1
|
Li C, Willegems K, Uchański T, Pardon E, Steyaert J, Efremov RG. Rapid small-scale nanobody-assisted purification of ryanodine receptors for cryo-EM. J Biol Chem 2024; 300:107734. [PMID: 39233227 PMCID: PMC11474372 DOI: 10.1016/j.jbc.2024.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
Ryanodine receptors (RyRs) are large Ca2+ release channels residing in the endoplasmic or sarcoplasmic reticulum membrane. Three isoforms of RyRs have been identified in mammals, the disfunction of which has been associated with a series of life-threatening diseases. The need for large amounts of native tissue or eukaryotic cell cultures limits advances in structural studies of RyRs. Here, we report a method that utilizes nanobodies to purify RyRs from only 5 mg of total protein. The purification process, from isolated membranes to cryo-EM grade protein, is achieved within 4 h on the bench, yielding protein usable for cryo-EM analysis. This is demonstrated by solving the structures of rabbit RyR1, solubilized in detergent, reconstituted into lipid nanodiscs or liposomes, and bovine RyR2 reconstituted in nanodisc, and mouse RyR2 in detergent. The reported method facilitates structural studies of RyRs directed toward drug development and is useful in cases where the amount of starting material is limited.
Collapse
Affiliation(s)
- Chenyao Li
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Katrien Willegems
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Tomasz Uchański
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Els Pardon
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Jan Steyaert
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Rouslan G Efremov
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium.
| |
Collapse
|
2
|
Jia L, Ruben EA, Suarez HJ, Olsen SK, Wasmuth EV. Single particle cryo-electron microscopy with an enhanced 200 kV cryo-TEM configuration achieves near-atomic resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593029. [PMID: 38766263 PMCID: PMC11100677 DOI: 10.1101/2024.05.07.593029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Single particle cryogenic electron microscopy (cryo-EM) as a structural biology methodology has become increasingly attractive and accessible to investigators in both academia and industry as this ever-advancing technology enables successful structural determination of a wide range of protein and nucleic acid targets. Although data for many high resolution cryo-EM structures are still obtained using a 300 kV cryogenic transmission electron microscope (cryo-TEM), a modern 200 kV cryo-TEM equipped with an advanced direct electron detector and energy filter is a cost-effective choice for most single particle applications, routinely achieving sub 3 angstrom (Å) resolution. Here, we systematically evaluate performance of one such high-end configuration - a 200 kV Glacios microscope coupled with a Falcon 4 direct electron detector and Selectris energy filter (Glacios-F4-S). First, we evaluated data quality on the standard benchmarking sample, rabbit muscle aldolase, using three of the most frequently used cryo-EM data collection software: SerialEM, Leginon and EPU, and found that - despite sample heterogeneity - all final reconstructions yield same overall resolutions of 2.6 Å and map quality when using either of the three software. Furthermore, comparison between Glacios-F4-S and a 300 kV cryo-TEM (Titan Krios with Falcon 4) revealed nominal resolution differences in overall reconstructions of a reconstituted human nucleosome core particle, achieving 2.8 and 2.5 Å, respectively. Finally, we performed comparative data analysis on the human RAD51 paralog complex, BCDX2, a four-protein complex of approximately 150 kilodaltons, and found that a small dataset (≤1,000 micrographs) was sufficient to generate a 3.3 Å reconstruction, with sufficient detail to resolve co-bound ligands, AMP-PNP and Mg +2 . In summary, this study provides evidence that the Glacios-F4-S operates equally well with all standard data collection software, and is sufficient to obtain high resolution structural information of novel macromolecular complexes, readily acquiring single particle data rivaling that of 300 kV cryo-TEMs.
