1
|
Kumar RP, Matos JO, Black BY, Ellenburg WH, Chen J, Patterson M, Gehtman JA, Theobald DL, Krauss IJ, Oprian DD. Crystal Structure of Caryolan-1-ol Synthase, a Sesquiterpene Synthase Catalyzing an Initial Anti-Markovnikov Cyclization Reaction. Biochemistry 2024; 63:2904-2915. [PMID: 39400323 DOI: 10.1021/acs.biochem.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In a continuing effort to understand reaction mechanisms of terpene synthases catalyzing initial anti-Markovnikov cyclization reactions, we solved the X-ray crystal structure of (+)-caryolan-1-ol synthase (CS) from Streptomyces griseus, with and without an inactive analog of the farnesyl diphosphate (FPP) substrate, 2-fluorofarnesyl diphosphate (2FFPP), bound in the active site of the enzyme. The CS-2FFPP structure was solved to 2.65 Å resolution and showed the ligand in an elongated orientation, incapable of undergoing the initial cyclization event to form a C1-C11 bond. Intriguingly, the apo CS structure (2.2 Å) also had electron density in the active site, in this case, well fit by a curled-up tetraethylene glycol molecule recruited, presumably, from the crystallization medium. The density was also well fit by a molecule of farnesene suggesting that the structure may mimic an intermediate along the reaction coordinate. The curled-up conformation of tetraethylene glycol was accompanied by dramatic rotation of some active-site residues in comparison to the 2FFPP-structure. Most notably, W56 and F183 undergo 90° rotations between the 2FFPP complex and apoenzyme structures, suggesting that these residues provide interactions that help curl the tetraethylene glycol molecule in the active site, and by extension perhaps also a derivative of the FPP substrate in the normal course of the cyclization reaction. In support of this proposal, the CS W56L and F183A variants were observed to be severely restricted in their ability to catalyze C1-C11 cyclization of the FPP substrate and instead produced predominantly acyclic terpene products dominated by farnesol, β-farnesene, and nerolidol.
Collapse
Affiliation(s)
- Ramasamy P Kumar
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Jason O Matos
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Brandon Y Black
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - William H Ellenburg
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Jiahua Chen
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - MacKenzie Patterson
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Jacob A Gehtman
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Douglas L Theobald
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Daniel D Oprian
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
2
|
Jensen SJ, Cuthbert BJ, Garza-Sánchez F, Helou CC, de Miranda R, Goulding CW, Hayes CS. Advanced glycation end-product crosslinking activates a type VI secretion system phospholipase effector protein. Nat Commun 2024; 15:8804. [PMID: 39394186 PMCID: PMC11470151 DOI: 10.1038/s41467-024-53075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Advanced glycation end-products (AGE) are a pervasive form of protein damage implicated in the pathogenesis of neurodegenerative disease, atherosclerosis and diabetes mellitus. Glycation is typically mediated by reactive dicarbonyl compounds that accumulate in all cells as toxic byproducts of glucose metabolism. Here, we show that AGE crosslinking is harnessed to activate an antibacterial phospholipase effector protein deployed by the type VI secretion system of Enterobacter cloacae. Endogenous methylglyoxal reacts with a specific arginine-lysine pair to tether the N- and C-terminal α-helices of the phospholipase domain. Substitutions at these positions abrogate both crosslinking and toxic phospholipase activity, but in vitro enzyme function can be restored with an engineered disulfide that covalently links the N- and C-termini. Thus, AGE crosslinking serves as a bona fide post-translation modification to stabilize phospholipase structure. Given the ubiquity of methylglyoxal in prokaryotic and eukaryotic cells, these findings suggest that glycation may be exploited more generally to stabilize other proteins. This alternative strategy to fortify tertiary structure could be particularly advantageous in the cytoplasm, where redox potentials preclude disulfide bond formation.
Collapse
Affiliation(s)
- Steven J Jensen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA
| | - Bonnie J Cuthbert
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA
| | - Colette C Helou
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Rodger de Miranda
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Celia W Goulding
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, 92697, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA.
