1
|
Hameed MM, Mohd Razali SF, Wan Mohtar WHM, Yaseen ZM. Examining optimized machine learning models for accurate multi-month drought forecasting: A representative case study in the USA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52060-52085. [PMID: 39134798 DOI: 10.1007/s11356-024-34500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024]
Abstract
The Colorado River has experienced a significant streamflow reduction in recent decades due to climate change, resulting in pronounced hydrological droughts that pose challenges to the environment and human activities. However, current models struggle to accurately capture complex drought patterns, and their accuracy decreases as the lead time increases. Thus, determining the reliability of drought forecasting for specific months ahead presents a challenging task. This study introduces a robust approach that utilizes the Beluga Whale Optimization (BWO) algorithm to train and optimize the parameters of the Regularized Extreme Learning Machine (RELM) and Random Forest (RF) models. The applied models are validated against a KNN benchmark model for forecasting drought from one- to six-month ahead across four hydrological stations distributed over the Colorado River. The achieved results demonstrate that RELM-BWO outperforms RF-BWO and KNN models, achieving the lowest root-mean square error (0.2795), uncertainty (U95 = 0.1077), mean absolute error (0.2104), and highest correlation coefficient (0.9135). Also, the current study uses Global Multi-Criteria Decision Analysis (GMCDA) as an evaluation metric to assess the reliability of the forecasting. The GMCDA results indicate that RELM-BWO provides reliable forecasts up to four months ahead. Overall, the research methodology is valuable for drought assessment and forecasting, enabling advanced early warning systems and effective drought countermeasures.
Collapse
Affiliation(s)
- Mohammed Majeed Hameed
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Department of Civil Engineering, Al-Maarif University, 31001, Ramadi City, Iraq.
| | - Siti Fatin Mohd Razali
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Smart and Sustainable Township Research Centre (SUTRA), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Wan Hanna Melini Wan Mohtar
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Smart and Sustainable Township Research Centre (SUTRA), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Zhao J, Li J, Yao J, Lin G, Chen C, Ye H, He X, Qu S, Chen Y, Wang D, Liang Y, Gao Z, Wu F. Enhanced PSO feature selection with Runge-Kutta and Gaussian sampling for precise gastric cancer recurrence prediction. Comput Biol Med 2024; 175:108437. [PMID: 38669732 DOI: 10.1016/j.compbiomed.2024.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
Gastric cancer (GC), characterized by its inconspicuous initial symptoms and rapid invasiveness, presents a formidable challenge. Overlooking postoperative intervention opportunities may result in the dissemination of tumors to adjacent areas and distant organs, thereby substantially diminishing prospects for patient survival. Consequently, the prompt recognition and management of GC postoperative recurrence emerge as a matter of paramount urgency to mitigate the deleterious implications of the ailment. This study proposes an enhanced feature selection model, bRSPSO-FKNN, integrating boosted particle swarm optimization (RSPSO) with fuzzy k-nearest neighbor (FKNN), for predicting GC. It incorporates the Runge-Kutta search, for improved model accuracy, and Gaussian sampling, enhancing the search performance and helping to avoid locally optimal solutions. It outperforms the sophisticated variants of particle swarm optimization when evaluated in the CEC 2014 test suite. Furthermore, the bRSPSO-FKNN feature selection model was introduced for GC recurrence prediction analysis, achieving up to 82.082 % and 86.185 % accuracy and specificity, respectively. In summation, this model attains a notable level of precision, poised to ameliorate the early warning system for GC recurrence and, in turn, advance therapeutic options for afflicted patients.