Collapse
|
3
|
Haynes RM, Myers J, López CS, Evans J, Davulcu O, Yoshioka C. A strategic approach for efficient cryo-EM grid optimization using design of experiments. J Struct Biol 2024:108068. [PMID: 38364988 DOI: 10.1016/j.jsb.2024.108068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
In recent years, cryo-electron microscopy (cryo-EM) has become a practical and effective method of determining structures at previously unattainable resolutions due to advances in detection, automation, and data processing. However, sample preparation remains a major bottleneck in the cryo-EM workflow. Even after the arduous process of biochemical sample optimization, it often takes several iterations of grid vitrification and screening to determine the optimal grid freezing parameters that yield suitable ice thickness and particle distribution for data collection. Since a high-quality sample is imperative for high-resolution structure determination, grid optimization is a vital step. For researchers who rely on cryo-EM facilities for grid screening, each iteration of this optimization process may delay research progress by a matter of months. Therefore, a more strategic and efficient approach should be taken to ensure that the grid optimization process can be completed in as few iterations as possible. Here, we present an implementation of Design of Experiments (DOE) to expedite and strategize the grid optimization process. A Fractional Factorial Design (FFD) guides the determination of a limited set of experimental conditions which can model the full parameter space of interest. Grids are frozen with these conditions and screened for particle distribution and ice thickness. Quantitative scores are assigned to each of these grid characteristics based on a qualitative rubric. Input conditions and response scores are used to generate a least-squares regression model of the parameter space in JMP, which is used to determine the conditions which should, in theory, yield optimal grids. Upon testing this approach on apoferritin and L-glutamate dehydrogenase on both the Vitrobot Mark IV and the Leica GP2 plunge freezers, the resulting grid conditions reliably yielded grids with high-quality ice and particle distribution that were suitable for collecting large overnight datasets on a Krios. We conclude that a DOE-based approach is a cost-effective and time-saving tool for cryo-EM grid preparation.
Collapse
Affiliation(s)
- Rose Marie Haynes
- Pacific Northwest Center for Cryo-Electron Microscopy, Oregon Health & Science University, Portland, OR 97201, USA; Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Janette Myers
- Pacific Northwest Center for Cryo-Electron Microscopy, Oregon Health & Science University, Portland, OR 97201, USA
| | - Claudia S López
- Pacific Northwest Center for Cryo-Electron Microscopy, Oregon Health & Science University, Portland, OR 97201, USA
| | - James Evans
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Omar Davulcu
- Pacific Northwest Center for Cryo-Electron Microscopy, Oregon Health & Science University, Portland, OR 97201, USA
| | - Craig Yoshioka
- Pacific Northwest Center for Cryo-Electron Microscopy, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
4
|
Mendez JH, Chua EYD, Paraan M, Potter CS, Carragher B. Automated pipelines for rapid evaluation during cryoEM data acquisition. Curr Opin Struct Biol 2023; 83:102729. [PMID: 37988815 DOI: 10.1016/j.sbi.2023.102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023]
Abstract
Cryo-electron microscopy (cryoEM) has become a popular method for determining high-resolution structures of biomolecules. However, data processing can be time-consuming, particularly for new researchers entering the field. To improve data quality and increase data collection efficiency, several software packages have been developed for on-the-fly data processing with various degrees of automation. These software packages allow researchers to perform tasks such as motion correction, CTF estimation, 2D classification, and 3D reconstruction in real-time, with minimal human input. On-the-fly data processing can not only improve data collection efficiency but also increase the productivity of instrumentation in high demand. However, the various software packages available differ in their performance, computational requirements, and levels of automation. In this review, we describe the minimal metrics used to assess data quality during data collection, outline the features of an ideal on-the-fly data processing software systems, and provide results from using three of these systems.
Collapse
Affiliation(s)
- Joshua H Mendez
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Eugene Y D Chua
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Mohammadreza Paraan
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Clinton S Potter
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Zhang X. Journal of Structural Biology - Paper of the Year 2022. J Struct Biol 2023; 215:108032. [PMID: 37769954 DOI: 10.1016/j.jsb.2023.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Affiliation(s)
- Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Torino S, Dhurandhar M, Stroobants A, Claessens R, Efremov RG. Time-resolved cryo-EM using a combination of droplet microfluidics with on-demand jetting. Nat Methods 2023; 20:1400-1408. [PMID: 37592181 DOI: 10.1038/s41592-023-01967-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/27/2023] [Indexed: 08/19/2023]
Abstract
Single-particle cryogenic electron microscopy (cryo-EM) allows reconstruction of high-resolution structures of proteins in different conformations. Protein function often involves transient functional conformations, which can be resolved using time-resolved cryo-EM (trEM). In trEM, reactions are arrested after a defined delay time by rapid vitrification of protein solution on the EM grid. Despite the increasing interest in trEM among the cryo-EM community, making trEM samples with a time resolution below 100 ms remains challenging. Here we report the design and the realization of a time-resolved cryo-plunger that combines a droplet-based microfluidic mixer with a laser-induced generator of microjets that allows rapid reaction initiation and plunge-freezing of cryo-EM grids. Using this approach, a time resolution of 5 ms was achieved and the protein density map was reconstructed to a resolution of 2.1 Å. trEM experiments on GroEL:GroES chaperonin complex resolved the kinetics of the complex formation and visualized putative short-lived conformations of GroEL-ATP complex.
