1
|
Asyraf MRM, Syamsir A, Supian ABM, Usman F, Ilyas RA, Nurazzi NM, Norrrahim MNF, Razman MR, Zakaria SZS, Sharma S, Itam Z, Rashid MZA. Sugar Palm Fibre-Reinforced Polymer Composites: Influence of Chemical Treatments on Its Mechanical Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3852. [PMID: 35683149 PMCID: PMC9181418 DOI: 10.3390/ma15113852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 12/31/2022]
Abstract
In the era of globalisation, decreasing synthetic resources, especially petroleum, have encouraged global communities to apply biomass waste as a substitute material for green technology development. The development of plastic products from lignocellulosic fibre-reinforced composites has been a hot topic among material scientists and engineers due to their abundance, sustainable in nature, and less toxic towards health. For the Malaysian scenario, sugar palm is a plant found in the wild and locally planted in certain areas in Malaysia and Indonesia. Generally, sugar palm can be harvested for traditional foods, fruits, starch sugar (gula kabung), and alcohol, whereas sugar palm fibre (SPF) is used in conventional products (brushes and brooms). Various researchers are working on the characterisation of fibre and its composites for engineering and packaging products. The main drawback of SPF is its hydrophilic behaviour, which leads to high moisture uptake and inhibits a good bond between the fibre and the matrix. Thus, a solution for this problem is by implementing chemical treatments on the fibre. From the literature review, no comprehensive review paper has been published on the influence of chemical treatment on the mechanical behaviour of SPF-reinforced polymer composites. Thus, the present review examines recent studies on the mechanical properties of sugar palm lignocellulosic fibres with various chemical treatments to evaluate their potential in structural applications.
Collapse
Affiliation(s)
- Muhammad Rizal Muhammad Asyraf
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.B.M.S.); (F.U.)
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia;
| | - Agusril Syamsir
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.B.M.S.); (F.U.)
| | - Abu Bakar Mohd Supian
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.B.M.S.); (F.U.)
| | - Fathoni Usman
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.B.M.S.); (F.U.)
| | - Rushdan Ahmad Ilyas
- Centre for Advanced Composite Materials (CACM), Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia;
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Norizan Mohd Nurazzi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), Gelugor 11800, Pulau Pinang, Malaysia;
| | - Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - Muhammad Rizal Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Sharifah Zarina Syed Zakaria
- Research Centre for Environmental, Economic and Social Sustainability (KASES), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, Punjab, India;
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Kapurthala 144603, India
| | - Zarina Itam
- Civil Engineering Department, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| | - Mohamad Zakir Abd Rashid
- TNB Grid Division, Grid Solution Expertise (GSE), Bangunan Dua Sentral No. 8, Jalan Tun Sambanthan, Kuala Lumpur 50470, Malaysia;
| |
Collapse
|
2
|
Bamboo-Fiber-Reinforced Thermoset and Thermoplastic Polymer Composites: A Review of Properties, Fabrication, and Potential Applications. Polymers (Basel) 2022; 14:polym14071387. [PMID: 35406261 PMCID: PMC9003382 DOI: 10.3390/polym14071387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Natural-fiber-reinforced composites, especially bamboo, are an alternative material to compete with conventional materials. Their environmentally friendly, renewable, low-cost, low-density, non-toxic, and fully biodegradable properties are concerning for researchers because of their advantages over synthetic polymers. This comprehensive review presents the results of work on bamboo fiber composites with special reference to bamboo types, thermoplastic and thermoset polymers matrices, hybrid composites, and their applications. In addition, several studies prove that these properties are very good and efficient in various applications. However, in the development of composite technology, bamboo fiber has certain constraints, especially in moisture conditions. Moisture is one of the factors that reduces the potential of bamboo fiber and makes it a critical issue in the manufacturing industry. Therefore, various efforts have been made to ensure that these properties are not affected by moisture by treating the surface fibers using chemical treatments.
Collapse
|
3
|
Asyraf MRM, Ishak MR, Norrrahim MNF, Nurazzi NM, Shazleen SS, Ilyas RA, Rafidah M, Razman MR. Recent advances of thermal properties of sugar palm lignocellulosic fibre reinforced polymer composites. Int J Biol Macromol 2021; 193:1587-1599. [PMID: 34740691 DOI: 10.1016/j.ijbiomac.2021.10.221] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022]
Abstract
Biocomposites are materials that are easy to manufacture and environmentally friendly. Sugar palm fibre (SPF) is considered to be an emerging reinforcement candidate that could provide improved mechanical stiffness and strength to the biocomposites. Numerous studies have been recently conducted on sugar palm biocomposites to evaluate their physical, mechanical and thermal properties in various conditions. Sugar palm biocomposites are currently limited to the applications of traditional household products despite their good thermal stability as a prospective substitute candidate for synthetic fibres. Thus, thermal analysis methods such as TGA and DTG are functioned to determine the thermal properties of single fibre sugar palm composites (SPCs) in thermoset and thermoplastic matrix as well as hybrid SPCs. The biocomposites showed a remarkable change considering thermal stability by varying the individual fibre compositions and surface treatments and adding fillers and coupling agents. However, literature that summarises the thermal properties of sugar palm biocomposites is unavailable. Particularly, this comprehensive review paper aims to guide all composite engineers, designers, manufacturers and users on the selection of suitable biopolymers for sugar palm biocomposites for thermal applications, such as heat shields and engine components.