Collapse
Affiliation(s)
- Jungang Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - JiaCheng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jiangqiao Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ganglian Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chao Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Huajun Ye
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xixi He
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Shanghu Qu
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Yuxin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Danhong Wang
- Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yingqi Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhihong Gao
- Zhejiang Engineering Research Center of Intelligent Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fang Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Mao J, Zhu Z, Xia M, Zhou M, Wang L, Xia J, Wang Z. Enhanced Runge-Kutta-driven feature selection model for early detection of gastroesophageal reflux disease. Comput Biol Med 2024; 175:108394. [PMID: 38657464 DOI: 10.1016/j.compbiomed.2024.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Gastroesophageal reflux disease (GERD) profoundly compromises the quality of life, with prolonged untreated cases posing a heightened risk of severe complications such as esophageal injury and esophageal carcinoma. The imperative for early diagnosis is paramount in averting progressive pathological developments. This study introduces a wrapper-based feature selection model based on the enhanced Runge Kutta algorithm (SCCRUN) and fuzzy k-nearest neighbors (FKNN) for GERD prediction, named bSCCRUN-FKNN-FS. Runge Kutta algorithm (RUN) is a metaheuristic algorithm designed based on the Runge-Kutta method. However, RUN's effectiveness in local search capabilities is insufficient, and it exhibits insufficient convergence accuracy. To enhance the convergence accuracy of RUN, spiraling communication and collaboration (SCC) is introduced. By facilitating information exchange among population individuals, SCC expands the solution search space, thereby improving convergence accuracy. The optimization capabilities of SCCRUN are experimentally validated through comparisons with classical and state-of-the-art algorithms on the IEEE CEC 2017 benchmark. Subsequently, based on SCCRUN, the bSCCRUN-FKNN-FS model is proposed. During the period from 2019 to 2023, a dataset comprising 179 cases of GERD, including 110 GERD patients and 69 healthy individuals, was collected from Zhejiang Provincial People's Hospital. This dataset was utilized to compare our proposed model against similar algorithms in order to evaluate its performance. Concurrently, it was determined that features such as the internal diameter of the esophageal hiatus during distention, esophagogastric junction diameter during distention, and external diameter of the esophageal hiatus during non-distention play crucial roles in influencing GERD prediction. Experimental findings demonstrate the outstanding performance of the proposed model, with a predictive accuracy reaching as high as 93.824 %. These results underscore the significant advantage of the proposed model in both identifying and predicting GERD patients.
Collapse
Affiliation(s)
- Jinlei Mao
- General Surgery, Cancer Center, Department of Hernia Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital). Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Zhihao Zhu
- General Surgery, Cancer Center, Department of Hernia Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital). Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Minjun Xia
- General Surgery, Cancer Center, Department of Hernia Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital). Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Menghui Zhou
- General Surgery, Cancer Center, Department of Hernia Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital). Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Li Wang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Jianfu Xia
- Department of General Surgery, The Dingli Clinical College of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou, Zhejiang, 325000, China.
| | - Zhifei Wang
- General Surgery, Cancer Center, Department of Hernia Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital). Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Zhang L, Yu R, Chen K, Zhang Y, Li Q, Chen Y. Enhancing deep vein thrombosis prediction in patients with coronavirus disease 2019 using improved machine learning model. Comput Biol Med 2024; 173:108294. [PMID: 38537565 DOI: 10.1016/j.compbiomed.2024.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Deep vein thrombosis (DVT) is a significant complication in coronavirus disease 2019 patients, arising from coagulation issues in the deep venous system. Among 424 scheduled patients, 202 developed DVT (47.64%). DVT increases hospitalization risk, and complications, and impacts prognosis. Accurate prognostication and timely intervention are crucial to prevent DVT progression and improve patient outcomes. METHODS This study introduces an effective DVT prediction model, named bSES-AC-RUN-FKNN, which integrates fuzzy k-nearest neighbor (FKNN) with enhanced Runge-Kutta optimizer (RUN). Recognizing the insufficient effectiveness of RUN in local search capability and its convergence accuracy, spherical evolutionary search (SES) and differential evolution-inspired knowledge adaptive crossover (AC) are incorporated, termed SES-AC-RUN, to enhance its optimization capability. RESULTS Based on the benchmark set by CEC 2017 and comparative analyses with several peers, it is evident that SES-AC-RUN significantly enhances search performance compared to traditional RUN, even standing comparably against leading championship algorithms. The proposed bSES-AC-RUN-FKNN model was applied to predict a dataset comprising 424 cases of DVT patients, totaling 7208 records. Remarkably, the model demonstrates outstanding accuracy, reaching 91.02%, alongside commendable sensitivity at 91.07%. CONCLUSIONS The bSES-AC-RUN-FKNN emerges as a robust and efficient predictive tool, significantly enhancing the accuracy of DVT prediction. This model can be used to manage the risk of thrombosis in the care of COVID-19 patients. Nursing staff can combine the model's predictions with clinical judgment to formulate comprehensive treatment approaches.
