using AceDRG. As part of this effort, the CCP4-ML has also been extended using AceDRG link dictionaries for the aforementioned linkage types identified in this analysis. This will facilitate the identification of such linkage types in future modelling efforts, whilst concurrently easing the process involved in their application. The need for a universal standard for maintaining link records corresponding to covalent linkages, and references to the associated dictionaries used during modelling and refinement, following deposition to the PDB is emphasized. The importance of correctly modelling covalent linkages is demonstrated using a case study, which involves the covalent linkage of an inhibitor to the main protease in various viral species, including SARS-CoV-2. This example demonstrates the importance of properly modelling covalent linkages using a comprehensive restraint dictionary, as opposed to just using a single interatomic distance restraint or failing to model the covalent linkage at all.
Collapse
Affiliation(s)
- Robert A. Nicholls
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marcin Wojdyr
- Global Phasing Limited, Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Robbie P. Joosten
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Lucrezia Catapano
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
| | - Fei Long
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marcus Fischer
- Chemical Biology and Therapeutics and Structural Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Paul Emsley
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Garib N. Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
9
|
Nicholls RA, Joosten RP, Long F, Wojdyr M, Lebedev A, Krissinel E, Catapano L, Fischer M, Emsley P, Murshudov GN. Modelling covalent linkages in CCP4. Acta Crystallogr D Struct Biol 2021; 77:712-726. [PMID: 34076587 PMCID: PMC8171069 DOI: 10.1107/s2059798321001753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/12/2021] [Indexed: 11/10/2022] Open
Abstract
In this contribution, the current protocols for modelling covalent linkages within the CCP4 suite are considered. The mechanism used for modelling covalent linkages is reviewed: the use of dictionaries for describing changes to stereochemistry as a result of the covalent linkage and the application of link-annotation records to structural models to ensure the correct treatment of individual instances of covalent linkages. Previously, linkage descriptions were lacking in quality compared with those of contemporary component dictionaries. Consequently, AceDRG has been adapted for the generation of link dictionaries of the same quality as for individual components. The approach adopted by AceDRG for the generation of link dictionaries is outlined, which includes associated modifications to the linked components. A number of tools to facilitate the practical modelling of covalent linkages available within the CCP4 suite are described, including a new restraint-dictionary accumulator, the Make Covalent Link tool and AceDRG interface in Coot, the 3D graphical editor JLigand and the mechanisms for dealing with covalent linkages in the CCP4i2 and CCP4 Cloud environments. These integrated solutions streamline and ease the covalent-linkage modelling workflow, seamlessly transferring relevant information between programs. Current recommended practice is elucidated by means of instructive practical examples. By summarizing the different approaches to modelling linkages that are available within the CCP4 suite, limitations and potential pitfalls that may be encountered are highlighted in order to raise awareness, with the intention of improving the quality of future modelled covalent linkages in macromolecular complexes.
Collapse
Affiliation(s)
- Robert A. Nicholls
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robbie P. Joosten
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Fei Long
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marcin Wojdyr
- Global Phasing Limited, Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Andrey Lebedev
- CCP4, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Eugene Krissinel
- CCP4, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Lucrezia Catapano
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
| | - Marcus Fischer
- Chemical Biology and Therapeutics and Structural Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Paul Emsley
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Garib N. Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
10
|
Nguyen K, Chakraborty S, Mansbach RA, Korber B, Gnanakaran S. Exploring the Role of Glycans in the Interaction of SARS-CoV-2 RBD and Human Receptor ACE2. Viruses 2021; 13:927. [PMID: 34067878 PMCID: PMC8156887 DOI: 10.3390/v13050927] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
COVID-19 is a highly infectious respiratory disease caused by the novel coronavirus SARS-CoV-2. It has become a global pandemic and its frequent mutations may pose new challenges for vaccine design. During viral infection, the Spike RBD of SARS-CoV-2 binds the human host cell receptor ACE2, enabling the virus to enter the host cell. Both the Spike and ACE2 are densely glycosylated, and it is unclear how distinctive glycan types may modulate the interaction of RBD and ACE2. Detailed understanding of these determinants is key for the development of novel therapeutic strategies. To this end, we perform extensive all-atom simulations of the (i) RBD-ACE2 complex without glycans, (ii) RBD-ACE2 with oligomannose MAN9 glycans in ACE2, and (iii) RBD-ACE2 with complex FA2 glycans in ACE2. These simulations identify the key residues at the RBD-ACE2 interface that form contacts with higher probabilities, thus providing a quantitative evaluation that complements recent structural studies. Notably, we find that this RBD-ACE2 contact signature is not altered by the presence of different glycoforms, suggesting that RBD-ACE2 interaction is robust. Applying our simulated results, we illustrate how the recently prevalent N501Y mutation may alter specific interactions with host ACE2 that facilitate the virus-host binding. Furthermore, our simulations reveal how the glycan on Asn90 of ACE2 can play a distinct role in the binding and unbinding of RBD. Finally, an energetics analysis shows that MAN9 glycans on ACE2 decrease RBD-ACE2 affinity, while FA2 glycans lead to enhanced binding of the complex. Together, our results provide a more comprehensive picture of the detailed interplay between virus and human receptor, which is much needed for the discovery of effective treatments that aim at modulating the physical-chemical properties of this virus.