Collapse
Affiliation(s)
- M R M Asyraf
- Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - M R Ishak
- Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Aerospace Malaysia Research Centre (AMRC), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - M N F Norrrahim
- Research Center for Chemical Defence, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - N M Nurazzi
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - S S Shazleen
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - R A Ilyas
- Sustainable Waste Management Research Group (SWAM), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia; Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
| | - M Rafidah
- Department of Civil Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - M R Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Sherwani SFK, Zainudin ES, Sapuan SM, Leman Z, Abdan K. Mechanical Properties of Sugar Palm ( Arenga pinnata Wurmb. Merr)/Glass Fiber-Reinforced Poly(lactic acid) Hybrid Composites for Potential Use in Motorcycle Components. Polymers (Basel) 2021; 13:3061. [PMID: 34577962 PMCID: PMC8470235 DOI: 10.3390/polym13183061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
This research aims to determine the mechanical properties of sugar palm fiber (Arenga pinnata Wurmb. Merr) (SPF)/glass fiber (GF)-reinforced poly(lactic acid) (PLA) hybrid composites for potential use in motorcycle components. The mechanical (hardness, compressive, impact, and creep) and flammability properties of SPF/GF/PLA hybrid composites were investigated and compared to commercially available motorcycle Acrylonitrile Butadiene Styrene (ABS) plastic components. The composites were initially prepared using a Brabender Plastograph, followed by a compression molding method. This study also illustrated the tensile and flexural stress-strain curves. The results revealed that alkaline-treated SPF/GF/PLA had the highest hardness and impact strength values of 88.6 HRS and 3.10 kJ/m2, respectively. According to the results, both alkaline and benzoyl chloride treatments may improve the mechanical properties of SPF/GF/PLA hybrid composites, and a short-term creep test revealed that the alkaline treated SPF/GF/PLA composite displayed the least creep deformation. The findings of the horizontal UL 94 testing indicated that the alkaline-treated SPF/GF/PLA hybrid composites had good flame resistance. However, alkaline-treated SPF/GF/PLA composites are more suitable materials for motorcycle components.
Collapse
Affiliation(s)
- S. F. K. Sherwani
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UMP, Serdang 43400, Selangor, Malaysia; (S.F.K.S.); (Z.L.)
| | - E. S. Zainudin
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UMP, Serdang 43400, Selangor, Malaysia; (S.F.K.S.); (Z.L.)
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UMP, Serdang 43400, Selangor, Malaysia;
| | - S. M. Sapuan
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UMP, Serdang 43400, Selangor, Malaysia; (S.F.K.S.); (Z.L.)
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UMP, Serdang 43400, Selangor, Malaysia;
| | - Z. Leman
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UMP, Serdang 43400, Selangor, Malaysia; (S.F.K.S.); (Z.L.)
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UMP, Serdang 43400, Selangor, Malaysia;
| | - K. Abdan
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UMP, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
5
|
Abstract
Natural fiber composites (NFCs) are an evolving area in polymer sciences. Fibers extracted from natural sources hold a wide set of advantages such as negligible cost, significant mechanical characteristics, low density, high strength-to-weight ratio, environmental friendliness, recyclability, etc. Luffa cylindrica, also termed luffa gourd or luffa sponge, is a natural fiber that has a solid potential to replace synthetic fibers in composite materials in diverse applications like vibration isolation, sound absorption, packaging, etc. Recently, many researches have involved luffa fibers as a reinforcement in the development of NFC, aiming to investigate their performance in selected matrices as well as the behavior of the end NFC. This paper presents a review on recent developments in luffa natural fiber composites. Physical, morphological, mechanical, thermal, electrical, and acoustic properties of luffa NFCs are investigated, categorized, and compared, taking into consideration selected matrices as well as the size, volume fraction, and treatments of fibers. Although luffa natural fiber composites have revealed promising properties, the addition of these natural fibers increases water absorption. Moreover, chemical treatments with different agents such as sodium hydroxide (NaOH) and benzoyl can remarkably enhance the surface area of luffa fibers, remove undesirable impurities, and reduce water uptake, thereby improving their overall characteristics. Hybridization of luffa NFC with other natural or synthetic fibers, e.g., glass, carbon, ceramic, flax, jute, etc., can enhance the properties of the end composite material. However, luffa fibers have exhibited a profuse compatibility with epoxy matrix.
Collapse
|
6
|
Ilyas R, Sapuan S, Ishak M, Zainudin E. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydr Polym 2018; 202:186-202. [DOI: 10.1016/j.carbpol.2018.09.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
|