Collapse
Affiliation(s)
- Lufang Zhang
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Renyue Yu
- Cardiac Care Unit, Sir RUN RUN Shaw Hospital, Hangzhou, 310000, China.
| | - Keya Chen
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Ying Zhang
- Wenzhou Medical University School of Nursing, 325000, Wenzhou, 325000, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China.
| | - Qiang Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China.
| | - Yu Chen
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
5
|
Xing J, Li C, Wu P, Cai X, Ouyang J. Optimized fuzzy K-nearest neighbor approach for accurate lung cancer prediction based on radial endobronchial ultrasonography. Comput Biol Med 2024; 171:108038. [PMID: 38442552 DOI: 10.1016/j.compbiomed.2024.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
Radial endobronchial ultrasonography (R-EBUS) has been a surge in the development of new ultrasonography for the diagnosis of pulmonary diseases beyond the central airway. However, it faces challenges in accurately pinpointing the location of abnormal lesions. Therefore, this study proposes an improved machine learning model aimed at distinguishing between malignant lung disease (MLD) from benign lung disease (BLD) through R-EBUS features. An enhanced manta ray foraging optimization based on elite perturbation search and cyclic mutation strategy (ECMRFO) is introduced at first. Experimental validation on 29 test functions from CEC 2017 demonstrates that ECMRFO exhibits superior optimization capabilities and robustness compared to other competing algorithms. Subsequently, it was combined with fuzzy k-nearest neighbor for the classification prediction of BLD and MLD. Experimental results indicate that the proposed modal achieves a remarkable prediction accuracy of up to 99.38%. Additionally, parameters such as R-EBUS1 Circle-dense sign, R-EBUS2 Hemi-dense sign, R-EBUS5 Onionskin sign and CCT5 mediastinum lymph node are identified as having significant clinical diagnostic value.
Collapse
Affiliation(s)
- Jie Xing
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Chengye Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xueding Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jinsheng Ouyang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
6
|
Li Y, Zhao D, Ma C, Escorcia-Gutierrez J, Aljehane NO, Ye X. CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images. Comput Biol Med 2024; 169:107838. [PMID: 38171259 DOI: 10.1016/j.compbiomed.2023.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
To improve the detection of COVID-19, this paper researches and proposes an effective swarm intelligence algorithm-driven multi-threshold image segmentation (MTIS) method. First, this paper proposes a novel RIME structure integrating the Co-adaptive hunting and dispersed foraging strategies, called CDRIME. Specifically, the Co-adaptive hunting strategy works in coordination with the basic search rules of RIME at the individual level, which not only facilitates the algorithm to explore the global optimal solution but also enriches the population diversity to a certain extent. The dispersed foraging strategy further enriches the population diversity to help the algorithm break the limitation of local search and thus obtain better convergence. Then, on this basis, a new multi-threshold image segmentation method is proposed by combining the 2D non-local histogram with 2D Kapur entropy, called CDRIME-MTIS. Finally, the results of experiments based on IEEE CEC2017, IEEE CEC2019, and IEEE CEC2022 demonstrate that CDRIME has superior performance than some other basic, advanced, and state-of-the-art algorithms in terms of global search, convergence performance, and escape from local optimality. Meanwhile, the segmentation experiments on COVID-19 X-ray images demonstrate that CDRIME is more advantageous than RIME and other peers in terms of segmentation effect and adaptability to different threshold levels. In conclusion, the proposed CDRIME significantly enhances the global optimization performance and image segmentation of RIME and has great potential to improve COVID-19 diagnosis.
Collapse
Affiliation(s)
- Yupeng Li
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Chao Ma
- School of Digital Media, Shenzhen Institute of Information Technology, Shenzhen, 518172, China.
| | - José Escorcia-Gutierrez
- Department of Computational Science and Electronics, Universidad de la Costa, CUC, Barranquilla, 080002, Colombia.