Collapse
Affiliation(s)
- Stefania Torino
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mugdha Dhurandhar
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Annelore Stroobants
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raf Claessens
- Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rouslan G Efremov
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
7
|
Fernandez M, Shkumatov AV, Liu Y, Stulemeijer C, Derclaye S, Efremov R, Hallet B, Alsteens D. AFM-based force spectroscopy unravels stepwise formation of the DNA transposition complex in the widespread Tn3 family mobile genetic elements. Nucleic Acids Res 2023; 51:4929-4941. [PMID: 37026471 PMCID: PMC10250215 DOI: 10.1093/nar/gkad241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Transposon Tn4430 belongs to a widespread family of bacterial transposons, the Tn3 family, which plays a prevalent role in the dissemination of antibiotic resistance among pathogens. Despite recent data on the structural architecture of the transposition complex, the molecular mechanisms underlying the replicative transposition of these elements are still poorly understood. Here, we use force-distance curve-based atomic force microscopy to probe the binding of the TnpA transposase of Tn4430 to DNA molecules containing one or two transposon ends and to extract the thermodynamic and kinetic parameters of transposition complex assembly. Comparing wild-type TnpA with previously isolated deregulated TnpA mutants supports a stepwise pathway for transposition complex formation and activation during which TnpA first binds as a dimer to a single transposon end and then undergoes a structural transition that enables it to bind the second end cooperatively and to become activated for transposition catalysis, the latter step occurring at a much faster rate for the TnpA mutants. Our study thus provides an unprecedented approach to probe the dynamic of a complex DNA processing machinery at the single-particle level.
Collapse
Affiliation(s)
- Maricruz Fernandez
- NanoBioPhysics lab, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Alexander V Shkumatov
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yun Liu
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Claire Stulemeijer
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sylvie Derclaye
- NanoBioPhysics lab, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Rouslan G Efremov
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bernard Hallet
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David Alsteens
- NanoBioPhysics lab, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Skalidis I, Kyrilis FL, Tüting C, Hamdi F, Träger TK, Belapure J, Hause G, Fratini M, O'Reilly FJ, Heilmann I, Rappsilber J, Kastritis PL. Structural analysis of an endogenous 4-megadalton succinyl-CoA-generating metabolon. Commun Biol 2023; 6:552. [PMID: 37217784 DOI: 10.1038/s42003-023-04885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
The oxoglutarate dehydrogenase complex (OGDHc) participates in the tricarboxylic acid cycle and, in a multi-step reaction, decarboxylates α-ketoglutarate, transfers succinyl to CoA, and reduces NAD+. Due to its pivotal role in metabolism, OGDHc enzymatic components have been studied in isolation; however, their interactions within the endogenous OGDHc remain elusive. Here, we discern the organization of a thermophilic, eukaryotic, native OGDHc in its active state. By combining biochemical, biophysical, and bioinformatic methods, we resolve its composition, 3D architecture, and molecular function at 3.35 Å resolution. We further report the high-resolution cryo-EM structure of the OGDHc core (E2o), which displays various structural adaptations. These include hydrogen bonding patterns confining interactions of OGDHc participating enzymes (E1o-E2o-E3), electrostatic tunneling that drives inter-subunit communication, and the presence of a flexible subunit (E3BPo), connecting E2o and E3. This multi-scale analysis of a succinyl-CoA-producing native cell extract provides a blueprint for structure-function studies of complex mixtures of medical and biotechnological value.