Collapse
Affiliation(s)
- Kien Nguyen
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (K.N.); (S.C.); (B.K.)
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (K.N.); (S.C.); (B.K.)
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (K.N.); (S.C.); (B.K.)
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (K.N.); (S.C.); (B.K.)
| |
Collapse
|
11
|
Hall KA, Paing HW, Marcus RK. Quantitative trace metal determinations in cell culture media using LS-APGD-MS and ICP-OES with free/bound species differentiation following polymer fiber separations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1945-1954. [PMID: 33913969 DOI: 10.1039/d1ay00332a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid sampling-atmospheric pressure glow discharge-mass spectrometry (LS-APGD-MS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) were employed for the quantification of trace metals in cell culture media and their capabilities compared. The LS-APGD is interfaced here to a compact mass spectrometer (Advion CMS) towards the development of an at-bioreactor process monitoring strategy. Both techniques have been previously employed for the quantification of trace metals in samples of various complexities, making them a natural choice for this application. They have also demonstrated comparable analytical figures of merit including limits of detection (LOD), matrix tolerance, etc. While cell culture media is a complex sample, the ICP-OES technique was unaffected by the matrix. However, the LS-APGD-MS suffered from increases in spectral background. Despite this, both techniques achieved appropriate LODs for all metals analyzed in this work (Cu, Fe, Zn, Co, Mn, Ni; LOD < 100 ng mL-1), except for Mn and Ni via LS-APGD-MS. To overcome the increased background seen on the LS-APGD-MS, a capillary channeled polymer (C-CP) polypropylene (PPY) fiber stationary phase was employed as an on-line separation for the removal of organic components prior to sample introduction into the plasma. It was further determined that Ni was retained on the column, preventing the detection of this element via LS-APGD-MS, and insights into metal speciation were discussed. Following implementation of this on-line separation strategy, the agreement between the techniques was acceptable for all analytes, and was excellent for Cu, Fe, and Zn.
Collapse
Affiliation(s)
- Katja A Hall
- Clemson University, Biosystems Research Complex, Clemson, SC 29634, USA.
| | | | | |
Collapse
|
12
|
van Beusekom B, Damaskos G, Hekkelman ML, Salgado-Polo F, Hiruma Y, Perrakis A, Joosten RP. LAHMA: structure analysis through local annotation of homology-matched amino acids. Acta Crystallogr D Struct Biol 2021; 77:28-40. [PMID: 33404523 PMCID: PMC7787103 DOI: 10.1107/s2059798320014473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/30/2020] [Indexed: 11/11/2022] Open
Abstract
Comparison of homologous structure models is a key step in analyzing protein structure. With a wealth of homologous structures, comparison becomes a tedious process, and often only a small (user-biased) selection of data is used. A multitude of structural superposition algorithms are then typically used to visualize the structures together in 3D and to compare them. Here, the Local Annotation of Homology-Matched Amino acids (LAHMA) website (https://lahma.pdb-redo.eu) is presented, which compares any structure model with all of its close homologs from the PDB-REDO databank. LAHMA displays structural features in sequence space, allowing users to uncover differences between homologous structure models that can be analyzed for their relevance to chemistry or biology. LAHMA visualizes numerous structural features, also allowing one-click comparison of structure-quality plots (for example the Ramachandran plot) and `in-browser' structural visualization of 3D models.