| | - Nojood O Aljehane
- Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
| | - Xia Ye
- School of the 1st Clinical Medical Sciences (School of Information and Engineering), Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
7
|
Yu X, Qin W, Lin X, Shan Z, Huang L, Shao Q, Wang L, Chen M. Synergizing the enhanced RIME with fuzzy K-nearest neighbor for diagnose of pulmonary hypertension. Comput Biol Med 2023; 165:107408. [PMID: 37672924 DOI: 10.1016/j.compbiomed.2023.107408] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
Pulmonary hypertension (PH) is an uncommon yet severe condition characterized by sustained elevation of blood pressure in the pulmonary arteries. The delaying treatment can result in disease progression, right ventricular failure, increased risk of complications, and even death. Early recognition and timely treatment are crucial in halting PH progression, improving cardiac function, and reducing complications. Within this study, we present a highly promising hybrid model, known as bERIME_FKNN, which constitutes a feature selection approach integrating the enhanced rime algorithm (ERIME) and fuzzy K-nearest neighbor (FKNN) technique. The ERIME introduces the triangular game search strategy, which augments the algorithm's capacity for global exploration by judiciously electing distinct search agents across the exploratory domain. This approach fosters both competitive rivalry and collaborative synergy among these agents. Moreover, an random follower search strategy is incorporated to bestow a novel trajectory upon the principal search agent, thereby enriching the spectrum of search directions. Initially, ERIME is meticulously compared to 11 state-of-the-art algorithms using the IEEE CEC2017 benchmark functions across diverse dimensionalities such as 10, 30, 50, and 100, ultimately validating its exceptional optimization capability within the model. Subsequently, employing the color moment and grayscale co-occurrence matrix methodologies, a total of 118 features are extracted from 63 PH patients' and 60 healthy individuals' images, alongside an analysis of 14,514 recordings obtained from these patients utilizing the developed bERIME_FKNN model. The outcomes manifest that the bERIME_FKNN model exhibits a conspicuous prowess in the realm of PH classification, attaining an accuracy and specificity exceeding 99%. This implies that the model serves as a valuable computer-aided tool, delivering an advanced warning system for diagnosis and prognosis evaluation of PH.
Collapse
Affiliation(s)
- Xiaoming Yu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Wenxiang Qin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Xiao Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Zhuohan Shan
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Liyao Huang
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Qike Shao
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Liangxing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Mayun Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
8
|
Li Y, Zhao D, Xu Z, Heidari AA, Chen H, Jiang X, Liu Z, Wang M, Zhou Q, Xu S. bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease. Front Neuroinform 2023; 16:1063048. [PMID: 36726405 PMCID: PMC9884708 DOI: 10.3389/fninf.2022.1063048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Atopic dermatitis (AD) is an allergic disease with extreme itching that bothers patients. However, diagnosing AD depends on clinicians' subjective judgment, which may be missed or misdiagnosed sometimes. Methods This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. In SRWPSO, the Sobol sequence is introduced into particle swarm optimization (PSO) to make the particle distribution of the initial population more uniform, thus improving the population's diversity and traversal. At the same time, this study also adds a random replacement strategy and adaptive weight strategy to the population updating process of PSO to overcome the shortcomings of poor convergence accuracy and easily fall into the local optimum of PSO. In bSRWPSO-FKNN, the core of which is to optimize the classification performance of FKNN through binary SRWPSO. Results To prove that the study has scientific significance, this paper first successfully demonstrates the core advantages of SRWPSO in well-known algorithms through benchmark function validation experiments. Secondly, this article demonstrates that the bSRWPSO-FKNN has practical medical significance and effectiveness through nine public and medical datasets. Discussion The 10 times 10-fold cross-validation experiments demonstrate that bSRWPSO-FKNN can pick up the key features of AD, including the content of lymphocytes (LY), Cat dander, Milk, Dermatophagoides Pteronyssinus/Farinae, Ragweed, Cod, and Total IgE. Therefore, the established bSRWPSO-FKNN method practically aids in the diagnosis of AD.
Collapse
Affiliation(s)
- Yupeng Li
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, China
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, China,*Correspondence: Dong Zhao,
| | - Zhangze Xu
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China,Huiling Chen,
| | - Xinyu Jiang
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Zhifang Liu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Mengmeng Wang
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Qiongyan Zhou
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Suling Xu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Suling Xu,
| |
Collapse
|
9
|
Bi W, Ma J, Zhu X, Wang W, Zhang A. Cloud service selection based on weighted KD tree nearest neighbor search. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
|
11
|
Assessing Algorithmic Thinking Skills in Relation to Age in Early Childhood STEM Education. EDUCATION SCIENCES 2022. [DOI: 10.3390/educsci12060380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the modern digital era, intensive efforts are made to inject computational thinking (CT) across science, technology, engineering, and mathematics (STEM) fields, aiming at formulating a well-trained citizenry and workforce capable of confronting intricate problems that would not be solvable unless exercising CT skills. Focusing on contributing to the research area of CT assessment in the first two years of primary school, we investigated the correlation of algorithmic thinking skills, as a fundamental CT competency, with students’ age in early childhood settings. This article reports a relevant research study, which we implemented under the umbrella of quantitative methodology, employing an innovative assessment tool we constructed for serving the needs of our study. The research was conducted within the context of the environmental study course, adding to the efforts of infusing CT into STEM fields. The study results shed light on the correlation between algorithmic thinking skills and age in early childhood, revealing that age is a predictor factor for algorithmic thinking and, therefore, for CT.