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, 93106, USA.
| |
Collapse
|
3
|
Kumar RP, Matos JO, Black BY, Ellenburg WH, Chen J, Patterson M, Gehtman JA, Theobald DL, Krauss IJ, Oprian DD. Crystal Structure of Caryolan-1-ol Synthase, a Sesquiterpene Synthase Catalyzing an Initial Anti-Markovnikov Cyclization Reaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592530. [PMID: 38746203 PMCID: PMC11092760 DOI: 10.1101/2024.05.04.592530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In a continuing effort to understand reaction mechanisms of terpene synthases catalyzing initial anti-Markovnikov cyclization reactions, we solved the X-ray crystal structure of (+)-caryolan-1-ol synthase (CS) from Streptomyces griseus , with and without an inactive analog of the FPP substrate, 2-fluorofarnesyl diphosphate (2FFPP), bound in the active site of the enzyme. The CS-2FFPP complex was solved to 2.65 Å resolution and showed the ligand in a linear, elongated orientation, incapable of undergoing the initial cyclization event to form a bond between carbons C1 and C11. Intriguingly, the apo CS structure (2.2 Å) also had electron density in the active site, in this case density that was well fit with a curled-up tetraethylene glycol molecule presumably recruited from the crystallization medium. The density was also well fit by a molecule of farnesene suggesting that the structure may mimic an intermediate along the reaction coordinate. The curled-up conformation of tetraethylene glycol was accompanied by dramatic rotamer shifts among active-site residues. Most notably, W56 was observed to undergo a 90° rotation between the 2FFPP complex and apo-enzyme structures, suggesting that it contributes to steric interactions that help curl the tetraethylene glycol molecule in the active site, and by extension perhaps also a derivative of the FPP substrate in the normal course of the cyclization reaction. In support of this proposal, the CS W56L variant lost the ability to cyclize the FPP substrate and produced only the linear terpene products farnesol and α- and β-farnesene.
Collapse
|
4
|
Usón I, Sheldrick GM. Modes and model building in SHELXE. Acta Crystallogr D Struct Biol 2024; 80:4-15. [PMID: 38088896 PMCID: PMC10833347 DOI: 10.1107/s2059798323010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024] Open
Abstract
Density modification is a standard step to provide a route for routine structure solution by any experimental phasing method, with single-wavelength or multi-wavelength anomalous diffraction being the most popular methods, as well as to extend fragments or incomplete models into a full solution. The effect of density modification on the starting maps from either source is illustrated in the case of SHELXE. The different modes in which the program can run are reviewed; these include less well known uses such as reading external phase values and weights or phase distributions encoded in Hendrickson-Lattman coefficients. Typically in SHELXE, initial phases are calculated from experimental data, from a partial model or map, or from a combination of both sources. The initial phase set is improved and extended by density modification and, if the resolution of the data and the type of structure permits, polyalanine tracing. As a feature to systematically eliminate model bias from phases derived from predicted models, the trace can be set to exclude the area occupied by the starting model. The trace now includes an extension into the gamma position or hydrophobic and aromatic side chains if a sequence is provided, which is performed in every tracing cycle. Once a correlation coefficient of over 30% between the structure factors calculated from such a trace and the native data indicates that the structure has been solved, the sequence is docked in all model-building cycles and side chains are fitted if the map supports it. The extensions to the tracing algorithm brought in to provide a complete model are discussed. The improvement in phasing performance is assessed using a set of tests.