Collapse
Affiliation(s)
- Bart van Beusekom
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - George Damaskos
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maarten L. Hekkelman
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Fernando Salgado-Polo
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Yoshitaka Hiruma
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Robbie P. Joosten
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
13
|
Masmaliyeva RC, Babai KH, Murshudov GN. Local and global analysis of macromolecular atomic displacement parameters. Acta Crystallogr D Struct Biol 2020; 76:926-937. [PMID: 33021494 PMCID: PMC7543658 DOI: 10.1107/s2059798320011043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/11/2020] [Indexed: 04/13/2023] Open
Abstract
This paper describes the global and local analysis of atomic displacement parameters (ADPs) of macromolecules in X-ray crystallography. The distribution of ADPs is shown to follow the shifted inverse-gamma distribution or a mixture of these distributions. The mixture parameters are estimated using the expectation-maximization algorithm. In addition, a method for the resolution- and individual ADP-dependent local analysis of neighbouring atoms has been designed. This method facilitates the detection of mismodelled atoms, heavy-metal atoms and disordered and/or incorrectly modelled ligands. Both global and local analyses can be used to detect errors in atomic models, thus helping in the (re)building, refinement and validation of macromolecular structures. This method can also serve as an additional validation tool during PDB deposition.
Collapse
Affiliation(s)
| | - Kave H. Babai
- R.I.S.K. Scientific Production Company, Baku, Azerbaijan
| | - Garib N. Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
14
|
Butt BG, Scourfield EJ, Graham SC. Non-native fold of the putative VPS39 zinc finger domain. Wellcome Open Res 2020; 5:154. [PMID: 32724865 PMCID: PMC7384125 DOI: 10.12688/wellcomeopenres.16078.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2020] [Indexed: 01/15/2023] Open
Abstract
Background: The multi-subunit homotypic fusion and vacuole protein sorting (HOPS) membrane-tethering complex is involved in regulating the fusion of late endosomes and autophagosomes with lysosomes in eukaryotes. The C-terminal regions of several HOPS components have been shown to be required for correct complex assembly, including the C-terminal really interesting new gene (RING) zinc finger domains of HOPS components VPS18 and VPS41. We sought to structurally characterise the putative C-terminal zinc finger domain of VPS39, which we hypothesised may be important for binding of VPS39 to cellular partners or to other HOPS components. Methods: We recombinantly expressed, purified and solved the crystal structure of the proposed zinc-binding region of VPS39. Results: In the structure, this region forms an anti-parallel β-hairpin that is incorporated into a homotetrameric eight-stranded β-barrel. However, the fold is stabilised by coordination of zinc ions by residues from the purification tag and an intramolecular disulphide bond between two predicted zinc ligands. Conclusions: We solved the structure of the VPS39 C-terminal domain adopting a non-native fold. Our work highlights the risk of non-native folds when purifying small zinc-containing domains with hexahistidine tags. However, the non-native structure we observe may have implications for rational protein design.
Collapse
Affiliation(s)
- Benjamin G Butt
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | | | - Stephen C Graham
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| |
Collapse
|
15
|
Butt BG, Scourfield EJ, Graham SC. Non-native fold of the putative VPS39 zinc finger domain. Wellcome Open Res 2020; 5:154. [DOI: 10.12688/wellcomeopenres.16078.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 11/20/2022] Open
Abstract
Background: The multi-subunit homotypic fusion and vacuole protein sorting (HOPS) membrane-tethering complex is involved in regulating the fusion of late endosomes and autophagosomes with lysosomes in eukaryotes. The C-terminal regions of several HOPS components have been shown to be required for correct complex assembly, including the C-terminal really interesting new gene (RING) zinc finger domains of HOPS components VPS18 and VPS41. We sought to structurally characterise the putative C-terminal zinc finger domain of VPS39, which we hypothesised may be important for binding of VPS39 to cellular partners or to other HOPS components. Methods: We recombinantly expressed, purified and solved the crystal structure of the proposed zinc-binding region of VPS39. Results: In the structure, this region forms an anti-parallel β-hairpin that is incorporated into a homotetrameric eight-stranded β-barrel. However, the fold is stabilised by coordination of zinc ions by residues from the purification tag and an intramolecular disulphide bond between two predicted zinc ligands. Conclusions: We solved the structure of the VPS39 C-terminal domain adopting a non-native fold. Our work highlights the risk of non-native folds when purifying small zinc-containing domains with hexahistidine tags. However, the non-native structure we observe may have implications for rational protein design.