Collapse
|
12
|
Chen C, Wang X, Heidari AA, Yu H, Chen H. Multi-Threshold Image Segmentation of Maize Diseases Based on Elite Comprehensive Particle Swarm Optimization and Otsu. FRONTIERS IN PLANT SCIENCE 2021; 12:789911. [PMID: 34966405 PMCID: PMC8710579 DOI: 10.3389/fpls.2021.789911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Maize is a major global food crop and as one of the most productive grain crops, it can be eaten; it is also a good feed for the development of animal husbandry and essential raw material for light industry, chemical industry, medicine, and health. Diseases are the main factor limiting the high and stable yield of maize. Scientific and practical identification is a vital link to reduce the damage of diseases and accurate segmentation of disease spots is one of the fundamental techniques for disease identification. However, one single method cannot achieve a good segmentation effect to meet the diversity and complexity of disease spots. In order to solve the shortcomings of noise interference and oversegmentation in the Otsu segmentation method, a non-local mean filtered two-dimensional histogram was used to remove the noise in disease images and a new elite strategy improved comprehensive particle swarm optimization (PSO) method was used to find the optimal segmentation threshold of the objective function in this study. The experimental results of segmenting three kinds of maize foliar disease images show that the segmentation effect of this method is better than other similar algorithms and it has better convergence and stability.
Collapse
Affiliation(s)
- Chengcheng Chen
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Changchun, China
| | - Xianchang Wang
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Changchun, China
- Chengdu Kestrel Artificial Intelligence Institute, Chengdu, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Helong Yu
- College of Information Technology, Jilin Agricultural University, Changchun, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| |
Collapse
|
13
|
Dong R, Chen H, Heidari AA, Turabieh H, Mafarja M, Wang S. Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107529] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Zhang Q, Wang Z, Heidari AA, Gui W, Shao Q, Chen H, Zaguia A, Turabieh H, Chen M. Gaussian Barebone Salp Swarm Algorithm with Stochastic Fractal Search for medical image segmentation: A COVID-19 case study. Comput Biol Med 2021; 139:104941. [PMID: 34801864 DOI: 10.1016/j.compbiomed.2021.104941] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/11/2023]
Abstract
An appropriate threshold is a key to using the multi-threshold segmentation method to solve image segmentation problems, and the swarm intelligence (SI) optimization algorithm is one of the popular methods to obtain the optimal threshold. Moreover, Salp Swarm Algorithm (SSA) is a recently released swarm intelligent optimization algorithm. Compared with other SI optimization algorithms, the optimization solution strategy of the SSA still needs to be improved to enhance further the solution accuracy and optimization efficiency of the algorithm. Accordingly, this paper designs an effective segmentation method based on a non-local mean 2D histogram and 2D Kapur's entropy called SSA with Gaussian Barebone and Stochastic Fractal Search (GBSFSSSA) by combining Gaussian Barebone and Stochastic Fractal Search mechanism. In GBSFSSSA, the Gaussian Barebone and Stochastic Fractal Search mechanism effectively balance the global search ability and local search ability of the basic SSA. The CEC2017 competition data set is used to prove the algorithm's performance, and GBSFSSSA shows an absolute advantage over some typical competitive algorithms. Furthermore, the algorithm is applied in image segmentation of COVID-19 CT images, and the results are analyzed based on three different metrics: peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and feature similarity (FSIM), which can lead to the conclusion that the overall performance of GBSFSSSA is better than the comparison algorithm and can effectively improve the segmentation of medical images. Therefore, it is justified that GBSFSSSA is a reliable and effective method in solving the multi-threshold image segmentation problem.