Collapse
Affiliation(s)
- Isabel Usón
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, Barcelona, E-08003, Spain
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona Science Park, Helix Building, Baldiri Reixach, 15, Barcelona, 08028, Spain
| | - George M. Sheldrick
- Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Korf L, Ye X, Vogt MS, Steinchen W, Watad M, van der Does C, Tourte M, Sivabalasarma S, Albers SV, Essen LO. Archaeal GPN-loop GTPases involve a lock-switch-rock mechanism for GTP hydrolysis. mBio 2023; 14:e0085923. [PMID: 37962382 PMCID: PMC10746158 DOI: 10.1128/mbio.00859-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE GPN-loop GTPases have been found to be crucial for eukaryotic RNA polymerase II assembly and nuclear trafficking. Despite their ubiquitous occurrence in eukaryotes and archaea, the mechanism by which these GTPases mediate their function is unknown. Our study on an archaeal representative from Sulfolobus acidocaldarius showed that these dimeric GTPases undergo large-scale conformational changes upon GTP hydrolysis, which can be summarized as a lock-switch-rock mechanism. The observed requirement of SaGPN for motility appears to be due to its large footprint on the archaeal proteome.
Collapse
Affiliation(s)
- Lukas Korf
- Department of Chemistry, Philipps University, Marburg, Germany
| | - Xing Ye
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | - Marian S. Vogt
- Department of Chemistry, Philipps University, Marburg, Germany
| | - Wieland Steinchen
- Department of Chemistry, Philipps University, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Strasse, Marburg, Germany
| | - Mohamed Watad
- Department of Chemistry, Philipps University, Marburg, Germany
| | - Chris van der Does
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | - Maxime Tourte
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | - Shamphavi Sivabalasarma
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | | |
Collapse
|
6
|
Simpkin AJ, Caballero I, McNicholas S, Stevenson K, Jiménez E, Sánchez Rodríguez F, Fando M, Uski V, Ballard C, Chojnowski G, Lebedev A, Krissinel E, Usón I, Rigden DJ, Keegan RM. Predicted models and CCP4. Acta Crystallogr D Struct Biol 2023; 79:806-819. [PMID: 37594303 PMCID: PMC10478639 DOI: 10.1107/s2059798323006289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
In late 2020, the results of CASP14, the 14th event in a series of competitions to assess the latest developments in computational protein structure-prediction methodology, revealed the giant leap forward that had been made by Google's Deepmind in tackling the prediction problem. The level of accuracy in their predictions was the first instance of a competitor achieving a global distance test score of better than 90 across all categories of difficulty. This achievement represents both a challenge and an opportunity for the field of experimental structural biology. For structure determination by macromolecular X-ray crystallography, access to highly accurate structure predictions is of great benefit, particularly when it comes to solving the phase problem. Here, details of new utilities and enhanced applications in the CCP4 suite, designed to allow users to exploit predicted models in determining macromolecular structures from X-ray diffraction data, are presented. The focus is mainly on applications that can be used to solve the phase problem through molecular replacement.
Collapse
Affiliation(s)
- Adam J. Simpkin
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Iracema Caballero
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona, Spain
| | - Stuart McNicholas
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Kyle Stevenson
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Elisabet Jiménez
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona, Spain
| | - Filomeno Sánchez Rodríguez
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Maria Fando
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Ville Uski
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Charles Ballard
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Grzegorz Chojnowski
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrey Lebedev
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Eugene Krissinel
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08003 Barcelona, Spain
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Ronan M. Keegan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| |
Collapse
|
7
|
Patil DN, Pantalone S, Cao Y, Laboute T, Novick SJ, Singh S, Savino S, Faravelli S, Magnani F, Griffin PR, Singh AK, Forneris F, Martemyanov KA. Structure of the photoreceptor synaptic assembly of the extracellular matrix protein pikachurin with the orphan receptor GPR179. Sci Signal 2023; 16:eadd9539. [PMID: 37490546 PMCID: PMC10561654 DOI: 10.1126/scisignal.add9539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Precise synapse formation is essential for normal functioning of the nervous system. Retinal photoreceptors establish selective contacts with bipolar cells, aligning the neurotransmitter release apparatus with postsynaptic signaling cascades. This involves transsynaptic assembly between the dystroglycan-dystrophin complex on the photoreceptor and the orphan receptor GPR179 on the bipolar cell, which is mediated by the extracellular matrix protein pikachurin (also known as EGFLAM). This complex plays a critical role in the synaptic organization of photoreceptors and signal transmission, and mutations affecting its components cause blinding disorders in humans. Here, we investigated the structural organization and molecular mechanisms by which pikachurin orchestrates transsynaptic assembly and solved structures of the human pikachurin domains by x-ray crystallography and of the GPR179-pikachurin complex by single-particle, cryo-electron microscopy. The structures reveal molecular recognition principles of pikachurin by the Cache domains of GPR179 and show how the interaction is involved in the transsynaptic alignment of the signaling machinery. Together, these data provide a structural basis for understanding the synaptic organization of photoreceptors and ocular pathology.