Collapse
|
16
|
Erlendsson S, Morado DR, Cullen HB, Feschotte C, Shepherd JD, Briggs JAG. Structures of virus-like capsids formed by the Drosophila neuronal Arc proteins. Nat Neurosci 2020; 23:172-175. [PMID: 31907439 PMCID: PMC7032958 DOI: 10.1038/s41593-019-0569-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022]
Abstract
Arc, a neuronal gene critical for synaptic plasticity, originated through
domestication of retrotransposon Gag genes and mediates
intercellular mRNA transfer. We report high-resolution structures of
retrovirus-like capsids formed by Drosophila dArc1 and dArc2
that have surface spikes and putative internal RNA-binding domains. These data
demonstrate that virus-like capsid-forming properties of Arc are evolutionarily
conserved and provide a structural basis for understanding their function in
intercellular communication.
Collapse
Affiliation(s)
- Simon Erlendsson
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Dustin R Morado
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Harrison B Cullen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Jason D Shepherd
- Department of Neurobiology and Anatomy, The University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John A G Briggs
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
17
|
Macchiagodena M, Pagliai M, Andreini C, Rosato A, Procacci P. Upgrading and Validation of the AMBER Force Field for Histidine and Cysteine Zinc(II)-Binding Residues in Sites with Four Protein Ligands. J Chem Inf Model 2019; 59:3803-3816. [PMID: 31385702 DOI: 10.1021/acs.jcim.9b00407] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We developed and validated a novel force field in the context of the AMBER parameterization for the simulation of zinc(II)-binding proteins. The proposed force field assumes nonbonded spherical interactions between the central zinc(II) and the coordinating residues. A crucial innovative aspect of our approach is to account for the polarization effects of the cation by redefining the atomic charges of the coordinating residues and an adjustment of Lennard-Jones parameters of Zn-interacting atoms to reproduce mean distance distributions. The optimal transferable parametrization was obtained by performing accurate quantum mechanical calculations on a training set of high-quality protein structures, encompassing the most common folds of zinc(II) sites. The addressed sites contain a zinc(II) ion tetra-coordinated by histidine and cysteine residues and represent about 70% of all physiologically relevant zinc(II) sites in the Protein Data Bank. Molecular dynamics simulations with explicit solvent, carried out on several zinc(II)-binding proteins not included in the training set, show that our model for zinc(II) sites preserves the tetra-coordination of the metal site with remarkable stability, yielding zinc(II)-X mean distances similar to experimental data. Finally, the model was tested by evaluating the zinc(II)-binding affinities, using the alchemical free energy perturbation approach. The calculated dissociation constants correlate satisfactorily with the experimental counterpart demonstrating the validity and transferability of the proposed parameterization for zinc(II)-binding proteins.