Collapse
Affiliation(s)
- Qian Zhang
- Wenzhou University of Technology, Wenzhou, 325035, China.
| | - Zhiyan Wang
- School of Artificial Intelligence, Jilin International Studies University, Changchun, 130000, China.
| | - Ali Asghar Heidari
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Wenyong Gui
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Qike Shao
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Atef Zaguia
- Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. BOX 11099, Taif, 21944, Saudi Arabia.
| | - Hamza Turabieh
- Department of Information Technology, College of Computers and Information Technology, PO Box 11099, Taif, 21944, Saudi Arabia.
| | - Mayun Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
15
|
Zhao S, Wang P, Heidari AA, Chen H, He W, Xu S. Performance optimization of salp swarm algorithm for multi-threshold image segmentation: Comprehensive study of breast cancer microscopy. Comput Biol Med 2021; 139:105015. [PMID: 34800808 DOI: 10.1016/j.compbiomed.2021.105015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022]
Abstract
Multi-threshold image segmentation (MIS) is now a well known image segmentation technique, and many researchers have applied intelligent algorithms to it, but these methods suffer from local optimal drawbacks. This paper presented a novel approach to improve the Salp Swarm Algorithm (SSA), namely EHSSA, and applied it to MIS. Knowing the inaccuracies and discussions on implementation of this method, a new efficient mechanism is proposed to improve global search capability of the algorithm and avoid falling into a local optimum. Moreover, the excellence of the proposed algorithm was proved by comparative experiments at IEEE CEC2014. Afterward, the performance of EHSSA was demonstrated by testing a set of images selected from the Berkeley segmentation data set 500 (BSDS500), and the experimental results were analyzed by evaluating the parameters, which proved the efficiency of the proposed algorithm in MIS. Furthermore, EHSSA was applied to the microscopic image segmentation of breast cancer. Medical image segmentation is the study of how to quickly extract objects of interest (human organs) from various images to perform qualitative and quantitative analysis of diseased tissues and improve the accuracy of their diagnosis, which assists the physician in making more informed decisions and patient rehabilitation. The results of this set of experiments also proved its superior performance. For any info about this paper, readers can refer to https://aliasgharheidari.com.
Collapse
Affiliation(s)
- Songwei Zhao
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Wenming He
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.
| | - Suling Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
16
|
Hu J, Heidari AA, Zhang L, Xue X, Gui W, Chen H, Pan Z. Chaotic diffusion‐limited aggregation enhanced grey wolf optimizer: Insights, analysis, binarization, and feature selection. INT J INTELL SYST 2021. [DOI: 10.1002/int.22744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jiao Hu
- Department of Computer Science and Artificial Intelligence Wenzhou University Wenzhou China
| | - Ali Asghar Heidari
- Department of Computer Science and Artificial Intelligence Wenzhou University Wenzhou China
| | - Lejun Zhang
- College of Information Engineering Yangzhou University Yangzhou China
| | - Xiao Xue
- College of Computer Science and Technology Henan Polytechnic University Zhengzhou China
| | - Wenyong Gui
- Department of Computer Science and Artificial Intelligence Wenzhou University Wenzhou China
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence Wenzhou University Wenzhou China
| | - Zhifang Pan
- Zhejiang Engineering Research Center of Intelligent Medicine The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
17
|
Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation. Comput Biol Med 2021; 138:104910. [PMID: 34638022 DOI: 10.1016/j.compbiomed.2021.104910] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023]
Abstract
Breast cancer is one of the most dangerous diseases for women's health, and it is imperative to provide the necessary diagnostic assistance for it. The medical image processing technology is one of the most critical of all complementary diagnostic technologies. Image segmentation is the core step of image processing, where multilevel image segmentation is considered one of the most efficient and straightforward methods. Many multilevel image segmentation methods based on evolutionary and population-based methods have been proposed in recent years, but many have the fatal weakness of poor convergence accuracy and the tendency to fall into local optimum. Therefore, to overcome these weaknesses, this paper proposes a modified differential evolution (MDE) algorithm with a vision based on the slime mould foraging behavior, where the recently proposed slime mould algorithm (SMA) inspires it. Besides, to obtain high-quality breast cancer image segmentation results, this paper also develops an excellent MDE-based multilevel image segmentation model, the core of which is based on non-local means 2D histogram and 2D Kapur's entropy. To effectively validate the performance of the proposed method, a comparison experiment between MDE and its similar algorithms was first carried out on IEEE CEC 2014. Then, an initial validation of the MDE-based multilevel image segmentation model was performed by utilizing a reference image set. Finally, the MDE-based multilevel image segmentation model was compared with peers using breast invasive ductal carcinoma images. A series of experimental results have proved that MDE is an evolutionary algorithm with high convergence accuracy and the ability to jump out of the local optimum, as well as effectively demonstrated that the developed model is a high-quality segmentation method that can provide practical support for further research of breast invasive ductal carcinoma pathological image processing.