Collapse
Affiliation(s)
- Dipak N. Patil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Serena Pantalone
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Yan Cao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Thibaut Laboute
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Scott J. Novick
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Shikha Singh
- Department of Biological Sciences, Columbia University New York, NY 10027, USA
| | - Simone Savino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Francesca Magnani
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Appu K. Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| |
Collapse
|
8
|
Gilep A, Varaksa T, Bukhdruker S, Kavaleuski A, Ryzhykau Y, Smolskaya S, Sushko T, Tsumoto K, Grabovec I, Kapranov I, Okhrimenko I, Marin E, Shevtsov M, Mishin A, Kovalev K, Kuklin A, Gordeliy V, Kaluzhskiy L, Gnedenko O, Yablokov E, Ivanov A, Borshchevskiy V, Strushkevich N. Structural insights into 3Fe-4S ferredoxins diversity in M. tuberculosis highlighted by a first redox complex with P450. Front Mol Biosci 2023; 9:1100032. [PMID: 36699703 PMCID: PMC9868604 DOI: 10.3389/fmolb.2022.1100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Ferredoxins are small iron-sulfur proteins and key players in essential metabolic pathways. Among all types, 3Fe-4S ferredoxins are less studied mostly due to anaerobic requirements. Their complexes with cytochrome P450 redox partners have not been structurally characterized. In the present work, we solved the structures of both 3Fe-4S ferredoxins from M. tuberculosis-Fdx alone and the fusion FdxE-CYP143. Our SPR analysis demonstrated a high-affinity binding of FdxE to CYP143. According to SAXS data, the same complex is present in solution. The structure reveals extended multipoint interactions and the shape/charge complementarity of redox partners. Furthermore, FdxE binding induced conformational changes in CYP143 as evident from the solved CYP143 structure alone. The comparison of FdxE-CYP143 and modeled Fdx-CYP51 complexes further revealed the specificity of ferredoxins. Our results illuminate the diversity of electron transfer complexes for the production of different secondary metabolites.
Collapse
Affiliation(s)
- Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus,Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Tatsiana Varaksa
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anton Kavaleuski
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Yury Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia,Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Sviatlana Smolskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Tatsiana Sushko
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Ivan Kapranov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mikhail Shevtsov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- European Molecular Biology Laboratory, Hamburg Unit C/O DESY, Hamburg, Germany
| | - Alexander Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia,Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Valentin Gordeliy
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Leonid Kaluzhskiy
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Oksana Gnedenko
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Evgeniy Yablokov
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexis Ivanov
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia,Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia,*Correspondence: Valentin Borshchevskiy, ; Natallia Strushkevich,
| | - Natallia Strushkevich
- Skolkovo Institute of Science and Technology, Moscow, Russia,*Correspondence: Valentin Borshchevskiy, ; Natallia Strushkevich,
| |
Collapse
|
9
|
Leitgeb U, Furtmüller PG, Hofbauer S, Brito JA, Obinger C, Pfanzagl V. The staphylococcal inhibitory protein SPIN binds to human myeloperoxidase with picomolar affinity but only dampens halide oxidation. J Biol Chem 2022; 298:102514. [PMID: 36150500 DOI: 10.1016/j.jbc.2022.102514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 10/31/2022] Open
Abstract
The heme enzyme myeloperoxidase (MPO) is one of the key players in the neutrophil-mediated killing of invading pathogens as part of the innate immune system. MPO generates antimicrobial oxidants which indiscriminately and effectively kill phagocytosed pathogens. Staphylococcus aureus however is able to escape this fate, in part by secreting a small protein called SPIN (Staphylococcal Peroxidase Inhibitor), which specifically targets and inhibits MPO in a structurally complex manner. Here we present the first crystal structures of the complex of SPIN-aureus and a truncated version (SPIN-truncated) with mature dimeric leukocyte MPO. We unravel the contributions of the two domains to the kinetics and thermodynamics of SPIN-aureus binding to MPO by using a broad array of complementary biochemical and biophysical methods. The C-terminal "recognition" domain is shown to mediate specific binding to MPO, while interaction of the N-terminal "inhibitory" domain is guided mainly by hydrophobic effects and thus is less sequence-dependent. We found that inhibition of MPO is achieved by reducing substrate migration, but SPIN-aureus cannot completely block MPO activity. Its' effectiveness is inversely related to substrate size, with no discernible dependence on other factors. Thus, SPIN-aureus is an extremely high-affinity inhibitor and highly efficient for substrates larger than halogens. As aberrant MPO activity is implicated in a number of chronic inflammatory diseases, SPIN-aureus is the first promising protein inhibitor for specific inhibition of human MPO.