Collapse
Affiliation(s)
- Ioannis Skalidis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120, Halle/Saale, Germany
| | - Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120, Halle/Saale, Germany
| | - Christian Tüting
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle/Saale, Germany
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle/Saale, Germany
| | - Toni K Träger
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120, Halle/Saale, Germany
| | - Jaydeep Belapure
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle/Saale, Germany
| | - Gerd Hause
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany
| | - Marta Fratini
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
| | - Francis J O'Reilly
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, 21702-1201, USA
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, Scotland, United Kingdom
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle/Saale, Germany.
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120, Halle/Saale, Germany.
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany.
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, 11635, Greece.
| |
Collapse
|
9
|
Fréchin L, Holvec S, von Loeffelholz O, Hazemann I, Klaholz BP. High-resolution cryo-EM performance comparison of two latest-generation cryo electron microscopes on the human ribosome. J Struct Biol 2023; 215:107905. [PMID: 36241135 DOI: 10.1016/j.jsb.2022.107905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
Abstract
Recent technological advances in cryo electron microscopy (cryo-EM) have led to new opportunities in the structural biology field. Here we benchmark the performance of two 300 kV latest-generation cryo electron microscopes, Titan Krios G4 from Thermofisher Scientific and CRYO ARM 300 from Jeol, with regards to achieving high resolution single particle reconstructions on a real case sample. We compare potentially limiting factors such as drift rates, astigmatism & coma aberrations and performance during image processing and show that both microscopes, while comprising rather different technical setups & parameter settings and equipped with different types of energy filters & cameras, achieve a resolution of around 2 Å on the human ribosome, a non-symmetric object which constitutes a key drug target. Astigmatism correction, CTF refinement and correction of higher order aberrations through refinement in separate optics groups helped to account for astigmatism/coma caused by beam tilting during multi-spot and multi-hole acquisition in neighbouring holes without stage movement. The obtained maps resolve Mg2+ ions, water molecules, inhibitors and side-chains including chemical modifications. The fact that both instruments can resolve such detailed features will greatly facilitate understanding molecular mechanisms of various targets and helps in cryo-EM structure based drug design. The methods and analysis tools used here will be useful also to characterize existing instruments and optimize data acquisition settings and are applicable broadly to other drug targets in structural biology.
Collapse
Affiliation(s)
- Léo Fréchin
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Samuel Holvec
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
10
|
Shkumatov AV, Aryanpour N, Oger CA, Goossens G, Hallet BF, Efremov RG. Structural insight into Tn3 family transposition mechanism. Nat Commun 2022; 13:6155. [PMID: 36257990 PMCID: PMC9579193 DOI: 10.1038/s41467-022-33871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Transposons are diverse mobile genetic elements that play the critical role as genome architects in all domains of life. Tn3 is a widespread family and among the first identified bacterial transposons famed for their contribution to the dissemination of antibiotic resistance. Transposition within this family is mediated by a large TnpA transposase, which facilitates both transposition and target immunity. Howtever, a structural framework required for understanding the mechanism of TnpA transposition is lacking. Here, we describe the cryo-EM structures of TnpA from Tn4430 in the apo form and paired with transposon ends before and after DNA cleavage and strand transfer. We show that TnpA has an unusual architecture and exhibits a family specific regulatory mechanism involving metamorphic refolding of the RNase H-like catalytic domain. The TnpA structure, constrained by a double dimerization interface, creates a peculiar topology that suggests a specific role for the target DNA in transpososome assembly and activation.