Collapse
|
18
|
Towards Precision Fertilization: Multi-Strategy Grey Wolf Optimizer Based Model Evaluation and Yield Estimation. ELECTRONICS 2021. [DOI: 10.3390/electronics10182183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precision fertilization is a major constraint in consistently balancing the contradiction between land resources, ecological environment, and population increase. Even more, it is a popular technology used to maintain sustainable development. Nitrogen (N), phosphorus (P), and potassium (K) are the main sources of nutrient income on farmland. The traditional fertilizer effect function cannot meet the conditional agrochemical theory’s conditional extremes because the soil is influenced by various factors and statistical errors in harvest and yield. In order to find more accurate scientific ratios, it has been proposed a multi-strategy-based grey wolf optimization algorithm (SLEGWO) to solve the fertilizer effect function in this paper, using the “3414” experimental field design scheme, taking the experimental field in Nongan County, Jilin Province as the experimental site to obtain experimental data, and using the residuals of the ternary fertilizer effect function of Nitrogen, phosphorus, and potassium as the target function. The experimental results showed that the SLEGWO algorithm could improve the fitting degree of the fertilizer effect equation and then reasonably predict the accurate fertilizer application ratio and improve the yield. It is a more accurate precision fertilization modeling method. It provides a new means to solve the problem of precision fertilizer and soil testing and fertilization.
Collapse
|
19
|
Liu L, Zhao D, Yu F, Heidari AA, Li C, Ouyang J, Chen H, Mafarja M, Turabieh H, Pan J. Ant colony optimization with Cauchy and greedy Levy mutations for multilevel COVID 19 X-ray image segmentation. Comput Biol Med 2021; 136:104609. [PMID: 34293587 PMCID: PMC8254401 DOI: 10.1016/j.compbiomed.2021.104609] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/22/2023]
Abstract
This paper focuses on the study of multilevel COVID-19 X-ray image segmentation based on swarm intelligence optimization to improve the diagnostic level of COVID-19. We present a new ant colony optimization with the Cauchy mutation and the greedy Levy mutation, termed CLACO, for continuous domains. Specifically, the Cauchy mutation is applied to the end phase of ant foraging in CLACO to enhance its searchability and to boost its convergence rate. The greedy Levy mutation is applied to the optimal ant individuals to confer an improved ability to jump out of the local optimum. Furthermore, this paper develops a novel CLACO-based multilevel image segmentation method, termed CLACO-MIS. Using 2D Kapur's entropy as the CLACO fitness function based on 2D histograms consisting of non-local mean filtered images and grayscale images, CLACO-MIS was successfully applied to the segmentation of COVID-19 X-ray images. A comparison of CLACO with some relevant variants and other excellent peers on 30 benchmark functions from IEEE CEC2014 demonstrates the superior performance of CLACO in terms of search capability, and convergence speed as well as ability to jump out of the local optimum. Moreover, CLACO-MIS was shown to have a better segmentation effect and a stronger adaptability at different threshold levels than other methods in performing segmentation experiments of COVID-19 X-ray images. Therefore, CLACO-MIS has great potential to be used for improving the diagnostic level of COVID-19. This research will host a webservice for any question at https://aliasgharheidari.com.
Collapse
Affiliation(s)
- Lei Liu
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Fanhua Yu
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Ali Asghar Heidari
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Chengye Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jinsheng Ouyang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Majdi Mafarja
- Department of Computer Science, Birzeit University, POBox 14, West Bank, Palestine.
| | - Hamza Turabieh
- Department of Information Technology, College of Computers and Information Technology, P.O. Box 11099, Taif, 21944, Taif University, Taif, Saudi Arabia.