Collapse
Affiliation(s)
- Marina Macchiagodena
- Dipartimento di Chimica "Ugo Schiff" , Università degli Studi di Firenze , Via della Lastruccia 3 , 50019 Sesto Fiorentino , Italy
| | - Marco Pagliai
- Dipartimento di Chimica "Ugo Schiff" , Università degli Studi di Firenze , Via della Lastruccia 3 , 50019 Sesto Fiorentino , Italy
| | - Claudia Andreini
- Dipartimento di Chimica "Ugo Schiff" , Università degli Studi di Firenze , Via della Lastruccia 3 , 50019 Sesto Fiorentino , Italy.,Magnetic Resonance Center (CERM)-Università degli Studi di Firenze , Via L. Sacconi 6 , 50019 Sesto Fiorentino , Italy
| | - Antonio Rosato
- Dipartimento di Chimica "Ugo Schiff" , Università degli Studi di Firenze , Via della Lastruccia 3 , 50019 Sesto Fiorentino , Italy.,Magnetic Resonance Center (CERM)-Università degli Studi di Firenze , Via L. Sacconi 6 , 50019 Sesto Fiorentino , Italy
| | - Piero Procacci
- Dipartimento di Chimica "Ugo Schiff" , Università degli Studi di Firenze , Via della Lastruccia 3 , 50019 Sesto Fiorentino , Italy
| |
Collapse
|
18
|
Malik A, Lin YF, Pratihar S, Angel LA, Hase WL. Direct Dynamics Simulations of Fragmentation of a Zn(II)-2Cys-2His Oligopeptide. Comparison with Mass Spectrometry Collision-Induced Dissociation. J Phys Chem A 2019; 123:6868-6885. [DOI: 10.1021/acs.jpca.9b05218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Abdul Malik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061 United States
| | - Yu-Fu Lin
- Department of Chemistry Texas A&M University—Commerce, 2600 South Neal Street, Commerce, Texas 75428, United States
| | - Subha Pratihar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061 United States
| | - Laurence A. Angel
- Department of Chemistry Texas A&M University—Commerce, 2600 South Neal Street, Commerce, Texas 75428, United States
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061 United States
| |
Collapse
|
19
|
Structural and functional characterization of the transcriptional regulator Rv3488 of Mycobacterium tuberculosis H37Rv. Biochem J 2018; 475:3393-3416. [DOI: 10.1042/bcj20180356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
Rv3488 of Mycobacterium tuberculosis H37Rv has been assigned to the phenolic acid decarboxylase repressor (PadR) family of transcriptional regulators that play key roles in multidrug resistance and virulence of prokaryotes. The binding of cadmium, zinc, and several other metals to Rv3488 was discovered and characterized by isothermal titration calorimetery to be an exothermic process. Crystal structures of apo-Rv3488 and Rv3488 in complex with cadmium or zinc ions were determined by X-ray crystallography. The structure of Rv3488 revealed a dimeric protein with N-terminal winged-helix-turn-helix DNA-binding domains composed of helices α1, α2, α3, and strands β1 and β2, with the dimerization interface being formed of helices α4 and α1. The overall fold of Rv3488 was similar to PadR-s2 and metal sensor transcriptional regulators. In the crystal structure of Rv3488–Cd complex, two octahedrally coordinated Cd2+ ions were present, one for each subunit. The same sites were occupied by zinc ions in the structure of Rv3488–Zn, with two additional zinc ions complexed in one monomer. EMSA studies showed specific binding of Rv3488 with its own 30-bp promoter DNA. The functional role of Rv3488 was characterized by expressing the rv3488 gene under the control of hsp60 promoter in Mycobacterium smegmatis. Expression of Rv3488 increased the intracellular survival of recombinant M. smegmatis in murine macrophage cell line J774A.1 and also augmented its tolerance to Cd2+ ions. Overall, the studies show that Rv3488 may have transcription regulation and metal-detoxifying functions and its expression in M. smegmatis increases intracellular survival, perhaps by counteracting toxic metal stress.
Collapse
|
20
|
Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1-Npl4. Nat Struct Mol Biol 2018; 25:616-622. [PMID: 29967539 PMCID: PMC6044470 DOI: 10.1038/s41594-018-0085-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/31/2018] [Indexed: 01/08/2023]
Abstract
Many poly-ubiquitinated proteins are extracted from membranes or complexes by a conserved ATPase, called Cdc48 in yeast and p97/VCP in mammals, before proteasomal degradation1. Each Cdc48 hexamer contains two stacked ATPase rings (D1 and D2) and six N-terminal (N) domains2. Cdc48 binds various cofactors, including a heterodimer of Ufd1 and Npl43. Here, we report structures of the Cdc48-Ufd1-Npl4 ATPase complex from Chaetomium thermophilum. Npl4 interacts through its UBX-like domain with a Cdc48 N domain, and uses two Zn2+-finger domains to anchor an enzymatically inactive Mpr1/Pad1 N-terminal (MPN) domain, homologous to domains found in several isopeptidases, to the top of the D1 ATPase ring. The MPN domain of Npl4 is located above Cdc48’s central pore, similarly to the MPN of the de-ubiquitinase Rpn11 in the proteasome4. Our results indicate that Npl4 is unique among Cdc48 cofactors, and suggest a mechanism for how poly-ubiquitinated substrates bind to and translocate into the ATPase.