Collapse
Affiliation(s)
- Alexander V. Shkumatov
- grid.11486.3a0000000104788040Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium ,Present Address: Confo Therapeutics, Brussels, Belgium
| | - Nicolas Aryanpour
- grid.7942.80000 0001 2294 713XLouvain Institue of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud 4/5, 1348 Louvain-la-Neuve, Belgium
| | - Cédric A. Oger
- grid.7942.80000 0001 2294 713XLouvain Institue of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud 4/5, 1348 Louvain-la-Neuve, Belgium
| | - Gérôme Goossens
- grid.7942.80000 0001 2294 713XLouvain Institue of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud 4/5, 1348 Louvain-la-Neuve, Belgium ,Present Address: Thermo Fisher Scientific, Seneffe, Belgium
| | - Bernard F. Hallet
- grid.7942.80000 0001 2294 713XLouvain Institue of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud 4/5, 1348 Louvain-la-Neuve, Belgium
| | - Rouslan G. Efremov
- grid.11486.3a0000000104788040Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
11
|
Gerle C, Kishikawa JI, Yamaguchi T, Nakanishi A, Çoruh O, Makino F, Miyata T, Kawamoto A, Yokoyama K, Namba K, Kurisu G, Kato T. Structures of multisubunit membrane complexes with the CRYO ARM 200. Microscopy (Oxf) 2022; 71:249-261. [PMID: 35861182 PMCID: PMC9535789 DOI: 10.1093/jmicro/dfac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Progress in structural membrane biology has been significantly accelerated by the ongoing 'Resolution Revolution' in cryo-electron microscopy (cryo-EM). In particular, structure determination by single-particle analysis has evolved into the most powerful method for atomic model building of multisubunit membrane protein complexes. This has created an ever-increasing demand in cryo-EM machine time, which to satisfy is in need of new and affordable cryo-electron microscopes. Here, we review our experience in using the JEOL CRYO ARM 200 prototype for the structure determination by single-particle analysis of three different multisubunit membrane complexes: the Thermus thermophilus V-type ATPase VO complex, the Thermosynechococcus elongatus photosystem I monomer and the flagellar motor lipopolysaccharide peptidoglycan ring (LP ring) from Salmonella enterica.
Collapse
Affiliation(s)
- Christoph Gerle
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
- RIKEN SPring-8 Center, Life Science Research Infrastructure Group, Sayo-gun, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Jun-ichi Kishikawa
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
| | - Tomoko Yamaguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Atsuko Nakanishi
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Orkun Çoruh
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Niederösterreich 3400, Austria
| | - Fumiaki Makino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- JEOL Ltd., 3 Chome 1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
12
|
Peck JV, Fay JF, Strauss JD. High-speed high-resolution data collection on a 200 keV cryo-TEM. IUCRJ 2022; 9:243-252. [PMID: 35371504 PMCID: PMC8895008 DOI: 10.1107/s2052252522000069] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/03/2022] [Indexed: 05/12/2023]
Abstract
Limitations to successful single-particle cryo-electron microscopy (cryo-EM) projects include stable sample generation, production of quality cryo-EM grids with randomly oriented particles embedded in thin vitreous ice and access to microscope time. To address the limitation of microscope time, methodologies to more efficiently collect data on a 200 keV Talos Arctica cryo-transmission electron microscope at speeds as fast as 720 movies per hour (∼17 000 per day) were tested. In this study, key parameters were explored to increase data collection speed including: (1) using the beam-image shift method to acquire multiple images per stage position, (2) employing UltrAufoil TEM grids with R0.6/1 hole spacing, (3) collecting hardware-binned data and (4) adjusting the image shift delay factor in SerialEM. Here, eight EM maps of mouse apoferritin at 1.8-1.9 Å resolution were obtained in the analysis with data collection times for each dataset ranging from 56 min to 2 h. An EM map of mouse apoferritin at 1.78 Å was obtained from an overnight data collection at a speed of 500 movies per hour and subgroup analysis performed, with no significant variation observed in data quality by image shift distance and image shift delay. The findings and operating procedures detailed herein allow for rapid turnover of single-particle cryo-EM structure determination.