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of IntelligentTreatment and Life Support for Critical Diseases of Zhejiang Provincial, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China.
| |
Collapse
|
20
|
Ramos-Soto O, Rodríguez-Esparza E, Balderas-Mata SE, Oliva D, Hassanien AE, Meleppat RK, Zawadzki RJ. An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 201:105949. [PMID: 33567382 DOI: 10.1016/j.cmpb.2021.105949] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Automatic segmentation of retinal blood vessels makes a major contribution in CADx of various ophthalmic and cardiovascular diseases. A procedure to segment thin and thick retinal vessels is essential for medical analysis and diagnosis of related diseases. In this article, a novel methodology for robust vessel segmentation is proposed, handling the existing challenges presented in the literature. METHODS The proposed methodology consists of three stages, pre-processing, main processing, and post-processing. The first stage consists of applying filters for image smoothing. The main processing stage is divided into two configurations, the first to segment thick vessels through the new optimized top-hat, homomorphic filtering, and median filter. Then, the second configuration is used to segment thin vessels using the proposed optimized top-hat, homomorphic filtering, matched filter, and segmentation using the MCET-HHO multilevel algorithm. Finally, morphological image operations are carried out in the post-processing stage. RESULTS The proposed approach was assessed by using two publicly available databases (DRIVE and STARE) through three performance metrics: specificity, sensitivity, and accuracy. Analyzing the obtained results, an average of 0.9860, 0.7578 and 0.9667 were respectively achieved for DRIVE dataset and 0.9836, 0.7474 and 0.9580 for STARE dataset. CONCLUSIONS The numerical results obtained by the proposed technique, achieve competitive average values with the up-to-date techniques. The proposed approach outperform all leading unsupervised methods discussed in terms of specificity and accuracy. In addition, it outperforms most of the state-of-the-art supervised methods without the computational cost associated with these algorithms. Detailed visual analysis has shown that a more precise segmentation of thin vessels was possible with the proposed approach when compared with other procedures.
Collapse
Affiliation(s)
- Oscar Ramos-Soto
- División de Electrónica y Computación, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, C.P. 44430, Guadalajara, Jal., Mexico.
| | - Erick Rodríguez-Esparza
- División de Electrónica y Computación, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, C.P. 44430, Guadalajara, Jal., Mexico; DeustoTech, Faculty of Engineering, University of Deusto, Av. Universidades, 24, 48007 Bilbao, Spain.
| | - Sandra E Balderas-Mata
- División de Electrónica y Computación, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, C.P. 44430, Guadalajara, Jal., Mexico.
| | - Diego Oliva
- División de Electrónica y Computación, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, C.P. 44430, Guadalajara, Jal., Mexico; IN3 - Computer Science Dept., Universitat Oberta de Catalunya, Castelldefels, Spain.
| | | | - Ratheesh K Meleppat
- UC Davis Eyepod Imaging Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA; Dept. of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, USA.
| | - Robert J Zawadzki
- UC Davis Eyepod Imaging Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA; Dept. of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
21
|
Song S, Wang P, Heidari AA, Wang M, Zhao X, Chen H, He W, Xu S. Dimension decided Harris hawks optimization with Gaussian mutation: Balance analysis and diversity patterns. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2020.106425] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Hu J, Chen H, Heidari AA, Wang M, Zhang X, Chen Y, Pan Z. Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2020.106684] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2020.106728] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Fan Y, Wang P, Mafarja M, Wang M, Zhao X, Chen H. A bioinformatic variant fruit fly optimizer for tackling optimization problems. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2020.106704] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Evolutionary biogeography-based whale optimization methods with communication structure: Towards measuring the balance. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2020.106642] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Tan Y, Shi Y, Tuba M. Swarm Intelligence in Data Science: Applications, Opportunities and Challenges. LECTURE NOTES IN COMPUTER SCIENCE 2020. [PMCID: PMC7354777 DOI: 10.1007/978-3-030-53956-6_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Swarm Intelligence (SI) algorithms have been proved to be a comprehensive method to solve complex optimization problems by simulating the emergence behaviors of biological swarms. Nowadays, data science is getting more and more attention, which needs quick management and analysis of massive data. Most traditional methods can only be applied to continuous and differentiable functions. As a set of population-based approaches, it is proven by some recent research works that the SI algorithms have great potential for relevant tasks in this field. In order to gather better insight into the utilization of these methods in data science and to provide a further reference for future researches, this paper focuses on the relationship between data science and swarm intelligence. After introducing the mainstream swarm intelligence algorithms and their common characteristics, both the theoretical and real-world applications in the literature which utilize the swarm intelligence to the related domains of data analytics are reviewed. Based on the summary of the existing works, this paper also analyzes the opportunities and challenges in this field, which attempts to shed some light on designing more effective algorithms to solve the problems in data science for real-world applications.
Collapse
Affiliation(s)
- Ying Tan
- Peking University, Beijing, China
| | - Yuhui Shi
- Southern University of Science and Technology, Shenzhen, China
| | | |
Collapse
|