Collapse
|
21
|
Croll TI. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D Struct Biol 2018; 74:519-530. [PMID: 29872003 PMCID: PMC6096486 DOI: 10.1107/s2059798318002425] [Citation(s) in RCA: 1119] [Impact Index Per Article: 159.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/09/2018] [Indexed: 01/19/2023] Open
Abstract
This paper introduces ISOLDE, a new software package designed to provide an intuitive environment for high-fidelity interactive remodelling/refinement of macromolecular models into electron-density maps. ISOLDE combines interactive molecular-dynamics flexible fitting with modern molecular-graphics visualization and established structural biology libraries to provide an immersive interface wherein the model constantly acts to maintain physically realistic conformations as the user interacts with it by directly tugging atoms with a mouse or haptic interface or applying/removing restraints. In addition, common validation tasks are accelerated and visualized in real time. Using the recently described 3.8 Å resolution cryo-EM structure of the eukaryotic minichromosome maintenance (MCM) helicase complex as a case study, it is demonstrated how ISOLDE can be used alongside other modern refinement tools to avoid common pitfalls of low-resolution modelling and improve the quality of the final model. A detailed analysis of changes between the initial and final model provides a somewhat sobering insight into the dangers of relying on a small number of validation metrics to judge the quality of a low-resolution model.
Collapse
Affiliation(s)
- Tristan Ian Croll
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| |
Collapse
|
22
|
Delbart F, Brams M, Gruss F, Noppen S, Peigneur S, Boland S, Chaltin P, Brandao-Neto J, von Delft F, Touw WG, Joosten RP, Liekens S, Tytgat J, Ulens C. An allosteric binding site of the α7 nicotinic acetylcholine receptor revealed in a humanized acetylcholine-binding protein. J Biol Chem 2017; 293:2534-2545. [PMID: 29237730 PMCID: PMC5818190 DOI: 10.1074/jbc.m117.815316] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to the family of pentameric ligand-gated ion channels and mediate fast excitatory transmission in the central and peripheral nervous systems. Among the different existing receptor subtypes, the homomeric α7 nAChR has attracted considerable attention because of its possible implication in several neurological and psychiatric disorders, including cognitive decline associated with Alzheimer's disease or schizophrenia. Allosteric modulators of ligand-gated ion channels are of particular interest as therapeutic agents, as they modulate receptor activity without affecting normal fluctuations of synaptic neurotransmitter release. Here, we used X-ray crystallography and surface plasmon resonance spectroscopy of α7-acetylcholine-binding protein (AChBP), a humanized chimera of a snail AChBP, which has 71% sequence similarity with the extracellular ligand-binding domain of the human α7 nAChR, to investigate the structural determinants of allosteric modulation. We extended previous observations that an allosteric site located in the vestibule of the receptor offers an attractive target for receptor modulation. We introduced seven additional humanizing mutations in the vestibule-located binding site of AChBP to improve its suitability as a model for studying allosteric binding. Using a fragment-based screening approach, we uncovered an allosteric binding site located near the β8-β9 loop, which critically contributes to coupling ligand binding to channel opening in human α7 nAChR. This work expands our understanding of the topology of allosteric binding sites in AChBP and, by extrapolation, in the human α7 nAChR as determined by electrophysiology measurements. Our insights pave the way for drug design strategies targeting nAChRs involved in ion channel-mediated disorders.