Collapse
Affiliation(s)
- Urban Leitgeb
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Paul G Furtmüller
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Stefan Hofbauer
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Jose A Brito
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, 2780-157 Oeiras, Portugal
| | - Christian Obinger
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Vera Pfanzagl
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
10
|
Bond PS, Cowtan KD. ModelCraft: an advanced automated model-building pipeline using Buccaneer. Acta Crystallogr D Struct Biol 2022; 78:1090-1098. [PMID: 36048149 PMCID: PMC9435595 DOI: 10.1107/s2059798322007732] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/01/2022] [Indexed: 01/16/2023] Open
Abstract
Interactive model building can be a difficult and time-consuming step in the structure-solution process. Automated model-building programs such as Buccaneer often make it quicker and easier by completing most of the model in advance. However, they may fail to do so with low-resolution data or a poor initial model or map. The Buccaneer pipeline is a relatively simple program that iterates Buccaneer with REFMAC to refine the model and update the map. A new pipeline called ModelCraft has been developed that expands on this to include shift-field refinement, machine-learned pruning of incorrect residues, classical density modification, addition of water and dummy atoms, building of nucleic acids and final rebuilding of side chains. Testing was performed on 1180 structures solved by experimental phasing, 1338 structures solved by molecular replacement using homologues and 2030 structures solved by molecular replacement using predicted AlphaFold models. Compared with the previous Buccaneer pipeline, ModelCraft increased the mean completeness of the protein models in the experimental phasing cases from 91% to 95%, the molecular-replacement cases from 50% to 78% and the AlphaFold cases from 82% to 91%.
Collapse
Affiliation(s)
- Paul S. Bond
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Kevin D. Cowtan
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
11
|
Mishra AK, Hellert J, Freitas N, Guardado-Calvo P, Haouz A, Fels JM, Maurer DP, Abelson DM, Bornholdt ZA, Walker LM, Chandran K, Cosset FL, McLellan JS, Rey FA. Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies. Science 2022; 375:104-109. [PMID: 34793197 PMCID: PMC9771711 DOI: 10.1126/science.abl6502] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-borne zoonotic virus, with a 30% case fatality rate in humans. Structural information is lacking in regard to the CCHFV membrane fusion glycoprotein Gc—the main target of the host neutralizing antibody response—as well as antibody–mediated neutralization mechanisms. We describe the structure of prefusion Gc bound to the antigen-binding fragments (Fabs) of two neutralizing antibodies that display synergy when combined, as well as the structure of trimeric, postfusion Gc. The structures show the two Fabs acting in concert to block membrane fusion, with one targeting the fusion loops and the other blocking Gc trimer formation. The structures also revealed the neutralization mechanism of previously reported antibodies against CCHFV, providing the molecular underpinnings essential for developing CCHFV–specific medical countermeasures for epidemic preparedness.