Collapse
Affiliation(s)
- Jared V. Peck
- Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 101 Mason Farm, Chapel Hill, NC 27599, USA
| | - Jonathan F. Fay
- Biochemistry and Biophysics, 6107 Thurston Bowles Building, Chapel Hill, NC 27599, USA
| | - Joshua D. Strauss
- Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 101 Mason Farm, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Skalidis I, Kyrilis FL, Tüting C, Hamdi F, Chojnowski G, Kastritis PL. Cryo-EM and artificial intelligence visualize endogenous protein community members. Structure 2022; 30:575-589.e6. [DOI: 10.1016/j.str.2022.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022]
|
14
|
Saibil HR. Cryo-EM in molecular and cellular biology. Mol Cell 2022; 82:274-284. [DOI: 10.1016/j.molcel.2021.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
|
15
|
Abstract
Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly in solving the structures of large protein complexes or cellular machineries that play important biological functions. This review focuses on the contribution and future potential of cryo-EM in related emerging applications-enzymatic mechanisms and dynamic processes. Work on these subjects can benefit greatly from the capability of cryo-EM to solve the structures of specific protein complexes in multiple conditions, including variations in the buffer condition, ligands, and temperature, and to capture multiple conformational states, conformational change intermediates, and reaction intermediates. These studies can expand the structural landscape of specific proteins or protein complexes in multiple dimensions and drive new advances in the fields of enzymology and dynamic processes. The advantages and complementarity of cryo-EM relative to X-ray crystallography and nuclear magnetic resonance with regard to these applications are also addressed. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan;
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Chang WH, Huang SH, Lin HH, Chung SC, Tu IP. Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules. FRONTIERS IN BIOINFORMATICS 2021; 1:788308. [PMID: 36303748 PMCID: PMC9580929 DOI: 10.3389/fbinf.2021.788308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The functions of biological macromolecules are often associated with conformational malleability of the structures. This phenomenon of chemically identical molecules with different structures is coined structural polymorphism. Conventionally, structural polymorphism is observed directly by structural determination at the density map level from X-ray crystal diffraction. Although crystallography approach can report the conformation of a macromolecule with the position of each atom accurately defined in it, the exploration of structural polymorphism and interpreting biological function in terms of crystal structures is largely constrained by the crystal packing. An alternative approach to studying the macromolecule of interest in solution is thus desirable. With the advancement of instrumentation and computational methods for image analysis and reconstruction, cryo-electron microscope (cryo-EM) has been transformed to be able to produce “in solution” structures of macromolecules routinely with resolutions comparable to crystallography but without the need of crystals. Since the sample preparation of single-particle cryo-EM allows for all forms co-existing in solution to be simultaneously frozen, the image data contain rich information as to structural polymorphism. The ensemble of structure information can be subsequently disentangled through three-dimensional (3D) classification analyses. In this review, we highlight important examples of protein structural polymorphism in relation to allostery, subunit cooperativity and function plasticity recently revealed by cryo-EM analyses, and review recent developments in 3D classification algorithms including neural network/deep learning approaches that would enable cryo-EM analyese in this regard. Finally, we brief the frontier of cryo-EM structure determination of RNA molecules where resolving the structural polymorphism is at dawn.
Collapse
Affiliation(s)
- Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- *Correspondence: Wei-Hau Chang,
| | | | - Hsin-Hung Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Szu-Chi Chung
- Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - I-Ping Tu
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
17
|
Kolata P, Efremov RG. Structure of Escherichia coli respiratory complex I reconstituted into lipid nanodiscs reveals an uncoupled conformation. eLife 2021; 10:e68710. [PMID: 34308841 PMCID: PMC8357420 DOI: 10.7554/elife.68710] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/23/2021] [Indexed: 01/22/2023] Open
Abstract
Respiratory complex I is a multi-subunit membrane protein complex that reversibly couples NADH oxidation and ubiquinone reduction with proton translocation against transmembrane potential. Complex I from Escherichia coli is among the best functionally characterized complexes, but its structure remains unknown, hindering further studies to understand the enzyme coupling mechanism. Here, we describe the single particle cryo-electron microscopy (cryo-EM) structure of the entire catalytically active E. coli complex I reconstituted into lipid nanodiscs. The structure of this mesophilic bacterial complex I displays highly dynamic connection between the peripheral and membrane domains. The peripheral domain assembly is stabilized by unique terminal extensions and an insertion loop. The membrane domain structure reveals novel dynamic features. Unusual conformation of the conserved interface between the peripheral and membrane domains suggests an uncoupled conformation of the complex. Considering constraints imposed by the structural data, we suggest a new simple hypothetical coupling mechanism for the molecular machine.
Collapse
Affiliation(s)
- Piotr Kolata
- Center for Structural Biology, Vlaams Instituut voor BiotechnologieBrusselsBelgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrusselsBelgium
| | - Rouslan G Efremov
- Center for Structural Biology, Vlaams Instituut voor BiotechnologieBrusselsBelgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|