Collapse
Affiliation(s)
- Florian Delbart
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Marijke Brams
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Fabian Gruss
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sam Noppen
- the Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Steve Peigneur
- the Laboratory of Toxicology and Pharmacology, Faculty of Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Sandro Boland
- the Center for Innovation and Stimulation of Drug Discovery Leuven, Cistim Leuven vzw, 3001 Heverlee, Belgium
| | - Patrick Chaltin
- the Center for Innovation and Stimulation of Drug Discovery Leuven, Cistim Leuven vzw, 3001 Heverlee, Belgium.,the Center for Innovation and Stimulation of Drug Discovery Leuven and Center for Drug Design and Discovery, KU Leuven, 3001 Heverlee, Belgium
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom, and
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom, and
| | - Wouter G Touw
- the Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Robbie P Joosten
- the Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Sandra Liekens
- the Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jan Tytgat
- the Laboratory of Toxicology and Pharmacology, Faculty of Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Chris Ulens
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium,
| |
Collapse
|
23
|
Zheng H, Cooper DR, Porebski PJ, Shabalin IG, Handing KB, Minor W. CheckMyMetal: a macromolecular metal-binding validation tool. Acta Crystallogr D Struct Biol 2017; 73:223-233. [PMID: 28291757 PMCID: PMC5349434 DOI: 10.1107/s2059798317001061] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/21/2017] [Indexed: 12/19/2022] Open
Abstract
Metals are essential in many biological processes, and metal ions are modeled in roughly 40% of the macromolecular structures in the Protein Data Bank (PDB). However, a significant fraction of these structures contain poorly modeled metal-binding sites. CheckMyMetal (CMM) is an easy-to-use metal-binding site validation server for macromolecules that is freely available at http://csgid.org/csgid/metal_sites. The CMM server can detect incorrect metal assignments as well as geometrical and other irregularities in the metal-binding sites. Guidelines for metal-site modeling and validation in macromolecules are illustrated by several practical examples grouped by the type of metal. These examples show CMM users (and crystallographers in general) problems they may encounter during the modeling of a specific metal ion.
Collapse
Affiliation(s)
- Heping Zheng
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - David R. Cooper
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Przemyslaw J. Porebski
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Ivan G. Shabalin
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Katarzyna B. Handing
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Wladek Minor
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
24
|
Long F, Nicholls RA, Emsley P, Gražulis S, Merkys A, Vaitkus A, Murshudov GN. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr D Struct Biol 2017; 73:112-122. [PMID: 28177307 PMCID: PMC5297914 DOI: 10.1107/s2059798317000067] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/03/2017] [Indexed: 11/11/2022] Open
Abstract
The program AceDRG is designed for the derivation of stereochemical information about small molecules. It uses local chemical and topological environment-based atom typing to derive and organize bond lengths and angles from a small-molecule database: the Crystallography Open Database (COD). Information about the hybridization states of atoms, whether they belong to small rings (up to seven-membered rings), ring aromaticity and nearest-neighbour information is encoded in the atom types. All atoms from the COD have been classified according to the generated atom types. All bonds and angles have also been classified according to the atom types and, in a certain sense, bond types. Derived data are tabulated in a machine-readable form that is freely available from CCP4. AceDRG can also generate stereochemical information, provided that the basic bonding pattern of a ligand is known. The basic bonding pattern is perceived from one of the computational chemistry file formats, including SMILES, mmCIF, SDF MOL and SYBYL MOL2 files. Using the bonding chemistry, atom types, and bond and angle tables generated from the COD, AceDRG derives the `ideal' bond lengths, angles, plane groups, aromatic rings and chirality information, and writes them to an mmCIF file that can be used by the refinement program REFMAC5 and the model-building program Coot. Other refinement and model-building programs such as PHENIX and BUSTER can also use these files. AceDRG also generates one or more coordinate sets corresponding to the most favourable conformation(s) of a given ligand. AceDRG employs RDKit for chemistry perception and for initial conformation generation, as well as for the interpretation of SMILES strings, SDF MOL and SYBYL MOL2 files.
Collapse
Affiliation(s)
- Fei Long
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Robert A. Nicholls
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Paul Emsley
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Saulius Gražulis
- Institute of Biotechnology, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Andrius Merkys
- Institute of Biotechnology, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Antanas Vaitkus
- Institute of Biotechnology, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Garib N. Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| |
Collapse
|