Collapse
Affiliation(s)
- Akaash K. Mishra
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA 78712
| | - Jan Hellert
- Structural Virology Unit, Institut Pasteur, CNRS UMR 3569, 25-28 rue du Docteur Roux, Cedex 15, Paris, France 75724
| | - Natalia Freitas
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, Lyon, France 69007
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Institut Pasteur, CNRS UMR 3569, 25-28 rue du Docteur Roux, Cedex 15, Paris, France 75724
| | - Ahmed Haouz
- Crystallography Platform C2RT, Institut Pasteur, CNRS UMR 3528, 25-28 rue du Docteur Roux, Cedex 15, Paris, France 75724
| | - J. Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA 10461
| | | | | | | | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA 10461
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, Lyon, France 69007
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA 78712,Correspondence: (J.S.M.); (F.A.R)
| | - Felix A. Rey
- Structural Virology Unit, Institut Pasteur, CNRS UMR 3569, 25-28 rue du Docteur Roux, Cedex 15, Paris, France 75724,Correspondence: (J.S.M.); (F.A.R)
| |
Collapse
|
12
|
Chojnowski G, Simpkin AJ, Leonardo DA, Seifert-Davila W, Vivas-Ruiz DE, Keegan RM, Rigden DJ. findMySequence: a neural-network-based approach for identification of unknown proteins in X-ray crystallography and cryo-EM. IUCRJ 2022; 9:86-97. [PMID: 35059213 PMCID: PMC8733886 DOI: 10.1107/s2052252521011088] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/22/2021] [Indexed: 05/15/2023]
Abstract
Although experimental protein-structure determination usually targets known proteins, chains of unknown sequence are often encountered. They can be purified from natural sources, appear as an unexpected fragment of a well characterized protein or appear as a contaminant. Regardless of the source of the problem, the unknown protein always requires characterization. Here, an automated pipeline is presented for the identification of protein sequences from cryo-EM reconstructions and crystallographic data. The method's application to characterize the crystal structure of an unknown protein purified from a snake venom is presented. It is also shown that the approach can be successfully applied to the identification of protein sequences and validation of sequence assignments in cryo-EM protein structures.
Collapse
Affiliation(s)
- Grzegorz Chojnowski
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Adam J. Simpkin
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Diego A. Leonardo
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | | | - Dan E. Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Avenida Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima, Peru
| | - Ronan M. Keegan
- Rutherford Appleton Laboratory, Research Complex at Harwell, UKRI-STFC, Didcot OX11 0FA, United Kingdom
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
13
|
Cascarano GL, Giacovazzo C. Towards the automatic crystal structure solution of nucleic acids: automated model building using the new CAB program. Acta Crystallogr D Struct Biol 2021; 77:1602-1613. [PMID: 34866615 DOI: 10.1107/s2059798321010937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
CAB, a recently described automated model-building (AMB) program, has been modified to work effectively with nucleic acids. To this end, several new algorithms have been introduced and the libraries have been updated. To reduce the input average phase error, ligand heavy atoms are now located before starting the CAB interpretation of the electron-density maps. Furthermore, alternative approaches are used depending on whether the ligands belong to the target or to the model chain used in the molecular-replacement step. Robust criteria are then applied to decide whether the AMB model is acceptable or whether it must be modified to fit prior information on the target structure. In the latter case, the model chains are rearranged to fit prior information on the target chains. Here, the performance of the new AMB program CAB applied to various nucleic acid structures is discussed. Other well documented programs such as Nautilus, ARP/wARP and phenix.autobuild were also applied and the experimental results are described.
Collapse
Affiliation(s)
| | - Carmelo Giacovazzo
- Istituto di Cristallografia, CNR, Via G. Amendola 122/o, I-70126 Bari, Italy
| |
Collapse
|
14
|
Chojnowski G, Sobolev E, Heuser P, Lamzin VS. The accuracy of protein models automatically built into cryo-EM maps with ARP/wARP. Acta Crystallogr D Struct Biol 2021; 77:142-150. [PMID: 33559604 PMCID: PMC7869898 DOI: 10.1107/s2059798320016332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/16/2020] [Indexed: 11/26/2022] Open
Abstract
A new module of the ARP/wARP suite for automated model building into cryo-EM maps is presented. Recent developments in cryogenic electron microscopy (cryo-EM) have enabled structural studies of large macromolecular complexes at resolutions previously only attainable using macromolecular crystallography. Although a number of methods can already assist in de novo building of models into high-resolution cryo-EM maps, automated and reliable map interpretation remains a challenge. Presented here is a systematic study of the accuracy of models built into cryo-EM maps using ARP/wARP. It is demonstrated that the local resolution is a good indicator of map interpretability, and for the majority of the test cases ARP/wARP correctly builds 90% of main-chain fragments in regions where the local resolution is 4.0 Å or better. It is also demonstrated that the coordinate accuracy for models built into cryo-EM maps is comparable to that of X-ray crystallographic models at similar local cryo-EM and crystallographic resolutions. The model accuracy also correlates with the refined atomic displacement parameters.
Collapse
Affiliation(s)
- Grzegorz Chojnowski
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Egor Sobolev
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Philipp Heuser
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Victor S Lamzin
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
15
|
Alharbi E, Calinescu R, Cowtan K. Pairwise running of automated crystallographic model-building pipelines. Acta Crystallogr D Struct Biol 2020; 76:814-823. [PMID: 32876057 PMCID: PMC7466752 DOI: 10.1107/s2059798320010542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/31/2020] [Indexed: 11/11/2022] Open
Abstract
For the last two decades, researchers have worked independently to automate protein model building, and four widely used software pipelines have been developed for this purpose: ARP/wARP, Buccaneer, Phenix AutoBuild and SHELXE. Here, the usefulness of combining these pipelines to improve the built protein structures by running them in pairwise combinations is examined. The results show that integrating these pipelines can lead to significant improvements in structure completeness and Rfree. In particular, running Phenix AutoBuild after Buccaneer improved structure completeness for 29% and 75% of the data sets that were examined at the original resolution and at a simulated lower resolution, respectively, compared with running Phenix AutoBuild on its own. In contrast, Phenix AutoBuild alone produced better structure completeness than the two pipelines combined for only 7% and 3% of these data sets.
Collapse
Affiliation(s)
- Emad Alharbi
- Department of Computer Science, University of York, Heslington, York YO10 5GH, United Kingdom
- Department of Information Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Radu Calinescu
- Department of Computer Science, University of York, Heslington, York YO10 5GH, United Kingdom
| | - Kevin Cowtan
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
16
|
Medina A, Triviño J, Borges RJ, Millán C, Usón I, Sammito MD. ALEPH: a network-oriented approach for the generation of fragment-based libraries and for structure interpretation. Acta Crystallogr D Struct Biol 2020; 76:193-208. [PMID: 32133985 PMCID: PMC7057218 DOI: 10.1107/s2059798320001679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
The analysis of large structural databases reveals general features and relationships among proteins, providing useful insight. A different approach is required to characterize ubiquitous secondary-structure elements, where flexibility is essential in order to capture small local differences. The ALEPH software is optimized for the analysis and the extraction of small protein folds by relying on their geometry rather than on their sequence. The annotation of the structural variability of a given fold provides valuable information for fragment-based molecular-replacement methods, in which testing alternative model hypotheses can succeed in solving difficult structures when no homology models are available or are successful. ARCIMBOLDO_BORGES combines the use of composite secondary-structure elements as a search model with density modification and tracing to reveal the rest of the structure when both steps are successful. This phasing method relies on general fold libraries describing variations around a given pattern of β-sheets and helices extracted using ALEPH. The program introduces characteristic vectors defined from the main-chain atoms as a way to describe the geometrical properties of the structure. ALEPH encodes structural properties in a graph network, the exploration of which allows secondary-structure annotation, decomposition of a structure into small compact folds, generation of libraries of models representing a variation of a given fold and finally superposition of these folds onto a target structure. These functions are available through a graphical interface designed to interactively show the results of structure manipulation, annotation, fold decomposition, clustering and library generation. ALEPH can produce pictures of the graphs, structures and folds for publication purposes.
Collapse
Grants
- 790122 H2020 Marie Skłodowska-Curie Actions
- BES-2017-080368 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BES-2015-071397 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BIO2015-64216-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BIO2013-49604-EXP Ministerio de Economía, Industria y Competitividad, Gobierno de España
- MDM2014-0435-01 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- 16/24191-8 Fundação de Amparo à Pesquisa do Estado de São Paulo
- 17/13485-3 Fundação de Amparo à Pesquisa do Estado de São Paulo
Collapse
Affiliation(s)
- Ana Medina
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Josep Triviño
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Rafael J. Borges
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu-SP 18618-689, Brazil
| | - Claudia Millán
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08003 Barcelona, Spain
| | - Massimo D. Sammito
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, England
| |
Collapse
|
17
|
Borges RJ, Meindl K, Triviño J, Sammito M, Medina A, Millán C, Alcorlo M, Hermoso JA, Fontes MRDM, Usón I. SEQUENCE SLIDER: expanding polyalanine fragments for phasing with multiple side-chain hypotheses. Acta Crystallogr D Struct Biol 2020; 76:221-237. [PMID: 32133987 PMCID: PMC7057211 DOI: 10.1107/s2059798320000339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Fragment-based molecular-replacement methods can solve a macromolecular structure quasi-ab initio. ARCIMBOLDO, using a common secondary-structure or tertiary-structure template or a library of folds, locates these with Phaser and reveals the rest of the structure by density modification and autotracing in SHELXE. The latter stage is challenging when dealing with diffraction data at lower resolution, low solvent content, high β-sheet composition or situations in which the initial fragments represent a low fraction of the total scattering or where their accuracy is low. SEQUENCE SLIDER aims to overcome these complications by extending the initial polyalanine fragment with side chains in a multisolution framework. Its use is illustrated on test cases and previously unknown structures. The selection and order of fragments to be extended follows the decrease in log-likelihood gain (LLG) calculated with Phaser upon the omission of each single fragment. When the starting substructure is derived from a remote homolog, sequence assignment to fragments is restricted by the original alignment. Otherwise, the secondary-structure prediction is matched to that found in fragments and traces. Sequence hypotheses are trialled in a brute-force approach through side-chain building and refinement. Scoring the refined models through their LLG in Phaser may allow discrimination of the correct sequence or filter the best partial structures for further density modification and autotracing. The default limits for the number of models to pursue are hardware dependent. In its most economic implementation, suitable for a single laptop, the main-chain trace is extended as polyserine rather than trialling models with different sequence assignments, which requires a grid or multicore machine. SEQUENCE SLIDER has been instrumental in solving two novel structures: that of MltC from 2.7 Å resolution data and that of a pneumococcal lipoprotein with 638 residues and 35% solvent content.
Collapse
Affiliation(s)
- Rafael Junqueira Borges
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Baldiri Reixach 15, 08028 Barcelona, Spain
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu-SP 18618-689, Brazil
| | - Kathrin Meindl
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Baldiri Reixach 15, 08028 Barcelona, Spain
| | - Josep Triviño
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Baldiri Reixach 15, 08028 Barcelona, Spain
| | - Massimo Sammito
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, England
| | - Ana Medina
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Baldiri Reixach 15, 08028 Barcelona, Spain
| | - Claudia Millán
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Baldiri Reixach 15, 08028 Barcelona, Spain
| | - Martin Alcorlo
- Department of Crystallography and Structural Biology, Instituto de Química-Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Juan A. Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Marcos Roberto de Mattos Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu-SP 18618-689, Brazil
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Baldiri Reixach 15, 08028 Barcelona, Spain
- ICREA at IBMB–CSIC, Baldiri Reixach 13-15, 08028 Barcelona, Spain
| |
Collapse
|